Difference between revisions of "Aufgaben:Exercise 3.12: Strictly Symmetrical Channels"

From LNTwww
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Anwendung auf die Digitalsignalübertragung
+
{{quiz-Header|Buchseite=Information_Theory/Application_to_Digital_Signal_Transmission
 
}}
 
}}
  
[[File:P_ID2801__Inf_A_3_11_neu.png|right|]]
+
[[File:EN_Inf_A_3_11.png|right|frame|Predefined sub-channel model (top) <br>and BSEC model (bottom)]]
Die obere Grafik zeigt zwei streng symmetrische Teilkanäle A und B. Ein $\text {streng  symmetrischer Kanal}$ (englisch: ''Strongly Symmetric Channel'') ist dabei
+
The upper diagram shows two strictly symmetric subchannels&nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$.&nbsp;
:* gleichmäßig  $\text{dispersiv }$  ''(uniformly dispersive)''  $\Rightarrow$ jedes Eingangssymbol $u$ hat die gleiche Menge an Übergangswahrscheinlichkeiten:
+
*A&nbsp; '''strongly symmetric channel'''&nbsp; is one that is&nbsp; "uniformly dispersive" &nbsp; &rArr; &nbsp; each input symbol&nbsp; $u$&nbsp; has the same set of transition probabilities:
$$\left \{ P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.02cm}U}(y\hspace{-0.01cm} |\hspace{-0.01cm} u) \hspace{-0.05cm}: \hspace{0.25cm}u \in U \right \} \hspace{0.05cm},$$
+
:$$\left \{ P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.02cm}U}(y\hspace{0.03cm} |\hspace{0.03cm} u) \hspace{-0.05cm}: \hspace{0.25cm}u \in U \right \} \hspace{0.05cm},$$
:* zudem gleichmäßig $\text{fokussierend}$ ''(uniformly focusing)''$$jedes Ausgangssymbol y hat die gleiche Übergangswahrscheinlichkeitsmenge:
+
* moreover, '''uniformly focusing'''  &nbsp; &rArr; &nbsp; each output symbol&nbsp; $y$&nbsp; has the same set of transition probabilities:
$$ \left \{ P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.02cm}U}(y\hspace{-0.01cm} |\hspace{-0.01cm} u) \hspace{-0.05cm}: \hspace{0.25cm}y \in Y \right \} \hspace{0.05cm}.$$
+
:$$ \left \{ P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.02cm}U}(y\hspace{0.03cm} |\hspace{0.03cm} u) \hspace{-0.05cm}: \hspace{0.25cm}y \in Y \right \} \hspace{0.05cm}.$$
Die Zufallsgröße $U = \{0, 1\}$ tritt dabei direkt an den Eingängen der Teilkanäle $A$ und $B$ auf.
+
The random quantity&nbsp; $U = \{0,\ 1\}$&nbsp; occurs directly at the inputs of the sub-channels&nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$.
  
Die Kanalkapazität eines streng symmetrischen Kanals lässt sich sehr viel einfacher berechnen als im unsymmetrischen Fall. Hierauf wird jedoch in dieser Aufgabe nicht näher eingegangen.
+
The channel capacity of a strictly symmetrical channel can be calculated much more easily than in the asymmetrical case.&nbsp; However, this will not be discussed in detail in this exercise.
  
Für die Kapazität des Gesamtkanals gilt
+
For the capacity of the total channel applies:
$$ C = p_{\rm A} \cdot C_{\rm A} + p_{\rm B} \cdot C_{\rm B}\hspace{0.05cm}$$
+
:$$ C = p_{\rm A} \cdot C_{\rm A} + p_{\rm B} \cdot C_{\rm B}\hspace{0.05cm}$$
Hierbei bezeichnet $p_A$ die Wahrscheinlichkeit, dass der Teilkanal $A$ ausgewählt wird und $C_A$ dessen Kapazität. Entsprechendes gilt für den Teilkanal $B$.
+
Here&nbsp; $p_{\rm A}$&nbsp; denotes the probability that the sub-channel&nbsp; $\rm A$&nbsp; is selected and&nbsp; $C_{\rm A}$&nbsp; indicates its capacity.&nbsp; The same applies to sub-channel&nbsp; $\rm B$.
  
