Difference between revisions of "Aufgaben:Exercise 4.06Z: Signal Space Constellations"

From LNTwww
Line 3: Line 3:
  
 
[[File:EN_Dig_Z_4_6.png|right|frame|Three signal space constellations]]
 
[[File:EN_Dig_Z_4_6.png|right|frame|Three signal space constellations]]
The (mean) error probability of an optimal binary system is:
+
The  (mean)  symbol error probability of an optimal binary system is:
 
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) =  {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$
 
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) =  {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$
  
 
It should be noted here:
 
It should be noted here:
* ${\rm Q}(x)$  denotes the complementary Gaussian error function (definition and approximation):
+
* ${\rm Q}(x)$  denotes the complementary Gaussian error function  (definition and approximation):
 
:$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac{1}{\sqrt{2\pi}}  \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u  
 
:$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac{1}{\sqrt{2\pi}}  \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u  
 
\approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
\approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* $d$  specifies the distance between the two transmitted signal points  $s_0$  and  $s_1$  in vector space:
+
* The parameter  $d$  specifies the distance between the two transmitted signal points  $s_0$  and  $s_1$  in vector space:
 
:$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$
 
:$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$
  
* $\sigma_n^2$&nbsp; is the variance of the AWGN noise after the detector, which, for example, can be implemented as a matched filter. <br>It is assumed that&nbsp; $\sigma_n^2 = N_0/2$.
+
* $\sigma_n^2$&nbsp; is the variance of the AWGN noise after the detector, which e.g. can be implemented as a matched filter. <br>It is assumed that&nbsp; $\sigma_n^2 = N_0/2$.
  
  
The graphic shows three different signal space constellations, namely
+
The graphic shows three different signal space constellations,&nbsp; namely
  
* Variant $\rm A$: &nbsp; $s_0 = (+1, \,  +5), \hspace{0.4cm} s_1 = (+4, \,  +1)$,
+
:* Variant $\rm A$: &nbsp; $s_0 = (+1, \,  +5), \hspace{0.4cm} s_1 = (+4, \,  +1)$,
* Variant $\rm B$: &nbsp; $s_0 = (-1.5, \,  +2), \, s_1 = (+1.5, \,  -2)$,
+
:* Variant $\rm B$: &nbsp; $s_0 = (-1.5, \,  +2), \, s_1 = (+1.5, \,  -2)$,
* Variant $\rm C$: &nbsp; $s_0 = (-2.5, \,  0), \hspace{0.45cm} s_1 = (+2.5, \,  0)$.
+
:* Variant $\rm C$: &nbsp; $s_0 = (-2.5, \,  0), \hspace{0.45cm} s_1 = (+2.5, \,  0)$.
  
  
Line 32: Line 32:
  
  
 +
Notes:
 +
* The chapter belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]].
 +
 +
* For numeric calculations, the energy&nbsp; $E = 1$&nbsp; can be set for simplification.
  
 
''Notes:''
 
* The chapter belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]].
 
* For numeric calculations, the energy&nbsp; $E = 1$&nbsp; can be set for simplification.
 
 
* Unless otherwise specified, equally probable symbols can be assumed:
 
* Unless otherwise specified, equally probable symbols can be assumed:
 
:$${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$
 
:$${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$
Line 46: Line 46:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Which prerequisites must absolutely (in any case) be fulfilled so that the given error probability equation is valid?
+
{Which prerequisites must absolutely&nbsp; (in any case)&nbsp; be fulfilled so that the given error probability equation is valid?
 
|type="[]"}
 
|type="[]"}
 
+ Additive white Gaussian noise with variance&nbsp; $\sigma_n^2$.
 
+ Additive white Gaussian noise with variance&nbsp; $\sigma_n^2$.
Line 60: Line 60:
 
+ All variants show the same error behavior.
 
+ All variants show the same error behavior.
  
{Give the error probability for variant &nbsp;$\rm A$&nbsp; with &nbsp;$\sigma_n^2 = E$.&nbsp; You can calculate&nbsp; ${\rm Q}(x)$&nbsp; according to the approximation.
+
{Give the error probability for variant &nbsp;$\rm A$&nbsp; with &nbsp;$\sigma_n^2 = E$. &nbsp; You can calculate&nbsp; ${\rm Q}(x)$&nbsp; according to the approximation.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$
  
{It is assumed that&nbsp; $N_0 = 2 \cdot 10^{\rm &ndash;6} \ {\rm W/Hz}$,&nbsp; $E_{\rm S} = 6.25 \cdot 10^{\rm &ndash;6} \ \rm Ws$. What is the probability for variant&nbsp;$\rm C$&nbsp; with equally probable symbols?
+
{It is assumed that&nbsp; $N_0 = 2 \cdot 10^{\rm &ndash;6} \ {\rm W/Hz}$, &nbsp; $E_{\rm S} = 6.25 \cdot 10^{\rm &ndash;6} \ \rm Ws$. &nbsp; What is the error probability for variant&nbsp;$\rm C$&nbsp; with equally probable symbols?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$
  
{What is the error probability for variant &nbsp;$\rm B$ under the same conditions?
+
{What is the error probability for variant&nbsp; &nbsp;$\rm B$&nbsp; under the same conditions?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$
  
