Difference between revisions of "Digital Signal Transmission/Block Coding with 4B3T Codes"

From LNTwww
 
(53 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Codierte und mehrstufige Übertragung
+
|Untermenü=Coded and Multilevel Transmission
 
|Vorherige Seite=Redundanzfreie Codierung
 
|Vorherige Seite=Redundanzfreie Codierung
|Nächste Seite=Symbolweise Codierung mit Pseudoternärcodes
+
|Nächste Seite=Symbolwise_Coding_with_Pseudo_Ternary_Codes
 
}}
 
}}
  
  
== Allgemeine Beschreibung von Blockcodes ==
+
== General description of block codes ==
 
<br>
 
<br>
Bei Blockcodierung wird jeweils eine Sequenz von <i>m<sub>q</sub></i> binären Quellensymbolen (<i>M<sub>q</sub></i> = 2) durch einen Block von <i>m<sub>c</sub></i> Codesymbolen mit dem Symbolumfang <i>M<sub>c</sub></i> dargestellt. Um eine jede Quellensymbolfolge in eine andere Codesymbolfolge umsetzen zu können, muss folgende Bedingung erfüllt sein:
+
In &nbsp;'''block coding'''&nbsp; each sequence of &nbsp;$m_q$&nbsp; binary source symbols &nbsp;$(M_q = 2)$&nbsp; is represented by a block of &nbsp;$m_c$&nbsp; encoder symbols with symbol set size &nbsp;$M_c$.&nbsp; In order to convert each source symbol sequence &nbsp;$\langle q_\nu \rangle$&nbsp; into another encoder symbol sequence &nbsp;$\langle c_\nu \rangle$,&nbsp; the following condition must be satisfied:
 +
:$$M_c^{\hspace{0.1cm}m_c} \ge
 +
M_q^{\hspace{0.1cm}m_q}\hspace{0.05cm}.$$
  
:<math>M_c^{\hspace{0.1cm}m_c} \ge
+
*For the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding|"redundancy-free codes"]]&nbsp; discussed in the last chapter,&nbsp; the equal sign applies in this equation if &nbsp;$M_q$&nbsp; is a power of two.
M_q^{\hspace{0.1cm}m_q}\hspace{0.05cm}.</math>
 
  
Bei den redundanzfreien Codes entsprechend Kapitel 2.2 gilt in dieser Gleichung das Gleichheitszeichen, wenn <i>M<sub>q</sub></i> eine Zweierpotenz ist. Mit dem Größerzeichen ergibt sich ein redundantes Digitalsignal, wobei die relative Coderedundanz wie folgt berechnet werden kann:
+
*Using the greater sign results in a redundant digital signal,&nbsp; and the &nbsp;"relative encoder redundancy"&nbsp; can be calculated as follows:
 +
:$$r_c = 1-  \frac{m_q \cdot {\rm log_2}\hspace{0.05cm} (M_q)}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)} > 0 \hspace{0.05cm}.$$
  
:<math>r_c = 1-  \frac{m_q \cdot {\rm log_2} (M_q)}{m_c \cdot {\rm log_2} (M_c)} > 0 \hspace{0.05cm}.</math>
+
The best known block code for transmission coding is the &nbsp; '''4B3T code''' &nbsp; with the code parameters
 +
:$$m_q = 4,\hspace{0.2cm}M_q = 2,\hspace{0.2cm}m_c =
 +
3,\hspace{0.2cm}M_c = 3\hspace{0.05cm},$$
  
Der bekannteste Blockcode zur Übertragungscodierung ist der
+
which was developed in the 1970s and is used,&nbsp; for example,&nbsp; in &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|"ISDN"]]&nbsp; ("Integrated Services Digital Networks").
4B3T&ndash;Code mit den Codeparametern
 
  
:<math>m_q = 4,\hspace{0.2cm}M_q = 2,\hspace{0.2cm}m_c =
+
Such a 4B3T code has the following properties:
3,\hspace{0.2cm}M_c = 3\hspace{0.05cm},</math>
+
*Because of &nbsp;$m_q \cdot T_{\rm B} = m_c \cdot T$,&nbsp; the symbol duration &nbsp;$T$&nbsp; of the ternary encoded  signal is larger than the bit duration &nbsp;$T_{\rm B}$&nbsp; of the binary source signal by a factor of &nbsp;$4/3$.&nbsp; This results in the favorable property that the bandwidth requirement is a quarter less than for redundancy-free binary transmission.
  
