Difference between revisions of "Aufgaben:Exercise 3.2Z: Laplace and Fourier"
m (Guenter moved page Aufgabe 3.2Z: Laplace und Fourier to Exercise 3.2Z: Laplace and Fourier) |
|||
(15 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function |
}} | }} | ||
− | [[File:P_ID1764__LZI_Z_3_2.png|right|frame| | + | [[File:P_ID1764__LZI_Z_3_2.png|right|frame|Four causal time signals]] |
− | + | The Fourier transformation can be applied to any deterministic signal $x(t)$. Then, the following holds for the spectral function: | |
:$$X(f) = \int_{-\infty}^{ | :$$X(f) = \int_{-\infty}^{ | ||
+\infty} | +\infty} | ||
Line 10: | Line 10: | ||
d}t\hspace{0.05cm}\hspace{0.05cm} .$$ | d}t\hspace{0.05cm}\hspace{0.05cm} .$$ | ||
− | + | For power-limited signals – characteristics: infinite energy – $X(f)$ also includes distributions (Dirac delta functions). | |
− | + | For all causal signals (and only for these), the Laplace transformation is also applicable beside the Fourier transformation: | |
:$$X_{\rm L}(p) = \int_{0}^{ | :$$X_{\rm L}(p) = \int_{0}^{ | ||
\infty} | \infty} | ||
Line 18: | Line 18: | ||
d}t\hspace{0.05cm}\hspace{0.05cm} .$$ | d}t\hspace{0.05cm}\hspace{0.05cm} .$$ | ||
− | In | + | In the diagram you can see several causal time functions that will be covered in this exercise: |
− | * | + | * the Dirac delta function $a(t)$, |
− | * | + | * the unit step function $b(t)$, |
− | * | + | * the rectangular function $c(t)$, |
− | * | + | * the ramp function $d(t)$. |
− | + | The [[Signal_Representation/Fourier_Transform_Theorems|Fourier transform theorems]] usually (though not always) also apply to the Laplace transformation where $p ={\rm j} \cdot 2 \pi f$ is to be set: | |
− | * | + | * For example, the [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]] in Laplace or Fourier representation is: |
:$$x(t- \tau) \quad | :$$x(t- \tau) \quad | ||
\circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm | \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm | ||
Line 40: | Line 40: | ||
X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$ | X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$ | ||
− | * | + | * In contrast, there are differences in the [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]] : |
:$$\int {x(\tau)} \hspace{0.1cm}{\rm | :$$\int {x(\tau)} \hspace{0.1cm}{\rm | ||
d}\tau \quad | d}\tau \quad | ||
Line 57: | Line 57: | ||
+ | Please note: | ||
+ | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|Laplace Transform and p-Transfer Function]]. | ||
+ | *The (German language) learning video [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|"Gesetzmäßigkeiten der Fouriertransformation"]] ⇒ "Fourier transform theorems" might be helpful. | ||
− | + | ===Questions=== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | === | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What are the spectral transformations of the signal $a(t) = \delta(t)$? |
|type="[]"} | |type="[]"} | ||
+ $A_{\rm L}(p) = 1$. | + $A_{\rm L}(p) = 1$. | ||
Line 76: | Line 73: | ||
− | { | + | {What are the spectral transformations of the step function $b(t) = \gamma(t)$? |
|type="[]"} | |type="[]"} | ||
+ $B_{\rm L}(p) = 1/p$. | + $B_{\rm L}(p) = 1/p$. | ||
Line 83: | Line 80: | ||
− | { | + | {What are the spectral transformations of the rectangular function $c(t)$? |
|type="[]"} | |type="[]"} | ||
- $C_{\rm L}(p) = {\rm si}(pT)$. | - $C_{\rm L}(p) = {\rm si}(pT)$. | ||
+ $C_{\rm L}(p) = \big [1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ]/p$. | + $C_{\rm L}(p) = \big [1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ]/p$. | ||
− | + $C(f) = C_{\rm L}(p)$ | + | + $C(f) = C_{\rm L}(p)$ with $p = 2 \pi f$. |
− | { | + | {What are the spectral transformations of the ramp function $d(t)$? |
|type="[]"} | |type="[]"} | ||
+ $D_{\rm L}(p) = \big[1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}\big]/(p^2T)$. | + $D_{\rm L}(p) = \big[1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}\big]/(p^2T)$. | ||
- $D_{\rm L}(p) = 1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}$. | - $D_{\rm L}(p) = 1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}$. | ||
− | - $D(f) = D_{\rm L}(p)$ | + | - $D(f) = D_{\rm L}(p)$ with $p = 2 \pi f$. |
Line 100: | Line 97: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Suggested solutions 1 and 3</u> are correct: |
− | * | + | *Considering that the Dirac delta function is non-zero only at $t= 0$ and that the integral over the Dirac delta function yields the value $1$ as long as the integration interval includes the time $t= 0$, the following is obtained: |
:$$A(f) = 1, \hspace{0.2cm}A_{\rm | :$$A(f) = 1, \hspace{0.2cm}A_{\rm | ||
L}(p) = 1 \hspace{0.05cm} .$$ | L}(p) = 1 \hspace{0.05cm} .$$ | ||
Line 109: | Line 106: | ||
− | '''(2)''' | + | '''(2)''' <u>Suggested solutions 1 and 3</u> are correct again: |
− | * | + | *The step function $b(t) = \gamma(t)$ is the integral over the Dirac delta function $a(t) = \delta(t)$ ⇒ the [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]] can be applied: |
:$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm | :$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm | ||
d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot | d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot | ||
Line 120: | Line 117: | ||
− | '''(3)''' | + | '''(3)''' <u>Suggested solutions 2 and 3</u> are correct: |
− | * | + | *Since the (causal) rectangular function can be represented as the difference of two step functions, the [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]] yields: |