{How large should the average energy per symbol &nbsp;$(E_{\rm S})$&nbsp; be chosen for variant&nbsp;$\rm A$&nbsp; in order to obtain the same error probability as for system &nbsp;$\rm C$?&nbsp;  
+
{How large should the average energy per symbol &nbsp;$(E_{\rm S})$&nbsp; be chosen for variant&nbsp;$\rm A$&nbsp; in order to obtain the same error probability as for variant &nbsp;$\rm C$?&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm S} \ = \ $ { 21.5 3% } $\ \cdot 10^{\rm &ndash;6} \ \rm Ws$
 
$E_{\rm S} \ = \ $ { 21.5 3% } $\ \cdot 10^{\rm &ndash;6} \ \rm Ws$

Revision as of 16:57, 27 July 2022

Three signal space constellations

The  (mean)  symbol error probability of an optimal binary system is:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$

It should be noted here:

  • ${\rm Q}(x)$  denotes the complementary Gaussian error function  (definition and approximation):
$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$
  • The parameter  $d$  specifies the distance between the two transmitted signal points  $s_0$  and  $s_1$  in vector space:
$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$
  • $\sigma_n^2$  is the variance of the AWGN noise after the detector, which e.g. can be implemented as a matched filter.
    It is assumed that  $\sigma_n^2 = N_0/2$.


The graphic shows three different signal space constellations,  namely

  • Variant $\rm A$:   $s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1)$,
  • Variant $\rm B$:   $s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2)$,
  • Variant $\rm C$:   $s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0)$.


The mean energy per symbol  $(E_{\rm S})$  can be calculated as follows:

$$E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.$$



Notes:

  • For numeric calculations, the energy  $E = 1$  can be set for simplification.
  • Unless otherwise specified, equally probable symbols can be assumed:
$${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$



Questions

1

Which prerequisites must absolutely  (in any case)  be fulfilled so that the given error probability equation is valid?

Additive white Gaussian noise with variance  $\sigma_n^2$.
Optimal binary receiver.
Decision boundary in the middle between the symbols.
Equally likely symbols  $s_0$  and  $s_1$.

2

Which statement applies to the error probability with  $\sigma_n^2 = E$?

Variant  $\rm A$  has the lowest error probability.
Variant  $\rm B$  has the lowest error probability.
Variant  $\rm C$  has the lowest error probability.
All variants show the same error behavior.

3

Give the error probability for variant  $\rm A$  with  $\sigma_n^2 = E$.   You can calculate  ${\rm Q}(x)$  according to the approximation.

$p_{\rm S} \ = \ $

$\ \%$

4

It is assumed that  $N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}$,   $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$.   What is the error probability for variant $\rm C$  with equally probable symbols?

$p_{\rm S} \ = \ $

$\ \%$

5

What is the error probability for variant   $\rm B$  under the same conditions?

$p_{\rm S} \ = \ $

$\ \%$

6

How large should the average energy per symbol  $(E_{\rm S})$  be chosen for variant $\rm A$  in order to obtain the same error probability as for variant  $\rm C$? 

$E_{\rm S} \ = \ $

$\ \cdot 10^{\rm –6} \ \rm Ws$


Solution

(1)  The first three prerequisites must be met in any case:

  • The equation then applies independently of the occurrence probabilities.
  • In the case of ${\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1)$, a lower error probability can be achieved by shifting the decision threshold.


(2)  The noise rms value $\sigma_n$ and thus also the signal energy $E = \sigma_n^2$ are the same for all three considered variants. The same applies to the distance of the signal space points. For variant  $\rm A$,  for example, the following applies:

$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$

Due to the shifting of the coordinate system, the distance between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ does not change (variant  $\rm B$), and the same distance results in variant  $\rm C$  (after rotation).

Solution 4 is correct:

  • By rotating the coordinate system, one can always get by with a basis function $(N = 1)$ for a binary system $(M = 2)$.
  • Since the two-dimensional noise is circularly symmetric   ⇒   equal standard deviation $\sigma_n$ in all directions, the noise term can also be described one-dimensionally as in the chapter "Error Probability for Baseband Transmission".


(3)  For all variants considered here, i.e., also for variant  $\rm A$, the following holds:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) = {\rm Q}(2.5)\hspace{0.05cm}.$$

With the given approximation we obtain

$$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$


(4)  For variant  $\rm C$,  the average energy per symbol is given by:

$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$
$$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} \hspace{0.05cm}.$$

Substituting this result into the equation found in (3), we obtain with $\sigma_n^2 = N_0/2$:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. $$


(5)  Rotating the coordinate system does not change the energy ratios. Therefore, $p_{\rm S} \ \underline {\approx 0.7\%}$ is obtained again.


(6)  In variant  $\rm A$,  the average energy per symbol is

$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E \hspace{0.05cm}. $$

The distance from the threshold, which should be midway between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ for equally probable symbols, is $d/2 = 2.5 \cdot E^{\rm 1/2}$, as in the other variants. Thus, with $\sigma_n^2 = N_0/2$, we obtain the governing equation:

$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$
$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$

This means: For variant  $\rm A$,  compared to the other two symbols, a mean symbol energy $E_{\rm S}$ larger by a factor of $3.44$is required to achieve the same error probability $p_{\rm S} = 0.7%$.

  • That means: This signal space constellation is very unfavorable. It results in a very large $E_{\rm S}$ without increasing the distance $d$ at the same time.
  • With $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$, on the other hand, $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ would result.
  • That means:   The error probability would be larger by more than one power of ten.