der bereits in den 1970&ndash;er Jahren entwickelt wurde und beispielsweise bei [http://en.lntwww.de/Beispiele_von_Nachrichtensystemen ISDN] (<i>Integrated Services Digital Networks</i>) eingesetzt wird. Ein 4B3T&ndash;Code besitzt folgende Eigenschaften:
+
*The relative redundancy can be calculated with the above equation and results in &nbsp;$r_c \approx 16\%$.&nbsp; This redundancy is used in the 4B3T code to achieve DC freedom.
*Wegen <i>m<sub>q</sub></i> &middot; <i>T</i><sub>B</sub> = <i>m<sub>c</sub></i> &middot; <i>T</i> ist die Symboldauer <i>T</i> des Codersignals um den Faktor 4/3 größer als die Bitdauer <i>T</i><sub>B</sub> des binären Quellensignals. Daraus ergibt sich die günstige Eigenschaft, dass der Bandbreitenbedarf um ein Viertel geringer ist als bei redundanzfreier Binärübertragung.
 
  
*Die relative Redundanz kann mit obiger Gleichung berechnet werden und ergibt sich zu ca. 16%. Diese Redundanz wird beim 4B3T&ndash;Code dazu verwendet, um Gleichsignalfreiheit zu erzielen. Das 4B3T&ndash;codierte Signal kann somit ohne merkbare Beeinträchtigung auch über einen Kanal mit der Eigenschaft <i>H</i><sub>K</sub>(<i>f</i> = 0) = 0 übertragen werden.<br><br>
+
*The 4B3T encoder signal can thus also be transmitted over a channel&nbsp; (German:&nbsp; "Kanal" &nbsp; &rArr;&nbsp; subscript:&nbsp; "K")&nbsp; with the property &nbsp;$H_{\rm K}(f= 0) = 0$&nbsp; without noticeable degradation.
  
Die Umcodierung der 16 möglichen Binärblöcke in die entsprechenden Ternärblöcke könnte prinzipiell nach einer festen Codetabelle vorgenommen werden. Um die spektralen Eigenschaften dieser Codes weiter zu verbessern, werden bei den gebräuchlichen 4B3T&ndash;Codes, nämlich
 
  
*dem 4B3T&ndash;Code nach Jessop und Waters,<br>
+
The encoding of the sixteen possible binary blocks into the corresponding ternary blocks could in principle be performed according to a fixed code table. To further improve the spectral properties of these codes, the common 4B3T codes, viz.
*dem MS43&ndash;Code (von: Monitored Sum 4B3T&ndash;Code),<br>
 
*dem FoMoT&ndash;Code (von: Four Mode Ternary),<br><br>
 
  
zwei oder mehrere Codetabellen verwendet, deren Auswahl von der <i>laufenden digitalen Summe</i> der Amplitudenkoeffizienten gesteuert wird. Das Prinzip wird auf der nächsten Seite erklärt.<br>
+
#the 4B3T code according to Jessop and Waters,<br>
 +
#the MS43 code (from: &nbsp;$\rm M$onitored $\rm S$um $\rm 4$B$\rm 3$T Code),<br>
 +
#the FoMoT code (from: &nbsp;$\rm Fo$ur $\rm Mo$de $\rm T$ernary),<br><br>
  
 +
two or more code tables are used,&nbsp; the selection of which is controlled by the &nbsp;"running digital sum"&nbsp; of the amplitude coefficients.&nbsp; The principle is explained in the next section.<br>
  
== Laufende digitale Summe ==
+
 
 +
== Running digital sum ==
 
<br>
 
<br>
Nach der Übertragung von <i>l</i> codierten Blöcken gilt für die laufende digitalen Summe mit den ternären Amplitudenkoeffizienten <i>a<sub>&nu;</sub></i> &#8712; {&ndash;1, 0, +1}:
+
After the transmission of &nbsp;$l$&nbsp; coded blocks,&nbsp; the &nbsp;"running digital sum"&nbsp; with ternary amplitude coefficients &nbsp;$a_\nu \in \{ -1, \ 0, +1\}$:
 +
[[File:EN_Dig_T_2_3_S2.png|right|frame|Code tables for three 4B3T codes|class=fit]]
 +
:$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.02cm}\cdot
 +
\hspace{0.05cm} l}\hspace{0.02cm} a_\nu \hspace{0.05cm}.$$
 +
 
 +
The selection of the table for encoding the &nbsp;$(l + 1)$&ndash;th block is done depending on the current &nbsp; ${\it \Sigma}_l$&nbsp; value.
 +
 
 +
 
 +
The table shows the coding rules for the three 4B3T codes mentioned above.&nbsp; To simplify the notation,
 +
*&nbsp; "+" stands for the amplitude coefficient "+1" and
 +
*&nbsp; "&ndash;" for the coefficient "&ndash;1".<br>
 +
 