:$$c(t)= b(t) - b(t-T) \hspace{0.3cm} | :$$c(t)= b(t) - b(t-T) \hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p) | \Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p) | ||
Line 127: | Line 124: | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | * | + | *The following holds for the [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier spectrum]] since the rectangular function has finite energy: |
:$$C(f) = C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it | :$$C(f) = C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it | ||
f}} = \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ] | f}} = \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ] | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The following can also be written for this using some trigonometric transformations: |
:$$C(f) = T \cdot {\rm si} (2 \pi f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi f{T})-1}{2\pi f} | :$$C(f) = T \cdot {\rm si} (2 \pi f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi f{T})-1}{2\pi f} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Line 137: | Line 134: | ||
− | '''(4)''' | + | '''(4)''' <u>Suggested solution 1</u> is correct because the following holds: |
:$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm | :$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm | ||
d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot | d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot | ||
\frac{1}{p \cdot T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot | \frac{1}{p \cdot T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot | ||
T}\hspace{0.05cm} .$$ | T}\hspace{0.05cm} .$$ | ||
− | * | + | *Since $d(t)$ extends to infinity, the simple relation between $D_{\rm L}(p)$ and $D(f)$ according to proposed solution 3 is not valid. |
− | *$D(f)$ | + | *$D(f)$ rather also includes a Dirac delta function at frequency $f = 0$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Latest revision as of 13:20, 13 October 2021
The Fourier transformation can be applied to any deterministic signal $x(t)$. Then, the following holds for the spectral function:
- $$X(f) = \int_{-\infty}^{ +\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$
For power-limited signals – characteristics: infinite energy – $X(f)$ also includes distributions (Dirac delta functions).
For all causal signals (and only for these), the Laplace transformation is also applicable beside the Fourier transformation:
- $$X_{\rm L}(p) = \int_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$
In the diagram you can see several causal time functions that will be covered in this exercise:
- the Dirac delta function $a(t)$,
- the unit step function $b(t)$,
- the rectangular function $c(t)$,
- the ramp function $d(t)$.
The Fourier transform theorems usually (though not always) also apply to the Laplace transformation where $p ={\rm j} \cdot 2 \pi f$ is to be set:
- For example, the shifting theorem in Laplace or Fourier representation is:
- $$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} ,$$
- $$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$
- In contrast, there are differences in the integration theorem :
- $$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot \frac{1}{p}\hspace{0.05cm} ,$$
- $$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] \hspace{0.05cm} .$$
Please note:
- The exercise belongs to the chapter Laplace Transform and p-Transfer Function.
- The (German language) learning video "Gesetzmäßigkeiten der Fouriertransformation" ⇒ "Fourier transform theorems" might be helpful.
Questions
Solution
- Considering that the Dirac delta function is non-zero only at $t= 0$ and that the integral over the Dirac delta function yields the value $1$ as long as the integration interval includes the time $t= 0$, the following is obtained:
- $$A(f) = 1, \hspace{0.2cm}A_{\rm L}(p) = 1 \hspace{0.05cm} .$$
(2) Suggested solutions 1 and 3 are correct again:
- The step function $b(t) = \gamma(t)$ is the integral over the Dirac delta function $a(t) = \delta(t)$ ⇒ the integration theorem can be applied:
- $$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot {1}/{p} = {1}/{p}\hspace{0.05cm} ,$$
- $$B(f) = A(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] = {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm} .$$
(3) Suggested solutions 2 and 3 are correct:
- Since the (causal) rectangular function can be represented as the difference of two step functions, the shifting theorem yields:
- $$c(t)= b(t) - b(t-T) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p) \cdot {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} = {1}/{p} \cdot \big [ 1- {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ] \hspace{0.05cm} .$$
- The following holds for the Fourier spectrum since the rectangular function has finite energy:
- $$C(f) = C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} = \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ] \hspace{0.05cm}.$$
- The following can also be written for this using some trigonometric transformations:
- $$C(f) = T \cdot {\rm si} (2 \pi f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi f{T})-1}{2\pi f} \hspace{0.05cm}.$$
(4) Suggested solution 1 is correct because the following holds:
- $$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot \frac{1}{p \cdot T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot T}\hspace{0.05cm} .$$
- Since $d(t)$ extends to infinity, the simple relation between $D_{\rm L}(p)$ and $D(f)$ according to proposed solution 3 is not valid.
- $D(f)$ rather also includes a Dirac delta function at frequency $f = 0$.