Anschließend soll auch die Kanalkapazität des Binary Symmetric Error & Erasure Channel (BSEC) nach der unteren Skizze (grau hinterlegt) ermittelt werden, indem der Zusammenhang hergeleitet wird zwischen
+
Subsequently, the channel capacity of the&nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Error_.26_Erasure_Channel_.E2.80.93_BSEC|Binary Symmetric Error & Erasure Channel]]&nbsp; $\rm (BSEC)$&nbsp; is also to be determined according to the sketch below&nbsp; (grey background)&nbsp; by deriving the relationship between
:*den Parametern $p_A$, $_pB$ und $q$ des oben dargestelltern Teilkanalmodells, und
+
*the parameters&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$&nbsp; and the crossover probability&nbsp; $q$&nbsp; of the sub-channel model shown above, and
:* den Parametern $λ$ und $ε$ des BSEC–Modells.
+
* the parameters&nbsp; $λ$&nbsp; and&nbsp; $\varepsilon$&nbsp; of the BSEC model.
'''Hinweis:'''  Die Aufgabe gehört zum Themengebiet von [http://en.lntwww.de/Informationstheorie/Anwendung_auf_die_Digitalsignal%C3%BCbertragung Kapitel 3.3]. Entsprechend der [http://en.lntwww.de/Aufgaben:3.09Z_BSC%E2%80%93Kanalkapazit%C3%A4t Aufgabe Z3.9] gilt für die Kanalkapazität des BSC–Modells mit der Verfälschungswahrscheinlichkeit $ε$:
 
$$ C_{\rm BSC} = 1 - H_{\rm bin}(\varepsilon)\hspace{0.05cm}$$
 
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung|Application to Digital Signal Transmission]].
 +
*Reference is made in particular to the page&nbsp;    [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Properties_of_symmetrical_channels|Properties of symmetrical channels]].
 +
 +
*According to&nbsp; [[Aufgaben:Aufgabe_3.10Z:_BSC–Kanalkapazität|Exercise 3.10Z]]&nbsp;, the following applies to the channel capacity of the BSC model with the crossover probability&nbsp; $\varepsilon$:
 +
:$$ C_{\rm BSC} = 1 - H_{\rm bin}(\varepsilon)\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Kapazität $C_A$ besitzt der Teilkanal $A$?
+
{What is the capacity&nbsp; $C_{\rm A}$&nbsp; of sub-channel&nbsp; $\rm A$?
|type="[]"}
+
|type="()"}
+ $C_A = 1 H_{bin}(q).$
+
+ $C_{\rm A} = 1 - H_{\rm bin}(q),$
-  $C_A = p_A · [1 H_{bin}(q)].$
+
-  $C_{\rm A} = p_{\rm A} · \big[1 - H_{\rm bin}(q)\big],$
- $C_A = 0.$
+
- $C_{\rm A} = 0.$
  
{ Welche Kapazität $C_B$ besitzt der Teilkanal $B$?
+
{What is the capacity&nbsp; $C_{\rm B}$&nbsp; of sub-channel&nbsp; $\rm B$?
|type="[]"}
+
|type="()"}
- $C_B = 1 H_{bin}(q).$
+
- $C_{\rm B} = 1 - H_{\rm bin}(q),$
- $C_B= p_B · [1 H_{bin}(q)].$
+
- $C_{\rm B} = p_{\rm B} · \big[1 - H_{\rm bin}(q)\big],$
+ $C_B = 0.$
+
+ $C_{\rm B} = 0.$
  
{Welche Kapazität $C$ besitzt der Gesamtkanal?
+
{What is the capacity&nbsp; $C$&nbsp; of the total channel?
 
|type="[]"}
 
|type="[]"}
- $C = 1 H_{bin}(q).$
+
- $C = 1 - H_{\rm bin}(q),$
+ $C = p_A · [1 H_{bin}(q)].$
+
+ $C = p_{\rm A} · \big[1 - H_{\rm bin}(q)\big],$
 
- $C = 0.$
 
- $C = 0.$
  
{Wie gelangt man vom betrachteten Teilkanalmodell zum BSEC? Mit
+
{How do you get from the considered sub-channel model to the BSEC model?&nbsp; With
 
|type="[]"}
 
|type="[]"}
- $p_A = λ,$
+
- $p_{\rm A} = λ,$
+ $p_A = 1 λ,$
+
+ $p_{\rm A} = 1 - λ,$
- $p_A = ε$,
+
- $p_{\rm A} = ε$,
- $p_A = ε/(1 λ)?$
+
- $p_{\rm A} = ε/(1 - λ)?$
  