 +
 
 +
You can see from the graph:
 +
#The two code tables of the Jessop&ndash;Waters code are selected in such a way that the running digital sum &nbsp;${\it \Sigma}_l$&nbsp; always lies between&nbsp; $0$&nbsp; and&nbsp; $5$.<br><br>
 +
#For the other two codes&nbsp; (MS43,&nbsp; FoMoT),&nbsp; the restriction of the running digital sum to the range &nbsp;$0 \le {\it \Sigma}_l \le 3$&nbsp; is achieved by three resp. four alternative tables.
 +
<br Clear = all>
 +
== ACF and PSD of the 4B3T codes==
 +
<br>
 +
The procedure for calculating the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; and the power-spectral density&nbsp; $\rm (PSD)$&nbsp; is only outlined here in bullet points:
 +
[[File:P_ID1335__Dig_T_2_3_S3_v1.png|right|frame|Markov diagram for the analysis of the 4B3T FoMoT code |class=fit]]
 +
 
 +
'''(1)''' &nbsp; The transition of the running digital sum from &nbsp;${\it \Sigma}_l$&nbsp; to &nbsp;${\it \Sigma}_{l+1}$&nbsp; is described by a homogeneous stationary first-order Markov chain with six&nbsp; $($Jessop&ndash;Waters$)$&nbsp; or four states&nbsp; $($MS43, FoMoT$)$.&nbsp;  For the FoMoT code, the Markov diagram sketched on the right applies.<br>
 +
 
 +
'''(2)''' &nbsp; The values at the arrows denote the transition probabilities &nbsp;${\rm Pr}({\it \Sigma}_{l+1}|{\it \Sigma}_{l})$,&nbsp; resulting from the respective code tables.&nbsp; The colors correspond to the backgrounds of the table on the last section.&nbsp; Due to the symmetry of the FoMoT Markov diagram,&nbsp; the four probabilities are all the same:
 +
:$${\rm Pr}({\it \Sigma}_{l} = 0) = \text{...} = {\rm Pr}({\it \Sigma}_{l} = 3) = 1/4.$$
 +
 
 +
'''(3)''' &nbsp; The auto-correlation function&nbsp; $\varphi_a(\lambda) = {\rm E}\big [a_\nu \cdot a_{\nu+\lambda}\big ]$&nbsp; of the amplitude coefficients can be determined from this diagram.&nbsp; Simpler than the analytical calculation,&nbsp; which requires a very large computational effort,&nbsp; is the simulative determination of the ACF values by computer.<br>
 +
 
 +
 
 +
Fourier transforming the ACF yields the power-spectral density &nbsp;${\it \Phi}_a(f)$&nbsp; of the amplitude coefficients corresponding to the following graph from&nbsp; [TS87]<ref>Tröndle, K.; Söder, G.:&nbsp; Optimization of Digital Transmission Systems.&nbsp; Boston – London: Artech House, 1987,&nbsp; ISBN:&nbsp; 0-89006-225-0.</ref>.&nbsp; The outlined PSD was determined for the FoMoT code,&nbsp; whose Markov diagram is shown above.&nbsp; The differences between the individual 4B3T codes are not particularly pronounced.&nbsp; Thus,&nbsp; for the MS43 code &nbsp;${\rm E}\big [a_\nu^2 \big ] \approx 0.65$&nbsp; and for the other two 4B3T codes&nbsp; (Jessop/Waters, MS43) &nbsp; ${\rm E}\big [a_\nu^2 \big ] \approx  0.69$. <br>
 +
The statements of this graph can be summarized as follows:
 +
 
 +
[[File:EN_Dig_T_2_4_S3b_v23.png|right|frame|Power-spectral density (of amplitude coefficients) of 4B3T compared to redundancy-free and AMI coding|class=fit]]
  
:<math>{\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.02cm}\cdot
+
*The graph shows the power-spectral density &nbsp;${\it \Phi}_a(f)$&nbsp; of the amplitude coefficients &nbsp;$a_\nu$&nbsp; of the 4B3T code &nbsp; &rArr; &nbsp; red curve.
\hspace{0.05cm} l}\hspace{0.02cm} a_\nu \hspace{0.05cm}.</math>
+
 +
*The PSD &nbsp;${\it \Phi}_s(f)$&nbsp; including the transmission pulse is obtained by multiplying by &nbsp;$1/T \cdot |G_s(f)|^2$ &nbsp; &rArr;  &nbsp; ${\it \Phi}_a(f)$&nbsp; must be multiplied by a &nbsp;$\rm sinc^2$ function, if &nbsp;$g_s(t)$&nbsp; describes a rectangular pulse.<br>
  
Die Auswahl der Tabelle zur Codierung des (<i>l</i> + 1)&ndash;ten Blocks erfolgt abhängig vom aktuellen Wert <i>&Sigma;<sub>l</sub></i>.
+
*Redundancy-free binary or ternary coding results in a constant &nbsp;${\it \Phi}_a(f)$&nbsp; in each case,&nbsp; the magnitude of which depends on the number &nbsp;$M$&nbsp; of levels&nbsp;  (different signal power).
  
