Difference between revisions of "Aufgaben:Exercise 3.2Z: Laplace and Fourier"

From LNTwww
 
(30 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Transformation und p–Übertragungsfunktion
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function
 
}}
 
}}
  
[[File:P_ID1764__LZI_Z_3_2.png|right|Kausale Zeitfunktionen]]
+
[[File:P_ID1764__LZI_Z_3_2.png|right|frame|Four causal time signals]]
Die Fourier–Transformation kann für jedes deterministische Signal $x(t)$ angewandt werden. Für die Spektralfunktion gilt dann:
+
The Fourier transformation can be applied to any deterministic signal  $x(t)$.  Then, the following holds for the spectral function:
 
:$$X(f) =    \int_{-\infty}^{
 
:$$X(f) =    \int_{-\infty}^{
 
+\infty}
 
+\infty}
Line 10: Line 10:
 
  d}t\hspace{0.05cm}\hspace{0.05cm} .$$
 
  d}t\hspace{0.05cm}\hspace{0.05cm} .$$
  
Bei leistungsbegrenzten Signalen – Kennzeichen: unendlich große Energie – beinhaltet $X(f)$ auch Distributionen (Diracfunktionen).
+
For power-limited signals  – characteristics:   infinite energy –  $X(f)$  also includes distributions  (Dirac delta  functions).
  
Bei allen kausalen Signalen (und nur bei diesen) ist daneben auch die Laplace-Transformation anwendbar:
+
For all causal signals  (and only for these),  the Laplace transformation is also applicable beside the Fourier transformation:
$$X_{\rm L}(p) =    \int_{0}^{
+
:$$X_{\rm L}(p) =    \int_{0}^{
 
\infty}
 
\infty}
 
  { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
 
  { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm
 
  d}t\hspace{0.05cm}\hspace{0.05cm} .$$
 
  d}t\hspace{0.05cm}\hspace{0.05cm} .$$
  
In der Grafik sehen Sie verschiedene kausale Zeitfunktionen, die in dieser Aufgabe behandelt werden:
+
In the diagram you can see several causal time functions that will be covered in this exercise:
  
* die Diracfunktion $a(t)$,
+
* the Dirac delta function  $a(t)$,
  
* die Sprungfunktion $b(t)$,
+
* the unit step function  $b(t)$,
  
* die Rechteckfunktion $c(t)$,
+
* the rectangular function  $c(t)$,
  
* die Rampenfunktion $d(t)$.
+
* the ramp function  $d(t)$.
  
Die [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fourier–Transformation]] gelten meist (allerdings nicht immer) auch für die Laplace–Transformation, wobei $p ={\rm j} \cdot 2 \pi f$ zu setzen ist:
 
  
* Zum Beispiel lautet der [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz]]in Laplace– bzw. Fourier–Darstellung:
+
The  [[Signal_Representation/Fourier_Transform_Theorems|Fourier transform theorems]]  usually  (though not always)  also apply to the Laplace transformation where  $p ={\rm j} \cdot 2 \pi f$  is to be set:
 +
 
 +
* For example,  the  [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]]  in Laplace or Fourier representation is:
 
:$$x(t- \tau) \quad
 
:$$x(t- \tau) \quad
 
\circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm
 
\circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm
 
L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot {\rm
 
L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot {\rm
e}^{-p \tau}\hspace{0.05cm} ,$$
+
e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} ,$$
 
:$$x(t- \tau) \quad
 
:$$x(t- \tau) \quad
 
\circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad
 
\circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad
X(f)\cdot {\rm e}^{-{\rm j}2\pi f \tau}\hspace{0.05cm} .$$
+
X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$
  
* Dagegen ergeben sich beim [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Integrationssatz|Integrationssatz]] Unterschiede:
+
* In contrast,  there are differences in the  [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]] :
 
:$$\int {x(\tau)} \hspace{0.1cm}{\rm
 
:$$\int {x(\tau)} \hspace{0.1cm}{\rm
 
  d}\tau \quad
 
  d}\tau \quad
Line 52: Line 53:
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
===Fragebogen===
+
 
 +
Please note:
 +
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|Laplace Transform and p-Transfer Function]].
 +
*The  (German language)  learning video   [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|"Gesetzmäßigkeiten der Fouriertransformation"]]  ⇒    "Fourier transform theorems"  might be helpful.
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Spektraltransformationen des Signals $a(t) = \delta(t)$?
+
{What are the spectral transformations of the signal&nbsp; $a(t) = \delta(t)$?
 
|type="[]"}
 
|type="[]"}
 
+ $A_{\rm L}(p) = 1$.
 
