Difference between revisions of "Digital Signal Transmission/Error Probability with Intersymbol Interference"

From LNTwww
m (Text replacement - "„" to """)
 
(24 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Impulsinterferenzen und Entzerrungsverfahren
+
|Untermenü=Intersymbol Interfering and Equalization Methods
 
|Vorherige Seite=Ursachen und Auswirkungen von Impulsinterferenzen
 
|Vorherige Seite=Ursachen und Auswirkungen von Impulsinterferenzen
 
|Nächste Seite=Berücksichtigung von Kanalverzerrungen und Entzerrung
 
|Nächste Seite=Berücksichtigung von Kanalverzerrungen und Entzerrung
 
}}
 
}}
  
== Gaußförmiges Empfangsfilter==
+
== Gaussian receiver filter==
 
<br>
 
<br>
Wir gehen von dem skizzierten Blockschaltbild aus. Zur quantitativen Berücksichtigung der &nbsp;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Definition_des_Begriffs_.E2.80.9EImpulsinterferenz.E2.80.9D|Impulsinterferenzen]]&nbsp; wird folgende Konfiguration angenommen:
+
We start from the block diagram sketched below.&nbsp; The following configuration is assumed for quantitative consideration of &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Definition_of_the_term_.22Intersymbol_Interference.22|"intersymbol interference"]]:&nbsp;
*Rechteckförmiger NRZ&ndash;Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; mit der Höhe &nbsp;$s_0$&nbsp; und der Dauer &nbsp;$T$,<br>
+
*Gaußförmiges Empfangsfilter mit der Grenzfrequenz &nbsp;$f_{\rm G}$ &nbsp;(''Hinweis:'' &nbsp; In diesem Abschnitt bezeichnen wir die Exponentialfunktion oft auch mit &nbsp;$\rm exp [ . ]$):
+
*Rectangular NRZ basic transmission pulse &nbsp;$g_s(t)$&nbsp; with height &nbsp;$s_0$&nbsp; and duration &nbsp;$T$,<br>
 +
 
 +
*Gaussian-shaped receiver filter&nbsp; $H_{\rm G}(f)$&nbsp; with cutoff frequency $f_{\rm G}$:
 
:$$H_{\rm E}(f) = H_{\rm G}(f) = {\rm exp}\left [-  \frac{\pi  \cdot f^2}{(2f_{\rm G})^2} \right ] \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
 
:$$H_{\rm E}(f) = H_{\rm G}(f) = {\rm exp}\left [-  \frac{\pi  \cdot f^2}{(2f_{\rm G})^2} \right ] \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ
 
  \hspace{0.2cm}h_{\rm E}(t) = h_{\rm G}(t) = {\rm exp}\left [- \pi  \cdot (2
 
  \hspace{0.2cm}h_{\rm E}(t) = h_{\rm G}(t) = {\rm exp}\left [- \pi  \cdot (2
 
  f_{\rm G} t)^2\right ]
 
  f_{\rm G} t)^2\right ]
   \hspace{0.05cm}.$$
+
   \hspace{0.05cm},\hspace{0.5cm}\text{note: }\hspace{0.2cm}{\rm exp} [x] = {\rm e}^x.$$
*AWGN&ndash;Kanal, das heißt, es gilt $H_{\rm K}(f) = 1 $ und ${\it \Phi}_n(f) = N_0/2$.
+
*AWGN channel &nbsp; &rArr; &nbsp; channel frequency response&nbsp;  $H_{\rm K}(f) = 1 $&nbsp; and&nbsp; noise power-spectral density&nbsp; ${\it \Phi}_n(f) = N_0/2$.
  
  
[[File:Dig_T_3_2_S1_version2.png|center|frame|Blockschaltbild für das Kapitel "Fehlerwahrscheinlichkeit bei Impulsinterferenzen&rdquo; ]]
+
<u>Note:</u>&nbsp;
 +
#We restrict ourselves in this chapter exclusively to&nbsp; '''redundancy-free binary bipolar transmission'''.&nbsp;
 +
#The ISI influence in multi-level and/or coded transmission will not be discussed until the chapter&nbsp; [[Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission|"Intersymbol Interference for Multi-Level Transmission"]].
 +
<br>
  
Aufgrund der hier getroffenen Voraussetzungen gilt für den Detektionsgrundimpuls:
+
Based on the assumptions made here,&nbsp; the following holds for the basic detection pulse:
  