<br>[[File:P_ID1334__Dig_T_2_3_S2.png|Codetabellen für drei 4B3T-Codes|class=fit]]<br><br>
+
*In contrast,&nbsp; the 4B3T power-spectral density has zeros at &nbsp;$f = 0$&nbsp; and multiples of &nbsp;$f = 1/T$.&nbsp; <br>
  
In obiger Tabelle sind die Codierregeln für die drei oben genannten 4B3T&ndash;Codes angegeben. Zur Vereinfachung der Schreibweise steht &bdquo;+&rdquo; für den Amplitudenkoeffizienten &bdquo;+1&rdquo; und &bdquo;&ndash;&rdquo; für den Koeffizienten &bdquo;&ndash;1&rdquo;. Die Beschreibung folgt auf der nächsten Seite.<br>
+
*The zero point at &nbsp;$f = 0$&nbsp; has the advantage that the 4B3T signal can also be transmitted without major losses via a so-called&nbsp; "telephone channel",&nbsp; which is not suitable for a DC signal due to transformers.<br>
  
Die zwei Codetabellen des Jessop&ndash;Waters&ndash;Codes sind so gewählt, dass die laufende digitale Summe stets zwischen 0 und 5 liegt. Bei den beiden anderen Codes erreicht man durch drei bzw. vier alternative Tabellen die Beschränkung der laufenden digitalen Summe auf den Wertebereich 0 &#8804; <i>&Sigma;<sub>l</sub></i> &#8804; 3.<br>
+
*The zero point at &nbsp;$f = 1/T$&nbsp; has the disadvantage that this makes clock recovery at the receiver more difficult.&nbsp; Outside of these zeros,&nbsp; the 4B3T codes have a flatter &nbsp;${\it \Phi}_a(f)$&nbsp; than the  &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_AMI_code|"AMI code"]]&nbsp; discussed in the next chapter&nbsp; (blue curve), which is advantageous.<br>
  
 +
*The reason for the flatter PSD curve at medium frequencies as well as the steeper drop towards the zeros is that for the 4B3T codes up to five &nbsp;$+1$&nbsp; coefficients&nbsp; (resp. &nbsp;$-1$ coefficients)&nbsp; can follow each other.&nbsp; With the AMI code,&nbsp; these symbols occur only in isolation.<br>
  
  
  
<math></math><br>
+
== Error probability of the 4B3T codes==
 
<br>
 
<br>
<br><br>
+
We now consider the symbol error probability when using the 4B3T code in comparison with redundancy-free binary and ternary coding, subject to the following conditions:
[[File:||class=fit]]<br><br>
+
[[File:EN_Dig_T_2_3_S4.png|right|frame|Eye diagram for redundancy-free and 4B3T coding|class=fit]]
 +
 
 +
*The system comparison is first made under the constraint of&nbsp; "peak limitation".&nbsp; Therefore,&nbsp; we use the rectangular basic transmission pulse,&nbsp; which is optimal for this purpose.<br>
 +
 
 +
*The overall frequency response shows a cosine rolloff with best possible rolloff factor &nbsp;$r = 0.8$.&nbsp; The noise power &nbsp;$\sigma_d^2$&nbsp; is thus &nbsp;$12\%$&nbsp; larger than with the matched filter&nbsp; (global optimum),&nbsp; see graph in the section &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Optimization_of_the_rolloff_factor_with_peak_limitation|"Optimization of the rolloff factor with peak limitation"]]&nbsp; in the third main chapter.
 +
 