+ $A_{\rm L}(p) = 1$.
Line 68: Line 73:
  
  
{Wie lauten die Spektraltransformationen der Sprungfunktion $b(t) = \gamma(t)$?
+
{What are the spectral transformations of the step function&nbsp; $b(t) = \gamma(t)$?
 
|type="[]"}
 
|type="[]"}
 
+ $B_{\rm L}(p) = 1/p$.
 
+ $B_{\rm L}(p) = 1/p$.
Line 75: Line 80:
  
  
{Wie lauten die Spektraltransformationen der Rechteckfunktion $c(t)$?
+
{What are the spectral transformations of the rectangular function&nbsp; $c(t)$?
 
|type="[]"}
 
|type="[]"}
 
- $C_{\rm L}(p) = {\rm si}(pT)$.  
 
- $C_{\rm L}(p) = {\rm si}(pT)$.  
+ $C_{\rm L}(p) =  [1-{\rm e}^{-pT}]/p$.  
+
+ $C_{\rm L}(p) =  \big [1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ]/p$.  
+ $C(f) = C_{\rm L}(p)$ mit $p = 2 \pi f$.  
+
+ $C(f) = C_{\rm L}(p)$ &nbsp;with&nbsp; $p = 2 \pi f$.  
  
  
{Wie lauten die Spektraltransformationen der Rampenfunktion $d(t)$??
+
{What are the spectral transformations of the ramp function&nbsp; $d(t)$?
 
|type="[]"}
 
|type="[]"}
+ $D_{\rm L}(p) =  [1-{\rm e}^{-pT}]/(p^2T)$.   
+
+ $D_{\rm L}(p) =  \big[1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}\big]/(p^2T)$.   
- $D_{\rm L}(p) =  1-{\rm e}^{-pT}$.
+
- $D_{\rm L}(p) =  1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}$.
- $D(f) = D_{\rm L}(p)$ mit $p = 2 \pi f$.  
+
- $D(f) = D_{\rm L}(p)$ &nbsp;with&nbsp; $p = 2 \pi f$.  
  
  
Line 92: Line 97:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp; <u>Suggested solutions 1 and 3</u>&nbsp; are correct:
*Berücksichtigt man, dass die Diracfunktion nur bei $t= 0$ ungleich $0$ ist und das Integral über den Dirac den Wert $1$ liefert, solange das Integrationsintervall den Zeitpunkt $t= 0$ einschließt, so erhält man:
+
*Considering that the Dirac delta function is non-zero only at&nbsp; $t= 0$&nbsp; and that the integral over the Dirac delta function yields the value&nbsp; $1$&nbsp; as long as the integration interval includes the time&nbsp; $t= 0$,&nbsp; the following is obtained:
 
:$$A(f) = 1, \hspace{0.2cm}A_{\rm
 
:$$A(f) = 1, \hspace{0.2cm}A_{\rm
 
  L}(p) = 1  \hspace{0.05cm} .$$
 
  L}(p) = 1  \hspace{0.05cm} .$$
  
  
'''(2)'''&nbsp; Richtig sind wiederum die <u>Lösungsvorschläge 1 und 3</u>:  
+
 
*Die Sprungfunktion $b(t) = \gamma(t)$ ist das Integral über die Diracfunktion $a(t) = \delta(t)$, so dass man den [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Integrationssatz|Integrationssatz]] anwenden kann:
+
'''(2)'''&nbsp; <u>Suggested solutions 1 and 3</u>&nbsp; are correct again:  
 +
*The step function&nbsp; $b(t) = \gamma(t)$&nbsp; is the integral over the Dirac delta function&nbsp; $a(t) = \delta(t)$ &nbsp; &rArr; &nbsp; the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]]&nbsp; can be applied:
 