 
:$$g_d(t) = g_s(t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot s_0 \cdot \int_{t-T/2}^{t+T/2}
 
:$$g_d(t) = g_s(t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot s_0 \cdot \int_{t-T/2}^{t+T/2}
Line 26: Line 31:
 
  f_{\rm G}\hspace{0.05cm}\cdot\hspace{0.05cm} \tau )^2} \,{\rm d} \tau \hspace{0.05cm}.$$
 
  f_{\rm G}\hspace{0.05cm}\cdot\hspace{0.05cm} \tau )^2} \,{\rm d} \tau \hspace{0.05cm}.$$
  
Die Integration führt zu folgenden äquivalenten Ergebnissen:
+
The integration leads to the following equivalent results:
  
 
:$$g_d(t) =  s_0 \cdot \big [ {\rm Q} \left (  2 \cdot \sqrt {2 \pi}
 
:$$g_d(t) =  s_0 \cdot \big [ {\rm Q} \left (  2 \cdot \sqrt {2 \pi}
Line 36: Line 41:
 
erfc} \left (  2 \cdot \sqrt {\pi} \cdot f_{\rm G}\cdot ( t +
 
erfc} \left (  2 \cdot \sqrt {\pi} \cdot f_{\rm G}\cdot ( t +
 
{T}/{2} )\right ) \big ]\hspace{0.05cm}.$$
 
{T}/{2} )\right ) \big ]\hspace{0.05cm}.$$
 +
[[File:EN_Dig_T_3_2_S1.png|right|frame|Block diagram for the chapter&nbsp; "Error Probability with Intersymbol Interference"]]
  
Hierbei sind zwei Varianten der komplementären Gaußschen Fehlerfunktion verwendet, nämlich
+
Here,&nbsp; two variants of the complementary Gaussian error function are used,&nbsp; viz.
  
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u}
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u}
\hspace{0.05cm},\hspace{0.5cm}
+
\hspace{0.05cm},$$
{\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm
+
:$$ {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm
 
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das Modul &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]]&nbsp; liefert die Zahlenwerte von &nbsp;${\rm Q} (x)$&nbsp; und &nbsp;$0.5 \cdot {\rm erfc} (x)$.<br>
+
&rArr; &nbsp; The &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]]&nbsp; provides the numerical values of the functions &nbsp;${\rm Q} (x)$&nbsp; and &nbsp;$0.5 \cdot {\rm erfc} (x)$.<br>
 
 
  
Die Rauschleistung am Ausgang des gaußförmigen Empfangsfilters &nbsp;$H_{\rm G}(f)$&nbsp; ist gleich
+
The noise power at the output of the Gaussian receiver filter &nbsp;$H_{\rm G}(f)$&nbsp; is
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0\cdot f_{\rm
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0\cdot f_{\rm
 
G}}{\sqrt{2}}\hspace{0.05cm}.$$
 
G}}{\sqrt{2}}\hspace{0.05cm}.$$
  
Aus diesen beiden Gleichungen erkennt man bereits:
+
{{BlaueBox|TEXT= 
*Je kleiner die Grenzfrequenz &nbsp;$f_{\rm G}$&nbsp; des Gauß&ndash;Tiefpasses ist, desto kleiner ist der Rauscheffektivwert &nbsp;$\sigma_d$&nbsp; und umso besser ist demzufolge das Rauschverhalten.<br>
+
$\text{From these equations one can already see:}$&nbsp;
 
+
#The smaller the cutoff frequency&nbsp; $f_{\rm G}$&nbsp; of the Gaussian low-pass filter,&nbsp; the smaller the noise rms value &nbsp;$\sigma_d$&nbsp; and consequently the better the noise performance.<br>
*Eine kleine Grenzfrequenz führt aber zu einer starken Abweichung des Detektionsgrundimpulses &nbsp;$g_d(t)$&nbsp; von der Rechteckform und damit zu Impulsinterferenzen.<br><br>
+
#However,&nbsp; a small cutoff frequency leads to a strong deviation of the basic detection pulse &nbsp;$g_d(t)$&nbsp; from the rectangular form and thus to intersymbol interference.}}<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Die linke Grafik zeigt den Detektionsgrundimpuls &nbsp;$g_d(t)$&nbsp; am Ausgang eines Gaußtiefpasses &nbsp;$H_{\rm G}(f)$&nbsp; mit der Grenzfrequenz &nbsp;$f_{\rm G}$, wenn am Eingang ein NRZ&ndash;Rechteckimpuls (blauer Kurvenverlauf) anliegt.<br>
+
$\text{Example 1:}$&nbsp; The left graph shows the basic detection pulse &nbsp;$g_d(t)$&nbsp; at the output of a Gaussian low-pass filter &nbsp;$H_{\rm G}(f)$&nbsp; with the cutoff frequency &nbsp;$f_{\rm G}$&nbsp; when an NRZ rectangular pulse (blue curve) is applied at the input.<br>
  