  
 +
The graph shows the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|"eye diagrams"]]&nbsp; (with noise) of the three systems to be compared.&nbsp; It also contains&nbsp; $($in row &nbsp;$\rm A)$&nbsp; the equations for calculating the symbol error probability.&nbsp; Approximately &nbsp;2000&nbsp; eye lines are drawn for each diagram.
 +
 +
The first two rows of the table describe the system comparison at peak limitation.&nbsp; For the binary system&nbsp; (first column),&nbsp; the noise power&nbsp; (taking into account the &nbsp;$12\%$ increase)&nbsp; is given by
 +
:$$\sigma_d^2 = 1.12 \cdot  {N_0}/({2 \cdot T}) =  0.56 \cdot  {N_0}/{T} = \sigma_1^2 \hspace{0.05cm}.$$
 +
 +
For the eye diagram and the following calculations, a signal-to-noise ratio of &nbsp;$10 \cdot \lg \hspace{0.05cm}(s_0^2 \cdot T/N_0) = 13 \ \rm dB$&nbsp; is assumed in each case. This gives:
 +
:$$10 \cdot {\rm lg } \hspace{0.1cm}{s_0^2 \cdot T}/{N_0} = 13 \, {\rm dB } \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}{s_0^2 \cdot T}/{N_0} = 10^{1.3} \approx 20 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}\sigma_1^2 = 0.56 \cdot {s_0^2}/{20} \approx 0.028 \cdot s_0^2 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}{ \sigma_1}/{s_0}\approx 0.167 \hspace{0.05cm}.$$
 +
 +
Row &nbsp;$\rm B$&nbsp; shows the associated symbol error probability
 +
&nbsp;$p_{\rm S} \approx {\rm Q}(s_0/\sigma_1) \approx {\rm Q}(6) = 10^{-9}$.&nbsp;
 +
 +
The two other eye diagrams can be interpreted as follows:
 +
*For the redundancy-free ternary system,&nbsp; the eye opening is only half as large as in the binary case,&nbsp; and the noise power &nbsp;$\sigma_2^2$&nbsp; is smaller than &nbsp;$\sigma_1^2$ by a factor of &nbsp;$\log_2 \hspace{0.05cm}(3)$.&nbsp; The factor &nbsp;$4/3$&nbsp; in front of the Q&ndash;function takes into account that the ternary&nbsp; "0"&nbsp; can be  falsified in both directions.&nbsp; This results in the following numerical values:
 +
:$$\frac{ \sigma_2}{s_0}\hspace{-0.05cm} =\hspace{-0.05cm} \frac{ \sigma_1/s_0}{\sqrt{{\rm log_2} (3)}}\hspace{-0.05cm} =\hspace{-0.05cm}\frac{ 0.167}{1.259}
 +
\approx 0.133 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}\hspace{-0.05cm}=\hspace{-0.05cm} {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.133}\right)\approx
 +
{4}/{3} \cdot {\rm Q}(3.76) \hspace{-0.05cm}= \hspace{-0.05cm}1.1 \cdot 10^{-4} .$$
 +
*The 4B3T code yields even slightly less favorable results, since here the noise power &nbsp;$(\sigma_3^2)$&nbsp; is reduced less than in the redundancy-free ternary code  &nbsp;$(\sigma_2^2)$ for the same eye opening:
 +
:$$\frac{ \sigma_3}{s_0} = \frac{ \sigma_1/s_0}{\sqrt{4/3}} =\frac{ 0.167}{1.155}
 +
\approx 0.145  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}= {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.145}\right)\approx
 +
{4}/{3} \cdot {\rm Q}(3.45) =  3.7 \cdot 10^{-4} \hspace{0.05cm}.$$
 +
 +
 +
$\text{Row C: &nbsp;  Symbol error probabilities under power limitation}$&nbsp;
 +
 +
&nbsp; &nbsp; &rArr; &nbsp; Thereby is given the rectangular basic transmission pulse&nbsp; $g_{s}(t)$&nbsp; and  &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 13 \ \rm dB$:
 +
*For the&nbsp; '''redundancy-free binary system'''&nbsp; with NRZ rectangular pulses, &nbsp;$p_{\rm S}$&nbsp; is not changed with respect to row &nbsp;$\rm B$&nbsp; because of &nbsp;$E_{\rm B} = s_0^2 \cdot T$:&nbsp; <br>
 +
:$$p_\text{S, power limitation} = p_\text{S, peak limitation} \approx 10^{-9}.$$
 +
*For the two ternary codes, &nbsp;${\rm E}\big [a_\nu^2\big ] \approx 2/3$.&nbsp; Therefore,&nbsp; the amplitude can here  be increased by a factor of &nbsp;$\sqrt{(3/2)} \approx 1.225$.&nbsp;
 +
 +
* For the&nbsp; '''redundancy-free ternary code''',&nbsp; one thus obtains with power limitation an error probability smaller by factor &nbsp;$ 4$&nbsp;  than with peak limitation $($cf. rows &nbsp;$\rm B$&nbsp; and &nbsp;$\rm C)$:
 +
:$$p_\text{S, power limitation} = 4/3 \cdot  {\rm Q}(1.225 \cdot 3.76) \approx 2.9 \cdot 10^{-5}  \approx 0.26 \cdot p_\text{S, peak limitation} .$$
 +
*A similar&nbsp;  (and even stronger)&nbsp; result holds for the&nbsp; '''4B3T code''':
 +
:$$p_\text{S, power limitation} = 4/3 \cdot  {\rm Q}(1.225 \cdot 3.45) \approx 1.5 \cdot 10^{-5} \approx 0.04 \cdot p_\text{S, peak limitation}.$$
 +
 +
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_2.6:_Modified_MS43_Code|Exercise 2.6: Modified MS43 Code]]
  