{Wie gelangt man vom betrachteten Teilkanalmodell zum BSEC? Mit
+
{How do you get from the considered sub-channel model to the BSEC model?&nbsp; With
 
|type="[]"}
 
|type="[]"}
 
- $q = λ,$
 
- $q = λ,$
- $q = 1 λ,$
+
- $q = 1 - λ,$
 
- $q = ε,$
 
- $q = ε,$
+ $q = ε/(1 λ)?$
+
+ $q = ε/(1 - λ)?$
  
  
{Berechnen Sie die BSEC–Kanalkapazität für $ε = 0.08$ und $λ = 0.2.$
+
{What is the channel capacity of the BSEC&nbsp; ("Binary Symmetric Error & Erasure Channel")&nbsp; for &nbsp;$ε = 0.08$&nbsp; and &nbsp;$λ = 0.2.$
 
|type="{}"}
 
|type="{}"}
$ ε = 0.08, λ = 0.2:  C_{BSEC}$ = { 0.425 3% } $bit$
+
$C_{\rm BSEC} \ = \ $ { 0.425 3% } $\ \rm bit$
  
{Wie groß ist die Kanalkapazität des BSC–Kanals für $ε = 0.08$?
+
{What is the channel capacity of the BSC&nbsp;  ("Binary Symmetric Channel")&nbsp; for &nbsp;$ε = 0.08$?
 
|type="{}"}
 
|type="{}"}
$ ε = 0.08:  C_{BSC}$ = { 0.598 3% } $bit$
+
$C_{\rm BSC}\ = \ $ { 0.598 3% } $\ \rm bit$
  
{Wie groß ist die Kanalkapazität des BEC–Kanals für $λ = 0.2$?
+
{What is the channel capacity of the BEC&nbsp; ("Binary Erasure Channel")&nbsp; for &nbsp;$λ = 0.2$?
 
|type="{}"}
 
|type="{}"}
$λ = 0.2:  C_{BEC}$ = { 0.8 3% } $bit$
+
$C_{\rm BEC}\ = \ $ { 0.8 3% } $\ \rm bit$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Teilkanal $A$ ist ein BSC mit der Verfälschungswahrscheinlichkeit $q  $   ''Lösungsvorschlag 1''.
+
'''(1)'''&nbsp; Subchannel&nbsp; $\rm A$&nbsp; is a &nbsp; ("Binary Symmetric Channel")&nbsp; with crossover probability&nbsp; $q$   &nbsp; &rArr; &nbsp; <u>Proposed solution 1</u>.
 +
 
 +
 
 +
'''(2)'''&nbsp;  Subchannel&nbsp; $\rm B$&nbsp; is an&nbsp; "erasure channel".&nbsp; Both the sink entropy and irrelevance of this subchannel are zero  &nbsp; &rArr; &nbsp; <u>Proposed solution 3</u>.
 +
 
 +
 
 +
[[File:EN_Inf_A_3_11e.png|right|frame|BSEC model (top) and <br>given partial channel model (down)]]
 +
'''(3)'''&nbsp;  The capacity $C$ of the total channel can be calculated using the given equation:
 +
:$$ C = p_{\rm A} \cdot C_{\rm A} + p_{\rm B} \cdot C_{\rm B} = p_{\rm A} \cdot \big[1 - H_{\rm bin}(q)\big]\hspace{0.05cm}.$$
 +
Thus, the <u>proposed solution 2</u> is correct here.
 +
 
 +
 
 +
'''(4)'''&nbsp;  In the model considered so far, the transition probabilities are as follows:
 +
:$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) ={\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = p_{\rm B} \hspace{0.05cm}.$$
 +
*In the BSEC model, the corresponding conditional probabilities are equal to $λ$  &nbsp; <br>&rArr; &nbsp; see graph on the information page.
 +
* Therefore, the correct <u>solution proposal is 2</u>:
 +
:$$p_{\rm B} = \lambda = 1 - p_{\rm A} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm A} = 1- \lambda\hspace{0.05cm}.$$
 +
 
  
'''2.''' Teilkanal $B$ ist ein Auslöschungskanal. Sowohl die Sinkenentropie als auch die Irrelevanz dieses Teilkanals sind $0   ⇒  C_B = 0   ⇒$   ''Lösungsvorschlag 3.''
+
'''(5)'''&nbsp;  In the BSEC&nbsp; ("Binary Symmetric Error & Erasure Channel")&nbsp; model, for example:
 +
:$$ {\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) =\varepsilon \hspace{0.05cm}.$$
 +
*In contrast, for our auxiliary model according to the graph below, the result is:
 +
:$${\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) =(1- \lambda) \cdot q \hspace{0.05cm}.$$
 +
*This gives $q = ε/(1 – λ)$  &nbsp; &rArr; &nbsp; <u>Proposed solution 4</u>.
 +
*The graph uses colours and line type&nbsp; (solid/dotted)&nbsp; to illustrate the relationship between the models.
  