[[File:P_ID1373__Dig_T_3_2_S1b_version1.png|center|frame|Grundimpuls und Rauschleistungsdichte bei gaußförmigem Empfangsfilter]]
+
[[File:P_ID1373__Dig_T_3_2_S1b_version1.png|right|frame|Basic detection pulse and noise power-spectral density&nbsp; $\rm (PSD)$&nbsp;  with Gaussian receiver filter]]
Man erkennt aus dieser Darstellung:
+
One can see from this plot:
*Der Gaußtiefpass &nbsp;$H_{\rm G}(f)$&nbsp; bewirkt, dass der Dektionsimpuls &nbsp;$g_d(t)$&nbsp; gegenüber dem Sendeimpuls &nbsp;$g_s(t)$&nbsp; verkleinert und verbreitert wird &nbsp; &rArr; &nbsp; ''Zeitdispersion''.<br>
+
*The Gaussian low-pass filter &nbsp;$H_{\rm G}(f)$&nbsp; causes the detection pulse &nbsp;$g_d(t)$&nbsp; to be reduced and broadened compared to the transmitted pulse &nbsp;$g_s(t)$&nbsp; &rArr; &nbsp; "'time dispersion".<br>
  
*Diese Impulsverformung ist umso stärker, je kleiner die Grenzfrequenz &nbsp;$f_{\rm G}$&nbsp; ist. Beispielsweise wird mit &nbsp;$f_{\rm G} \cdot T = 0.4$&nbsp; (rote Kurve) das Impulsmaximum bereits auf etwa &nbsp;$68\%$&nbsp; herabgesetzt.<br>
+
*The pulse deformation is the stronger,&nbsp; the smaller the cutoff frequency &nbsp;$f_{\rm G}$&nbsp; is.&nbsp; For example,&nbsp; with &nbsp;$f_{\rm G} \cdot T = 0.4$&nbsp; (red curve)&nbsp; the pulse maximum is already reduced to &nbsp;$\approx 68\%$.&nbsp;<br>
  
*Im Grenzfall &nbsp;$f_{\rm G} \to \infty$&nbsp; hat der Gaußtiefpass keine Wirkung &nbsp; &#8658; &nbsp; $g_d(t) = g_s(t)$. Allerdings ist in diesem Fall keinerlei Rauschbegrenzung wirksam, wie aus dem rechten Bild hervorgeht.}}
+
*In the limiting case &nbsp;$f_{\rm G} \to \infty$&nbsp; the Gaussian low-pass has no effect &nbsp; &#8658; &nbsp; $g_d(t) = g_s(t)$.&nbsp; However,&nbsp; in this case,&nbsp; there is no noise limitation at all,&nbsp; as can be seen from the right figure.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Es gelten die gleichen Vorausetzungen wie für das letzte Beispiel. Die Grafik zeigt das Detektionssignal &nbsp;$d(t)$&nbsp; nach dem Gaußtiefpass (vor dem Entscheider) für zwei verschiedene Grenzfrequenzen, nämlich &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; und &nbsp;$f_{\rm G} \cdot T = 0.4$
+
$\text{Example 2:}$&nbsp; The same preconditions apply as for the last example.&nbsp; The graph shows the detection signal &nbsp;$d(t)$&nbsp; after the Gaussian low-pass&nbsp; $($before the decision$)$&nbsp; for two different cutoff frequencies,&nbsp; namely &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; and &nbsp;$f_{\rm G} \cdot T = 0.4$.&nbsp; We want to analyze these images in terms of intersymbol interference.
  