:$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm
 
:$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot
 
{1}/{p} = {1}/{p}\hspace{0.05cm} ,$$
 
{1}/{p} = {1}/{p}\hspace{0.05cm} ,$$
$$B(f)  =  A(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) +
+
:$$B(f)  =  A(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) +
 
\frac{1}{{\rm j} \cdot 2\pi f} \right ] = {1}/{2} \cdot{\rm
 
\frac{1}{{\rm j} \cdot 2\pi f} \right ] = {1}/{2} \cdot{\rm
 
\delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm} .$$
 
\delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm} .$$
  
  
'''(3)'''&nbsp; Richtig sind die vorgeschlagenen <u>Alternativen 2 und 3</u>:  
+
 
*Nachdem die (kausale) Rechteckfunktion als Differenz zweier Sprungfunktionen dargestellt werden kann, erhält man mit dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz]]:
+
'''(3)'''&nbsp; <u>Suggested solutions 2 and 3</u>&nbsp; are correct:  
 +
*Since the&nbsp; (causal)&nbsp; rectangular function can be represented as the difference of two step functions,&nbsp; the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]]&nbsp; yields:
 
:$$c(t)= b(t) - b(t-T)  \hspace{0.3cm}
 
:$$c(t)= b(t) - b(t-T)  \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p)
 
\Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p)
  \cdot {\rm e}^{-p T} = {1}/{p} \cdot \left [ 1- {\rm e}^{-p T} \right ]
+
  \cdot {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} = {1}/{p} \cdot \big [ 1- {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ]
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
*Da die Rechteckfunktion eine endliche Energie besitzt, gilt für das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fourierspektrum]]:
+
*The following holds for the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier spectrum]]&nbsp; since the rectangular function has finite energy:
 
:$$C(f) =  C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
 
:$$C(f) =  C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
  f}} =  \frac{1}{{\rm j} \cdot 2\pi f} \cdot \left [ 1- {\rm e}^{-{\rm j} \cdot 2\pi f T} \right ]
+
  f}} =  \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Nach einigen trigonometrischen Umformungen kann hierfür auch geschrieben werden:
+
*The following can also be written for this using some trigonometric transformations:
 
:$$C(f) =  T \cdot {\rm si} (2 \pi  f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi  f{T})-1}{2\pi f}
 
:$$C(f) =  T \cdot {\rm si} (2 \pi  f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi  f{T})-1}{2\pi f}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(4)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>, da gilt:
+
 
 +
 
 +
'''(4)'''&nbsp; <u>Suggested solution 1</u>&nbsp; is correct because the following holds:
 
:$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm
 
:$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot
\frac{1}{p \cdot  T} = \frac{1- {\rm e}^{-p T}}{p^2 \cdot
+
\frac{1}{p \cdot  T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot
 
T}\hspace{0.05cm} .$$
 
T}\hspace{0.05cm} .$$
 
+
*Since&nbsp; $d(t)$&nbsp; extends to infinity,&nbsp; the simple relation between&nbsp; $D_{\rm L}(p)$&nbsp; and&nbsp; $D(f)$&nbsp; according to proposed solution 3 is not valid.  
Da sich $d(t)$ bis ins Unendliche erstreckt, ist dagegen der einfache Zusammenhang zwischen $D_{\rm L}(p)$ und $D(f)$ entsprechend dem Lösungsvorschlag 3 nicht gegeben. $D(f)$ beinhaltet vielmehr auch eine Diracfunktion bei der Frequenz $f = 0$.
+
*$D(f)$&nbsp; rather also includes a Dirac delta function at frequency&nbsp; $f = 0$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.2 Laplace–Transformation und p–Übertragungsfunktion^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.2 Laplace Transform and p-Transfer Function^]]

Latest revision as of 13:20, 13 October 2021

Four causal time signals

The Fourier transformation can be applied to any deterministic signal  $x(t)$.  Then, the following holds for the spectral function:

$$X(f) = \int_{-\infty}^{ +\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$

For power-limited signals  – characteristics:   infinite energy –  $X(f)$  also includes distributions  (Dirac delta functions).

