Difference between revisions of "Aufgaben:Exercise 4.06Z: Signal Space Constellations"
From LNTwww
(3 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}} | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}} | ||
− | [[File: | + | [[File:EN_Dig_Z_4_6.png|right|frame|Three signal space constellations]] |
− | The (mean) error probability of an optimal binary system is: | + | The (mean) symbol error probability of an optimal binary system is: |
:pS=Pr(E)=Q(d/2σn). | :pS=Pr(E)=Q(d/2σn). | ||
It should be noted here: | It should be noted here: | ||
− | * Q(x) denotes the complementary Gaussian error function (definition and approximation): | + | * Q(x) denotes the complementary Gaussian error function (definition and approximation): |
:$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u | :$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u | ||
\approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} | \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * d specifies the distance between the two transmitted signal points s0 and s1 in vector space: | + | * The parameter d specifies the distance between the two transmitted signal points s0 and s1 in vector space: |
:d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}. | :d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}. | ||
− | * \sigma_n^2 is the variance of the AWGN noise after the detector, which | + | * \sigma_n^2 is the variance of the AWGN noise after the detector, which e.g. can be implemented as a matched filter. <br>It is assumed that \sigma_n^2 = N_0/2. |
− | The graphic shows three different signal space constellations, namely | + | The graphic shows three different signal space constellations, namely |
− | * Variant \rm A: s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1), | + | :* Variant \rm A: s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1), |
− | * Variant \rm B: s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2), | + | :* Variant \rm B: s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2), |
− | * Variant \rm C: s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0). | + | :* Variant \rm C: s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0). |
Line 32: | Line 32: | ||
+ | Notes: | ||
+ | * The chapter belongs to the chapter [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]]. | ||
+ | |||
+ | * For numeric calculations, the energy E = 1 can be set for simplification. | ||
− | |||
− | |||
− | |||
− | |||
* Unless otherwise specified, equally probable symbols can be assumed: | * Unless otherwise specified, equally probable symbols can be assumed: | ||
:{\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}. | :{\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}. | ||
Line 46: | Line 46: | ||
===Questions=== | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Which prerequisites must absolutely (in any case) be fulfilled so that the given error probability equation is valid? | + | {Which prerequisites must absolutely (in any case) be fulfilled so that the given error probability equation is valid? |
|type="[]"} | |type="[]"} | ||
+ Additive white Gaussian noise with variance \sigma_n^2. | + Additive white Gaussian noise with variance \sigma_n^2. | ||
Line 60: | Line 60: | ||
+ All variants show the same error behavior. | + All variants show the same error behavior. | ||
− | {Give the error probability for variant \rm A with \sigma_n^2 = E. You can calculate {\rm Q}(x) according to the approximation. | + | {Give the error probability for variant \rm A with \sigma_n^2 = E. You can calculate {\rm Q}(x) according to the approximation. |
|type="{}"} | |type="{}"} | ||
p_{\rm S} \ = \ { 0.7 3% } \ \% | p_{\rm S} \ = \ { 0.7 3% } \ \% | ||
− | {It is assumed that N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}, E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws. What is the probability for variant \rm C with equally probable symbols? | + | {It is assumed that N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}, E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws. What is the error probability for variant \rm C with equally probable symbols? |
|type="{}"} | |type="{}"} | ||
p_{\rm S} \ = \ { 0.7 3% } \ \% | p_{\rm S} \ = \ { 0.7 3% } \ \% | ||
− | {What is the error probability for variant \rm B under the same conditions? | + | {What is the error probability for variant \rm B under the same conditions? |
|type="{}"} | |type="{}"} | ||
p_{\rm S} \ = \ { 0.7 3% } \ \% | p_{\rm S} \ = \ { 0.7 3% } \ \% | ||
− | {How large should the average energy per symbol (E_{\rm S}) be chosen for variant \rm A in order to obtain the same error probability as for | + | {How large should the average energy per symbol (E_{\rm S}) be chosen for variant \rm A in order to obtain the same error probability as for variant \rm C? |
|type="{}"} | |type="{}"} | ||
E_{\rm S} \ = \ { 21.5 3% } \ \cdot 10^{\rm –6} \ \rm Ws | E_{\rm S} \ = \ { 21.5 3% } \ \cdot 10^{\rm –6} \ \rm Ws | ||
Line 79: | Line 79: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' The <u>first three prerequisites</u> must be met in any case: | + | '''(1)''' The <u>first three prerequisites</u> must be met in any case: |
*The equation then applies independently of the occurrence probabilities. | *The equation then applies independently of the occurrence probabilities. | ||
− | *In the case of {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1), a lower error probability can be achieved by shifting the decision threshold. | + | *In the case of {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1), a lower error probability can be achieved by shifting the decision threshold. |
− | '''(2)''' The noise rms value \sigma_n and thus also the signal energy E = \sigma_n^2 are the same for all three considered variants. The same applies to the distance of the signal space points. For variant \rm A, for example, the following applies: | + | '''(2)''' The noise rms value \sigma_n and thus also the signal energy E = \sigma_n^2 are the same for all three considered variants. |
+ | *The same applies to the distance of the signal space points. For variant \rm A, for example, the following applies: | ||
:d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}. | :d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}. | ||
− | Due to the shifting of the coordinate system, the distance between \boldsymbol{s}_0 and \boldsymbol{s}_1 does not change (variant \rm B), | + | *Due to the shifting of the coordinate system, the distance between \boldsymbol{s}_0 and \boldsymbol{s}_1 does not change (variant \rm B), the same distance results in variant \rm C (after rotation). |
− | <u>Solution 4</u> is correct: | + | *<u>Solution 4</u> is correct: |
− | + | #By rotating the coordinate system, one can always get by with one basis function $(N = 1)$ for a binary system $(M = 2)$. | |
− | + | #Since the two-dimensional noise is circularly symmetric ⇒ equal standard deviation \sigma_n in all directions, <br>the noise term can also be described one-dimensionally as in the chapter [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]]. | |
− | '''(3)''' | + | '''(3)''' For all variants considered here, i.e., also for variant \rm A, the following holds: |