'''3.''' Die Kapazität C des Gesamtkanals kann mit der angegebenen Gleichung berechnet werden:
 
$$ C = p_{\rm A} \cdot C_{\rm A} + p_{\rm B} \cdot C_{\rm B} = p_{\rm A} \cdot [1 - H_{\rm bin}(q)]\hspace{0.05cm}.$$
 
Hier stimmt somit der ''Lösungsvorschlag 2.''
 
  
[[File:P_ID2804__Inf_A_3_11e_neu.png|right|]]
+
'''(6)'''&nbsp;  Using the results of subtasks&nbsp; '''(3)''',&nbsp; '''(4)'''&nbsp; and&nbsp; '''(5)'''&nbsp; we obtain in general for the&nbsp; "Binary Symmetric Error & Erasure Channel":
'''4.'''Beim bisher betrachteten Modell ergeben sich folgende Übergangswahrscheinlichkeiten:
+
:$$C_{\rm BSEC} = (1- \lambda) \cdot \left [ 1 - H_{\rm bin}(\frac{\varepsilon}{1- \lambda}) \right ]\hspace{0.05cm},$$
$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) ={\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = p_{\rm B} \hspace{0.05cm}.$$
+
:or the numerical values for&nbsp; $ε = 0.08$&nbsp; and&nbsp; $λ = 0.2$:
Beim BSEC–Modell sind die entsprechenden bedingten Wahrscheinlichkeiten gleich $λ  ⇒$ siehe $\text{Grafik}$ auf der Angabenseite. Richtig ist also der ''Lösungsvorschlag 2:''
+
:$$C_{\rm BSEC} = 0.8 \cdot \big [ 1 - H_{\rm bin}(0.1) \big ] = 0.8 \cdot \left [ 1 - 0.469 \right ] \hspace{0.15cm} \underline {=0.425\,{\rm bit}}\hspace{0.05cm}.$$
$$p_{\rm B} = \lambda = 1 - p_{\rm A} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm A} = 1- \lambda\hspace{0.05cm}.$$
 
'''5.'''  Beim BSEC–Modell gilt beispielsweise:
 
$$ {\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) =\varepsilon \hspace{0.05cm}.$$
 
Dagegen ergibt sich bei unserem Hilfsmodell
 
$$: {\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) =(1- \lambda) \cdot q \hspace{0.05cm}.$$
 
Damit erhält man $q = ε/(1 – λ)  ⇒$  ''Lösungsvorschlag 4''. Die Grafik verdeutlicht anhand von Farben und Strichart (durchgezogen/gepunktet) den Zusammenhang zwischen beiden Modellen
 
  
'''6.'''Mit den Ergebnissen der Teilaufgaben (c), (d) und (e) erhält man allgemein:
+
'''(7)'''&nbsp;  The "Binary Symmetric Channel"&nbsp; (BSC) is a special case of the BSEC with&nbsp; $λ = 0$:
$$C_{\rm BSEC} = (1- \lambda) \cdot \left [ 1 - H_{\rm bin}(\frac{\varepsilon}{1- \lambda}) \right ]\hspace{0.05cm},$$
+
:$$ C_{\rm BSC} = 1 - H_{\rm bin}(\varepsilon) = 1 - H_{\rm bin}(0.08) = 1 - 0.402 \hspace{0.15cm} \underline {=0.598\,{\rm bit}}\hspace{0.05cm}.$$
bzw. für $ε = 0.08$ und$λ = 0.2$:
 
$$C_{\rm BSEC} = 0.8 \cdot \left [ 1 - H_{\rm bin}(0.1) \right ] = 0.8 \cdot \left [ 1 - 0.469 \right ] \hspace{0.15cm} \underline {=0.425\,{\rm bit}}\hspace{0.05cm}.$$
 