[[File:P ID1384 Dig T 3 2 S1c version2.png|center|frame|Detektionssignal bei gaußförmigem Empfangsfilter]]  
+
[[File:Dig_T_3_2_S1c_version2_ret.png|right|frame|Detection signal with Gaussian receiver filter]]  
Dargestellt sind in beiden Diagrammen gleichermaßen (aber als Bildschirmabzug zugegebenermaßen schwer zu erkennen):
+
In both diagrams are shown:
*der Anteil &nbsp;$d_{\rm S}(\nu \cdot T)$&nbsp; ohne Berücksichtigung des Rauschens (blaue Kreise bei den Detektionszeitpunkten),<br>
+
*the component &nbsp;$d_{\rm S}(\nu \cdot T)$&nbsp; of the detection signal without considering the noise&nbsp; $($blue circles at the detection times$)$,<br>
*das gesamte Detektionssignal &nbsp;$d(t)$&nbsp; inklusive der Rauschkomponente (gelb),<br>
+
*the total detection signal &nbsp;$d(t)$&nbsp; including the noise component (yellow curve),<br>
*das Sendesignal &nbsp;$s(t)$&nbsp; als Referenzsignal (grün gepunktet in der oberen Grafik; gleichermaßen gültig für die untere Grafik).<br><br>
+
*the transmitted signal &nbsp;$s(t)$&nbsp; as reference signal (green dotted in the upper graph; equally valid for the lower graph).<br><br>
  
Durch einen Vergleich dieser Bilder lassen sich folgende Aussagen verifizieren:
+
By comparing these images, the following statements can be verified  in terms of Intersymbol Interference&nbsp; $\rm  (ISI)$:
*Mit der Grenzfrequenz &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; (obere Grafik) ergeben sich zu den Detektionszeitpunkten $($bei Vielfachen von &nbsp;$T)$&nbsp; nur geringfügige Impulsinterferenzen. Durch den Gaußtiefpass werden hier in erster Linie die Ecken des Sendesignals &nbsp;$s(t)$&nbsp; abgerundet.<br>
+
*With the cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; (upper graph),&nbsp; only minor ISI result at the detection times&nbsp; $($at multiples of &nbsp;$T)$.&nbsp; Due to the Gaussian low-pass here primarily the corners of the transmitted signal &nbsp;$s(t)$&nbsp; are rounded.<br>
*Dagegen sind im unteren Bild &nbsp;$(f_{\rm G} \cdot T = 0.4)$&nbsp; die Auswirkungen der Impulsinterferenzen deutlich zu erkennen. Zu den Detektionszeitpunkten &nbsp;$(\nu \cdot T)$&nbsp; kann das blau dargestellte Detektionsnutzsignal &nbsp;$d_{\rm S}(\nu \cdot T)$&nbsp; sechs verschiedene Werte annehmen (eingezeichnete Rasterlinien).<br>
+
*In contrast,&nbsp; in the lower image &nbsp;$(f_{\rm G} \cdot T = 0.4)$&nbsp; the ISI effects are clearly visible.&nbsp; At the detection times &nbsp;$(\nu \cdot T)$,&nbsp; the&nbsp;  $($blue$)$&nbsp; signal component &nbsp;$d_{\rm S}(\nu \cdot T)$&nbsp; of the detection signal can assume six different values&nbsp; $($compare grid lines drawn$)$.<br>
*Der Rauschanteil &nbsp;$d_{\rm N}(t)$ &ndash; erkennbar als Differenz zwischen der gelben Kurve und den blauen Kreisen &ndash; ist mit &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; im statistischen Mittel größer als mit &nbsp;$f_{\rm G} \cdot T = 0.4$.<br>
+
*The noise component &nbsp;$d_{\rm N}(t)$ &ndash; recognizable as the difference between yellow curve and blue circles &ndash; is on average larger with $f_{\rm G} \cdot T = 0.8$&nbsp; than with $f_{\rm G} \cdot T = 0.4$.<br>
*Dieses Ergebnis kann mit der der rechten Grafik von &nbsp;$\text{Beispiel 1}$&nbsp; erklärt werden, die das Leistungsdichtespektrum der Rauschkomponente &nbsp;$d_{\rm N}(t)$&nbsp; zeigt:
+
*This result can be explained by the right graph of &nbsp;$\text{Example 1}$,&nbsp; which shows the PSD of the noise component &nbsp;$d_{\rm N}(t)$:&nbsp;
 