For all causal signals  (and only for these),  the Laplace transformation is also applicable beside the Fourier transformation:

$$X_{\rm L}(p) = \int_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$

In the diagram you can see several causal time functions that will be covered in this exercise:

  • the Dirac delta function  $a(t)$,
  • the unit step function  $b(t)$,
  • the rectangular function  $c(t)$,
  • the ramp function  $d(t)$.


The  Fourier transform theorems  usually  (though not always)  also apply to the Laplace transformation where  $p ={\rm j} \cdot 2 \pi f$  is to be set:

  • For example,  the  shifting theorem  in Laplace or Fourier representation is:
$$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} ,$$
$$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$
$$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot \frac{1}{p}\hspace{0.05cm} ,$$
$$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] \hspace{0.05cm} .$$




Please note:


Questions

1

What are the spectral transformations of the signal  $a(t) = \delta(t)$?

$A_{\rm L}(p) = 1$.
$A(f) = \delta(f)$.
$A(f) = 1$.

2

What are the spectral transformations of the step function  $b(t) = \gamma(t)$?

$B_{\rm L}(p) = 1/p$.
$B(f) = 1/({\rm j} \cdot 2 \pi f)$
$B(f) = 1/2 \cdot \delta(f) - {\rm j}/(2 \pi f)$.

3

What are the spectral transformations of the rectangular function  $c(t)$?

$C_{\rm L}(p) = {\rm si}(pT)$.
$C_{\rm L}(p) = \big [1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ]/p$.
$C(f) = C_{\rm L}(p)$  with  $p = 2 \pi f$.

4

What are the spectral transformations of the ramp function  $d(t)$?

$D_{\rm L}(p) = \big[1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}\big]/(p^2T)$.
$D_{\rm L}(p) = 1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}$.
$D(f) = D_{\rm L}(p)$  with  $p = 2 \pi f$.


Solution

(1)  Suggested solutions 1 and 3  are correct:

  • Considering that the Dirac delta function is non-zero only at  $t= 0$  and that the integral over the Dirac delta function yields the value  $1$  as long as the integration interval includes the time  $t= 0$,  the following is obtained:
$$A(f) = 1, \hspace{0.2cm}A_{\rm L}(p) = 1 \hspace{0.05cm} .$$


(2)  Suggested solutions 1 and 3  are correct again:

  • The step function  $b(t) = \gamma(t)$  is the integral over the Dirac delta function  $a(t) = \delta(t)$   ⇒   the  integration theorem  can be applied:
$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot {1}/{p} = {1}/{p}\hspace{0.05cm} ,$$
$$B(f) = A(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] = {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm} .$$


(3)  Suggested solutions 2 and 3  are correct:

  • Since the  (causal)  rectangular function can be represented as the difference of two step functions,  the  shifting theorem  yields:
$$c(t)= b(t) - b(t-T) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p) \cdot {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} = {1}/{p} \cdot \big [ 1- {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ] \hspace{0.05cm} .$$
  • The following holds for the  Fourier spectrum  since the rectangular function has finite energy:
$$C(f) = C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} = \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ] \hspace{0.05cm}.$$
  • The following can also be written for this using some trigonometric transformations:
$$C(f) = T \cdot {\rm si} (2 \pi f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi f{T})-1}{2\pi f} \hspace{0.05cm}.$$


(4)  Suggested solution 1  is correct because the following holds:

$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot \frac{1}{p \cdot T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot T}\hspace{0.05cm} .$$
  • Since  $d(t)$  extends to infinity,  the simple relation between  $D_{\rm L}(p)$  and  $D(f)$  according to proposed solution 3 is not valid.
  • $D(f)$  rather also includes a Dirac delta function at frequency  $f = 0$.