:$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) | :$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) | ||
= {\rm Q}(2.5)\hspace{0.05cm}.$$ | = {\rm Q}(2.5)\hspace{0.05cm}.$$ | ||
− | + | *With the given approximation we obtain | |
:p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. | :p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. | ||
− | '''(4)''' | + | '''(4)''' For variant \rm C, the average energy per symbol is given by: |
:$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + | :$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + | ||
{\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = | {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = | ||
Line 111: | Line 112: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *Substituting this result into the equation found in '''(3)''', we obtain with \sigma_n^2 = N_0/2: | |
:$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) | :$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) | ||
= {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) | = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) | ||
Line 117: | Line 118: | ||
− | '''(5)''' | + | '''(5)''' Rotating the coordinate system does not change the energy ratios. |
+ | *Therefore, p_{\rm S} \ \underline {\approx 0.7\%} is obtained again. | ||
− | '''(6)''' | + | '''(6)''' In variant \rm A, the average energy per symbol is |
:$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E | :$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E | ||
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
− | + | *The distance from the threshold, which should be midway between \boldsymbol{s}_0 and \boldsymbol{s}_1 for equally probable symbols, is d/2 = 2.5 \cdot E^{\rm 1/2}, as in the other variants. | |
+ | |||
+ | *Thus, with \sigma_n^2 = N_0/2, we obtain the governing equation: | ||
:$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) | :$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) | ||
={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} | ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} | ||
Line 132: | Line 136: | ||
:\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}. | :\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}. | ||
− | + | *This means: For variant \rm A, compared to the other two variants, a mean symbol energy E_{\rm S} larger by a factor of 3.44 is required to achieve the same $p_{\rm S} = 0.7\%$. Because: | |
− | + | #This signal space constellation is very unfavorable. It results in a very large E_{\rm S} without increasing the distance d at the same time. | |
− | + | #With E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws, on the other hand, p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\% would result. | |
− | + | #That means: The error probability would be larger by more than one power of ten. | |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Latest revision as of 18:18, 27 July 2022
The (mean) symbol error probability of an optimal binary system is:
- p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.
It should be noted here:
- {\rm Q}(x) denotes the complementary Gaussian error function (definition and approximation):
- {\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.
- The parameter d specifies the distance between the two transmitted signal points s_0 and s_1 in vector space:
- d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.
- \sigma_n^2 is the variance of the AWGN noise after the detector, which e.g. can be implemented as a matched filter.
It is assumed that \sigma_n^2 = N_0/2.
The graphic shows three different signal space constellations, namely
- Variant \rm A: s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1),
- Variant \rm B: s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2),
- Variant \rm C: s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0).
The mean energy per symbol (E_{\rm S}) can be calculated as follows:
- E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.
Notes:
- The chapter belongs to the chapter "Approximation of the Error Probability".
- For numeric calculations, the energy E = 1 can be set for simplification.
- Unless otherwise specified, equally probable symbols can be assumed:
- {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.
Questions
Solution
(1) The first three prerequisites must be met in any case:
- The equation then applies independently of the occurrence probabilities.
- In the case of {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1), a lower error probability can be achieved by shifting the decision threshold.
(2) The noise rms value \sigma_n and thus also the signal energy E = \sigma_n^2 are the same for all three considered variants.
- The same applies to the distance of the signal space points. For variant \rm A, for example, the following applies:
- d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.
- Due to the shifting of the coordinate system, the distance between \boldsymbol{s}_0 and \boldsymbol{s}_1 does not change (variant \rm B), the same distance results in variant \rm C (after rotation).
- Solution 4 is correct:
- By rotating the coordinate system, one can always get by with one basis function (N = 1) for a binary system (M = 2).
- Since the two-dimensional noise is circularly symmetric ⇒ equal standard deviation \sigma_n in all directions,
the noise term can also be described one-dimensionally as in the chapter "Error Probability for Baseband Transmission".
(3) For all variants considered here, i.e., also for variant \rm A, the following holds:
- p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) = {\rm Q}(2.5)\hspace{0.05cm}.
- With the given approximation we obtain
- p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.
(4) For variant \rm C, the average energy per symbol is given by:
- E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E
- \Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} \hspace{0.05cm}.
- Substituting this result into the equation found in (3), we obtain with \sigma_n^2 = N_0/2:
- p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.
(5) Rotating the coordinate system does not change the energy ratios.
- Therefore, p_{\rm S} \ \underline {\approx 0.7\%} is obtained again.
(6) In variant \rm A, the average energy per symbol is
- E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E \hspace{0.05cm}.
- The distance from the threshold, which should be midway between \boldsymbol{s}_0 and \boldsymbol{s}_1 for equally probable symbols, is d/2 = 2.5 \cdot E^{\rm 1/2}, as in the other variants.
- Thus, with \sigma_n^2 = N_0/2, we obtain the governing equation:
- p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5
- \Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.
- This means: For variant \rm A, compared to the other two variants, a mean symbol energy E_{\rm S} larger by a factor of 3.44 is required to achieve the same p_{\rm S} = 0.7\%. Because:
- This signal space constellation is very unfavorable. It results in a very large E_{\rm S} without increasing the distance d at the same time.
- With E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws, on the other hand, p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\% would result.
- That means: The error probability would be larger by more than one power of ten.