:$${\it \Phi}_{d{\rm N} }(f) = {N_0}/{2} \cdot \vert H_{\rm G}(f) \vert^2 =
 
:$${\it \Phi}_{d{\rm N} }(f) = {N_0}/{2} \cdot \vert H_{\rm G}(f) \vert^2 =
 
{N_0}/{2} \cdot {\rm exp}\left [-  
 
{N_0}/{2} \cdot {\rm exp}\left [-  
 
\frac{2\pi  f^2}{(2f_{\rm G})^2} \right ] .$$
 
\frac{2\pi  f^2}{(2f_{\rm G})^2} \right ] .$$
  
*Das Integral über &nbsp;${\it \Phi}_{d{\rm N} }(f)$&nbsp; &ndash; also die Rauschleistung &nbsp;$\sigma_d^2$&nbsp; &ndash; ist für &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; (violette Kurve) doppelt so groß als mit &nbsp;$f_{\rm G} \cdot T = 0.4$&nbsp; (rote Kurve).}}
+
*The integral over &nbsp;${\it \Phi}_{d{\rm N} }(f)$&nbsp; &ndash; i.e. the noise power &nbsp;$\sigma_d^2$&nbsp; &ndash; is twice as large for &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; (purple curve) than with &nbsp;$f_{\rm G} \cdot T = 0.4$&nbsp; (red curve).}}
  
  
== Definition und Aussagen des Augendiagramms==
+
== Definition and statements of the eye diagram==
 
<br>
 
<br>
Der oben dargelegte Sachverhalt lässt sich auch am Augendiagramm erklären.  
+
The above mentioned facts can also be explained by the eye diagram.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Unter dem &nbsp;'''Augendiagramm'''&nbsp; (Englisch: <i>Eye Pattern</i>)&nbsp; versteht man die Summe aller übereinander gezeichneten Ausschnitte des Detektionssignals, deren Dauer ein ganzzahliges Vielfaches der Symboldauer &nbsp;$T$&nbsp; ist.}}
+
$\text{Definition:}$&nbsp; The &nbsp;'''eye diagram'''&nbsp; (or&nbsp; "eye pattern")&nbsp; is the sum of all superimposed sections of the detection signal&nbsp; $d(t)$,&nbsp; whose duration is an integer multiple of the symbol duration &nbsp;$T$.&nbsp; This diagram has a certain resemblance to an eye, which led to its naming.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Wir gehen von einem redundanzfreien binären bipolaren NRZ&ndash;Rechtecksignal &nbsp;$s(t)$&nbsp; und dem Gaußtiefpass mit der Grenzfrequenz &nbsp;$f_{\rm G} \cdot T = 0.4$&nbsp; aus.
+
$\text{Example 3:}$&nbsp; We assume a redundancy-free binary bipolar NRZ rectangular signal &nbsp;$s(t)$&nbsp; and the Gaussian low-pass filter with cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.4$.&nbsp;  
[[File:P ID1375 Dig T 3 2 S2 version1.png|right|frame|Augendiagramme mit und ohne Rauschen|class=fit]]
+
[[File:EN_Dig_T_3_2_S2.png|right|frame|On the left:&nbsp; Eye diagram with noise&nbsp; &#8658; &nbsp; signal &nbsp;$d(t)=d_{\rm S}(t) +d_{\rm N}(t)$, <br>on the right:&nbsp; Eye diagram without noise&nbsp; &#8658; &nbsp; signal &nbsp;$d_{\rm S}(t)$|class=fit]]
<br>Dargestellt sind die Augendiagramme nach dem Gaußtiefpass,  
+
In the graphic shown are the eye diagrams after the Gaussian low-pass,
*links  mit Berücksichtigung des Rauschens &nbsp; &#8658; &nbsp; Signal &nbsp;$d(t)$,  
+
*left inclusive the noise component &nbsp; &#8658; &nbsp; signal &nbsp;$d(t)=d_{\rm S}(t) +d_{\rm N}(t)$,  
*rechts ohne Berücksichtigung des Rauschens &nbsp; &#8658; &nbsp; Signal &nbsp;$d_{\rm S}(t)$.
+
*on the right without taking noise into account &nbsp; &#8658; &nbsp; signal &nbsp;$d_{\rm S}(t)$.
  
  
Dieses Diagramm hat eine gewisse Ähnlichkeit mit einem Auge, was zu seiner Namensgebung geführt hat.
 