 +
[[Aufgaben:Exercise_2.6Z:_4B3T_Code_according_to_Jessop_and_Waters|Exercise 2.6Z: 4B3T Code according to Jessop and Waters]]
  
 +
==References==
  
 +
<references/>
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:19, 24 August 2022


General description of block codes


In  block coding  each sequence of  $m_q$  binary source symbols  $(M_q = 2)$  is represented by a block of  $m_c$  encoder symbols with symbol set size  $M_c$.  In order to convert each source symbol sequence  $\langle q_\nu \rangle$  into another encoder symbol sequence  $\langle c_\nu \rangle$,  the following condition must be satisfied:

$$M_c^{\hspace{0.1cm}m_c} \ge M_q^{\hspace{0.1cm}m_q}\hspace{0.05cm}.$$
  • For the  "redundancy-free codes"  discussed in the last chapter,  the equal sign applies in this equation if  $M_q$  is a power of two.
  • Using the greater sign results in a redundant digital signal,  and the  "relative encoder redundancy"  can be calculated as follows:
$$r_c = 1- \frac{m_q \cdot {\rm log_2}\hspace{0.05cm} (M_q)}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)} > 0 \hspace{0.05cm}.$$

The best known block code for transmission coding is the   4B3T code   with the code parameters

$$m_q = 4,\hspace{0.2cm}M_q = 2,\hspace{0.2cm}m_c = 3,\hspace{0.2cm}M_c = 3\hspace{0.05cm},$$

which was developed in the 1970s and is used,  for example,  in  "ISDN"  ("Integrated Services Digital Networks").

Such a 4B3T code has the following properties:

  • Because of  $m_q \cdot T_{\rm B} = m_c \cdot T$,  the symbol duration  $T$  of the ternary encoded signal is larger than the bit duration  $T_{\rm B}$  of the binary source signal by a factor of  $4/3$.  This results in the favorable property that the bandwidth requirement is a quarter less than for redundancy-free binary transmission.
  • The relative redundancy can be calculated with the above equation and results in  $r_c \approx 16\%$.  This redundancy is used in the 4B3T code to achieve DC freedom.
  • The 4B3T encoder signal can thus also be transmitted over a channel  (German:  "Kanal"   ⇒  subscript:  "K")  with the property  $H_{\rm K}(f= 0) = 0$  without noticeable degradation.


The encoding of the sixteen possible binary blocks into the corresponding ternary blocks could in principle be performed according to a fixed code table. To further improve the spectral properties of these codes, the common 4B3T codes, viz.

  1. the 4B3T code according to Jessop and Waters,
  2. the MS43 code (from:  $\rm M$onitored $\rm S$um $\rm 4$B$\rm 3$T Code),
  3. the FoMoT code (from:  $\rm Fo$ur $\rm Mo$de $\rm T$ernary),

two or more code tables are used,  the selection of which is controlled by the  "running digital sum"  of the amplitude coefficients.  The principle is explained in the next section.


Running digital sum


After the transmission of  $l$  coded blocks,  the  "running digital sum"  with ternary amplitude coefficients  $a_\nu \in \{ -1, \ 0, +1\}$:

Code tables for three 4B3T codes
$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.02cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu \hspace{0.05cm}.$$

The selection of the table for encoding the  $(l + 1)$–th block is done depending on the current   ${\it \Sigma}_l$  value.


The table shows the coding rules for the three 4B3T codes mentioned above.  To simplify the notation,

  •   "+" stands for the amplitude coefficient "+1" and
  •   "–" for the coefficient "–1".


You can see from the graph:

  1. The two code tables of the Jessop–Waters code are selected in such a way that the running digital sum  ${\it \Sigma}_l$  always lies between  $0$  and  $5$.

  2. For the other two codes  (MS43,  FoMoT),  the restriction of the running digital sum to the range  $0 \le {\it \Sigma}_l \le 3$  is achieved by three resp. four alternative tables.