  
'''7.''' Der BSC ist ein Sonderfall des BSEC mit λ = 0:
+
'''(8)''' The&nbsp; "Binary Erasure Channel"&nbsp; (BEC) is a special case of the BSEC with&nbsp; $ε = 0$:
$$ C_{\rm BSC} = 1 - H_{\rm bin}(\varepsilon) = 1 - H_{\rm bin}(0.08) = 1 - 0.402 \hspace{0.15cm} \underline {=0.598\,{\rm bit}}\hspace{0.05cm}.$$
+
:$$C_{\rm BEC} = (1- \lambda) \cdot \big [ 1 - H_{\rm bin}(0) \big ] = 1- \lambda\hspace{0.05cm}.$$
'''8.''' Der BEC ist ein Sonderfall des BSEC mit $ε = 0$:
+
*With&nbsp; $λ = 0.2$&nbsp;, this results in&nbsp; $C_{\rm BEC}\hspace{0.15cm} \underline { = 0.8 \ \rm bit}.$
$$C_{\rm BEC} = (1- \lambda) \cdot \left [ 1 - H_{\rm bin}(0) \right ] = 1- \lambda\hspace{0.05cm}.$$
 
Mit $λ = 0.2$ ergibt sich hierfür $C_{BEC} = 0.8 bit.$
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 109: Line 130:
  
  
[[Category:Aufgaben zu  Informationstheorie|^3.3 Anwendung auf DSÜ-Kanäle^]]
+
[[Category:Information Theory: Exercises|^3.3 Application to Digital Signal Transmission^]]

Latest revision as of 12:57, 24 September 2021

Predefined sub-channel model (top)
and BSEC model (bottom)

The upper diagram shows two strictly symmetric subchannels  $\rm A$  and  $\rm B$. 

  • strongly symmetric channel  is one that is  "uniformly dispersive"   ⇒   each input symbol  $u$  has the same set of transition probabilities:
$$\left \{ P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.02cm}U}(y\hspace{0.03cm} |\hspace{0.03cm} u) \hspace{-0.05cm}: \hspace{0.25cm}u \in U \right \} \hspace{0.05cm},$$
  • moreover, uniformly focusing   ⇒   each output symbol  $y$  has the same set of transition probabilities:
$$ \left \{ P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.02cm}U}(y\hspace{0.03cm} |\hspace{0.03cm} u) \hspace{-0.05cm}: \hspace{0.25cm}y \in Y \right \} \hspace{0.05cm}.$$

The random quantity  $U = \{0,\ 1\}$  occurs directly at the inputs of the sub-channels  $\rm A$  and  $\rm B$.

The channel capacity of a strictly symmetrical channel can be calculated much more easily than in the asymmetrical case.  However, this will not be discussed in detail in this exercise.

For the capacity of the total channel applies:

$$ C = p_{\rm A} \cdot C_{\rm A} + p_{\rm B} \cdot C_{\rm B}\hspace{0.05cm}$$

Here  $p_{\rm A}$  denotes the probability that the sub-channel  $\rm A$  is selected and  $C_{\rm A}$  indicates its capacity.  The same applies to sub-channel  $\rm B$.

Subsequently, the channel capacity of the  Binary Symmetric Error & Erasure Channel  $\rm (BSEC)$  is also to be determined according to the sketch below  (grey background)  by deriving the relationship between

  • the parameters  $p_{\rm A}$,  $p_{\rm B}$  and the crossover probability  $q$  of the sub-channel model shown above, and
  • the parameters  $λ$  and  $\varepsilon$  of the BSEC model.




Hints:

  • According to  Exercise 3.10Z , the following applies to the channel capacity of the BSC model with the crossover probability  $\varepsilon$:
$$ C_{\rm BSC} = 1 - H_{\rm bin}(\varepsilon)\hspace{0.05cm}.$$


Questions

1

What is the capacity  $C_{\rm A}$  of sub-channel  $\rm A$?

$C_{\rm A} = 1 - H_{\rm bin}(q),$
$C_{\rm A} = p_{\rm A} · \big[1 - H_{\rm bin}(q)\big],$
$C_{\rm A} = 0.$

2

What is the capacity  $C_{\rm B}$  of sub-channel  $\rm B$?

$C_{\rm B} = 1 - H_{\rm bin}(q),$
$C_{\rm B} = p_{\rm B} · \big[1 - H_{\rm bin}(q)\big],$
$C_{\rm B} = 0.$

3

What is the capacity  $C$  of the total channel?

$C = 1 - H_{\rm bin}(q),$
$C = p_{\rm A} · \big[1 - H_{\rm bin}(q)\big],$
$C = 0.$

4

How do you get from the considered sub-channel model to the BSEC model?  With

$p_{\rm A} = λ,$
$p_{\rm A} = 1 - λ,$
$p_{\rm A} = ε$,
$p_{\rm A} = ε/(1 - λ)?$

5

How do you get from the considered sub-channel model to the BSEC model?  With

$q = λ,$
$q = 1 - λ,$
$q = ε,$
$q = ε/(1 - λ)?$

6

What is the channel capacity of the BSEC  ("Binary Symmetric Error & Erasure Channel")  for  $ε = 0.08$  and  $λ = 0.2.$

$C_{\rm BSEC} \ = \ $

$\ \rm bit$

7

What is the channel capacity of the BSC  ("Binary Symmetric Channel")  for  $ε = 0.08$?

$C_{\rm BSC}\ = \ $

$\ \rm bit$

8

What is the channel capacity of the BEC  ("Binary Erasure Channel")  for  $λ = 0.2$?

$C_{\rm BEC}\ = \ $

$\ \rm bit$


Solution

(1)  Subchannel  $\rm A$  is a   ("Binary Symmetric Channel")  with crossover probability  $q$   ⇒   Proposed solution 1.


(2)  Subchannel  $\rm B$  is an  "erasure channel".  Both the sink entropy and irrelevance of this subchannel are zero   ⇒   Proposed solution 3.


BSEC model (top) and
given partial channel model (down)

(3)  The capacity $C$ of the total channel can be calculated using the given equation:

$$ C = p_{\rm A} \cdot C_{\rm A} + p_{\rm B} \cdot C_{\rm B} = p_{\rm A} \cdot \big[1 - H_{\rm bin}(q)\big]\hspace{0.05cm}.$$

Thus, the proposed solution 2 is correct here.


(4)  In the model considered so far, the transition probabilities are as follows:

$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) ={\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = p_{\rm B} \hspace{0.05cm}.$$
  • In the BSEC model, the corresponding conditional probabilities are equal to $λ$  
    ⇒   see graph on the information page.
  • Therefore, the correct solution proposal is 2:
$$p_{\rm B} = \lambda = 1 - p_{\rm A} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm A} = 1- \lambda\hspace{0.05cm}.$$


(5)  In the BSEC  ("Binary Symmetric Error & Erasure Channel")  model, for example:

$$ {\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) =\varepsilon \hspace{0.05cm}.$$
  • In contrast, for our auxiliary model according to the graph below, the result is:
$${\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 0) =(1- \lambda) \cdot q \hspace{0.05cm}.$$
  • This gives $q = ε/(1 – λ)$   ⇒   Proposed solution 4.
  • The graph uses colours and line type  (solid/dotted)  to illustrate the relationship between the models.


(6)  Using the results of subtasks  (3)(4)  and  (5)  we obtain in general for the  "Binary Symmetric Error & Erasure Channel":

$$C_{\rm BSEC} = (1- \lambda) \cdot \left [ 1 - H_{\rm bin}(\frac{\varepsilon}{1- \lambda}) \right ]\hspace{0.05cm},$$
or the numerical values for  $ε = 0.08$  and  $λ = 0.2$:
$$C_{\rm BSEC} = 0.8 \cdot \big [ 1 - H_{\rm bin}(0.1) \big ] = 0.8 \cdot \left [ 1 - 0.469 \right ] \hspace{0.15cm} \underline {=0.425\,{\rm bit}}\hspace{0.05cm}.$$

(7)  The "Binary Symmetric Channel"  (BSC) is a special case of the BSEC with  $λ = 0$:

$$ C_{\rm BSC} = 1 - H_{\rm bin}(\varepsilon) = 1 - H_{\rm bin}(0.08) = 1 - 0.402 \hspace{0.15cm} \underline {=0.598\,{\rm bit}}\hspace{0.05cm}.$$

(8) The  "Binary Erasure Channel"  (BEC) is a special case of the BSEC with  $ε = 0$:

$$C_{\rm BEC} = (1- \lambda) \cdot \big [ 1 - H_{\rm bin}(0) \big ] = 1- \lambda\hspace{0.05cm}.$$
  • With  $λ = 0.2$ , this results in  $C_{\rm BEC}\hspace{0.15cm} \underline { = 0.8 \ \rm bit}.$