ACF and PSD of the 4B3T codes


The procedure for calculating the auto-correlation function  $\rm (ACF)$  and the power-spectral density  $\rm (PSD)$  is only outlined here in bullet points:

Markov diagram for the analysis of the 4B3T FoMoT code

(1)   The transition of the running digital sum from  ${\it \Sigma}_l$  to  ${\it \Sigma}_{l+1}$  is described by a homogeneous stationary first-order Markov chain with six  $($Jessop–Waters$)$  or four states  $($MS43, FoMoT$)$.  For the FoMoT code, the Markov diagram sketched on the right applies.

(2)   The values at the arrows denote the transition probabilities  ${\rm Pr}({\it \Sigma}_{l+1}|{\it \Sigma}_{l})$,  resulting from the respective code tables.  The colors correspond to the backgrounds of the table on the last section.  Due to the symmetry of the FoMoT Markov diagram,  the four probabilities are all the same:

$${\rm Pr}({\it \Sigma}_{l} = 0) = \text{...} = {\rm Pr}({\it \Sigma}_{l} = 3) = 1/4.$$

(3)   The auto-correlation function  $\varphi_a(\lambda) = {\rm E}\big [a_\nu \cdot a_{\nu+\lambda}\big ]$  of the amplitude coefficients can be determined from this diagram.  Simpler than the analytical calculation,  which requires a very large computational effort,  is the simulative determination of the ACF values by computer.


Fourier transforming the ACF yields the power-spectral density  ${\it \Phi}_a(f)$  of the amplitude coefficients corresponding to the following graph from  [TS87][1].  The outlined PSD was determined for the FoMoT code,  whose Markov diagram is shown above.  The differences between the individual 4B3T codes are not particularly pronounced.  Thus,  for the MS43 code  ${\rm E}\big [a_\nu^2 \big ] \approx 0.65$  and for the other two 4B3T codes  (Jessop/Waters, MS43)   ${\rm E}\big [a_\nu^2 \big ] \approx 0.69$.
The statements of this graph can be summarized as follows:

Power-spectral density (of amplitude coefficients) of 4B3T compared to redundancy-free and AMI coding
  • The graph shows the power-spectral density  ${\it \Phi}_a(f)$  of the amplitude coefficients  $a_\nu$  of the 4B3T code   ⇒   red curve.
  • The PSD  ${\it \Phi}_s(f)$  including the transmission pulse is obtained by multiplying by  $1/T \cdot |G_s(f)|^2$   ⇒   ${\it \Phi}_a(f)$  must be multiplied by a  $\rm sinc^2$ function, if  $g_s(t)$  describes a rectangular pulse.
  • Redundancy-free binary or ternary coding results in a constant  ${\it \Phi}_a(f)$  in each case,  the magnitude of which depends on the number  $M$  of levels  (different signal power).
  • In contrast,  the 4B3T power-spectral density has zeros at  $f = 0$  and multiples of  $f = 1/T$. 
  • The zero point at  $f = 0$  has the advantage that the 4B3T signal can also be transmitted without major losses via a so-called  "telephone channel",  which is not suitable for a DC signal due to transformers.
  • The zero point at  $f = 1/T$  has the disadvantage that this makes clock recovery at the receiver more difficult.  Outside of these zeros,  the 4B3T codes have a flatter  ${\it \Phi}_a(f)$  than the  "AMI code"  discussed in the next chapter  (blue curve), which is advantageous.
  • The reason for the flatter PSD curve at medium frequencies as well as the steeper drop towards the zeros is that for the 4B3T codes up to five  $+1$  coefficients  (resp.  $-1$ coefficients)  can follow each other.  With the AMI code,  these symbols occur only in isolation.


Error probability of the 4B3T codes


We now consider the symbol error probability when using the 4B3T code in comparison with redundancy-free binary and ternary coding, subject to the following conditions:

Eye diagram for redundancy-free and 4B3T coding
  • The system comparison is first made under the constraint of  "peak limitation".  Therefore,  we use the rectangular basic transmission pulse,  which is optimal for this purpose.
  • The overall frequency response shows a cosine rolloff with best possible rolloff factor  $r = 0.8$.  The noise power  $\sigma_d^2$  is thus  $12\%$  larger than with the matched filter  (global optimum),  see graph in the section  "Optimization of the rolloff factor with peak limitation"  in the third main chapter.


The graph shows the  "eye diagrams"  (with noise) of the three systems to be compared.  It also contains  $($in row  $\rm A)$  the equations for calculating the symbol error probability.  Approximately  2000  eye lines are drawn for each diagram.

The first two rows of the table describe the system comparison at peak limitation.  For the binary system  (first column),  the noise power  (taking into account the  $12\%$ increase)  is given by

$$\sigma_d^2 = 1.12 \cdot {N_0}/({2 \cdot T}) = 0.56 \cdot {N_0}/{T} = \sigma_1^2 \hspace{0.05cm}.$$

For the eye diagram and the following calculations, a signal-to-noise ratio of  $10 \cdot \lg \hspace{0.05cm}(s_0^2 \cdot T/N_0) = 13 \ \rm dB$  is assumed in each case. This gives:

$$10 \cdot {\rm lg } \hspace{0.1cm}{s_0^2 \cdot T}/{N_0} = 13 \, {\rm dB } \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{s_0^2 \cdot T}/{N_0} = 10^{1.3} \approx 20 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\sigma_1^2 = 0.56 \cdot {s_0^2}/{20} \approx 0.028 \cdot s_0^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{ \sigma_1}/{s_0}\approx 0.167 \hspace{0.05cm}.$$

Row  $\rm B$  shows the associated symbol error probability  $p_{\rm S} \approx {\rm Q}(s_0/\sigma_1) \approx {\rm Q}(6) = 10^{-9}$. 

The two other eye diagrams can be interpreted as follows:

  • For the redundancy-free ternary system,  the eye opening is only half as large as in the binary case,  and the noise power  $\sigma_2^2$  is smaller than  $\sigma_1^2$ by a factor of  $\log_2 \hspace{0.05cm}(3)$.  The factor  $4/3$  in front of the Q–function takes into account that the ternary  "0"  can be falsified in both directions.  This results in the following numerical values:
$$\frac{ \sigma_2}{s_0}\hspace{-0.05cm} =\hspace{-0.05cm} \frac{ \sigma_1/s_0}{\sqrt{{\rm log_2} (3)}}\hspace{-0.05cm} =\hspace{-0.05cm}\frac{ 0.167}{1.259} \approx 0.133 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}\hspace{-0.05cm}=\hspace{-0.05cm} {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.133}\right)\approx {4}/{3} \cdot {\rm Q}(3.76) \hspace{-0.05cm}= \hspace{-0.05cm}1.1 \cdot 10^{-4} .$$
  • The 4B3T code yields even slightly less favorable results, since here the noise power  $(\sigma_3^2)$  is reduced less than in the redundancy-free ternary code  $(\sigma_2^2)$ for the same eye opening:
$$\frac{ \sigma_3}{s_0} = \frac{ \sigma_1/s_0}{\sqrt{4/3}} =\frac{ 0.167}{1.155} \approx 0.145 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}= {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.145}\right)\approx {4}/{3} \cdot {\rm Q}(3.45) = 3.7 \cdot 10^{-4} \hspace{0.05cm}.$$


$\text{Row C:   Symbol error probabilities under power limitation}$ 

    ⇒   Thereby is given the rectangular basic transmission pulse  $g_{s}(t)$  and  $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 13 \ \rm dB$:

  • For the  redundancy-free binary system  with NRZ rectangular pulses,  $p_{\rm S}$  is not changed with respect to row  $\rm B$  because of  $E_{\rm B} = s_0^2 \cdot T$: 
$$p_\text{S, power limitation} = p_\text{S, peak limitation} \approx 10^{-9}.$$
  • For the two ternary codes,  ${\rm E}\big [a_\nu^2\big ] \approx 2/3$.  Therefore,  the amplitude can here be increased by a factor of  $\sqrt{(3/2)} \approx 1.225$. 
  • For the  redundancy-free ternary code,  one thus obtains with power limitation an error probability smaller by factor  $ 4$  than with peak limitation $($cf. rows  $\rm B$  and  $\rm C)$:
$$p_\text{S, power limitation} = 4/3 \cdot {\rm Q}(1.225 \cdot 3.76) \approx 2.9 \cdot 10^{-5} \approx 0.26 \cdot p_\text{S, peak limitation} .$$
  • A similar  (and even stronger)  result holds for the  4B3T code:
$$p_\text{S, power limitation} = 4/3 \cdot {\rm Q}(1.225 \cdot 3.45) \approx 1.5 \cdot 10^{-5} \approx 0.04 \cdot p_\text{S, peak limitation}.$$


Exercises for the chapter


Exercise 2.6: Modified MS43 Code

Exercise 2.6Z: 4B3T Code according to Jessop and Waters

References

  1. Tröndle, K.; Söder, G.:  Optimization of Digital Transmission Systems.  Boston – London: Artech House, 1987,  ISBN:  0-89006-225-0.