<br clear=all>
 
Diese Darstellung erlaubt wichtige Aussagen über die Qualität eines digitalen Übertragungssystems:
 
  
*Nur das Augendiagramm des Signals &nbsp;$d(t)$&nbsp; kann messtechnisch auf einem Oszilloskop dargestellt werden, das mit dem Taktsignal getriggert wird. Aus diesem Augendiagramm (linke Grafik) kann beispielsweise der Rauscheffektivwert &nbsp;$\sigma_d$&nbsp; abgelesen &ndash; besser gesagt: &nbsp;abgeschätzt &ndash; werden.<br>
+
This representation allows important statements about the quality of a digital transmission system:
  
*Das Augendiagramm ohne Rauschen (rechte Grafik) bezieht sich auf das Detektionsnutzsignal &nbsp;$d_{\rm S}(t)$&nbsp; und kann nur mittels einer Rechnersimulation ermittelt werden. Für ein realisiertes System ist dieses Augendiagramm nicht darstellbar, da der Rauschanteil &nbsp;$d_{\rm N}(t)$&nbsp; nicht eliminiert werden kann.<br>
+
*Only the eye diagram of the signal &nbsp;$d(t)$&nbsp; can be displayed metrologically on an oscilloscope,&nbsp; which is triggered with the clock signal.&nbsp; From this eye diagram&nbsp; $($left graph$)$,&nbsp; for example,&nbsp; the noise rms value &nbsp;$\sigma_d$&nbsp; $($&#8658; &nbsp; noise power &nbsp;$\sigma_d^2)$&nbsp; can be read &ndash; or rather: &nbsp;estimated.<br>
  
*Bei beiden Diagrammen wurden jeweils &nbsp;$2048$&nbsp; Augenlinien gezeichnet. In der rechten Grafik sind jedoch nur &nbsp;$2^5 = 32$&nbsp; Augenlinien unterscheidbar, da der vorliegende Detektionsgrundimpuls &nbsp;$g_d(t)$&nbsp; auf den Zeitbereich &nbsp;$\vert t\vert \le 2T$&nbsp; beschränkt ist (siehe &nbsp;[[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen#Gau.C3.9Ff.C3.B6rmiges_Empfangsfilter| Grafik im Beispiel 1]]&nbsp; mit &nbsp;$f_{\rm G} \cdot T = 0.4$, rote Kurve).<br>
+
*The eye diagram without noise&nbsp; (right graph)&nbsp; refers to the signal component &nbsp;$d_{\rm S}(t)$&nbsp; of the detection signal and can only be determined by means of a computer simulation.&nbsp; For an implemented system,&nbsp; this eye diagram cannot be displayed,&nbsp; since the noise component &nbsp;$d_{\rm N}(t)$&nbsp; cannot be eliminated.<br>
  
*Die inneren Augenlinien bestimmen die '''vertikale Augenöffnung''' &nbsp;$\ddot{o}(T_{\rm D})$. Je kleiner diese ist, desto größer ist der Einfluss von Impulsinterferenzen. Bei einem (impulsinterferenzfreien) Nyquistsystem ist die vertikale Augenöffnung maximal. Normiert auf die Sendeamplitude gilt dann &nbsp;$\ddot{o}(T_{\rm D})/s_0 = 2$. <br>
+
*In both diagrams of this example, &nbsp;$2^{11}=2048$&nbsp; eye lines were drawn in each case.&nbsp; In the right graph,&nbsp; however,&nbsp; only &nbsp;$2^5 = 32$&nbsp; eye lines are distinguishable because the present detection pulse &nbsp;$g_d(t)$&nbsp; is limited to the time range &nbsp;$\vert t\vert \le  2T$&nbsp; <br>$($see &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Gaussian_receiver_filter|graph in Example 1]]&nbsp; with &nbsp;$f_{\rm G} \cdot T = 0.4$,&nbsp; red curve$)$.<br>
  
*Bei symmetrischem Grundimpuls ist der Detektionszeitpunkt &nbsp;$T_{\rm D} = 0$&nbsp; optimal. Mit einem anderen Wert $($zum Beispiel  &nbsp;$T_{\rm D} = T/10) $&nbsp; wäre &nbsp;$\ddot{o}(T_{\rm D})$&nbsp; etwas kleiner und damit die Fehlerwahrscheinlichkeit deutlich größer. Dieser Fall ist in der rechten Grafik durch die violett&ndash;gestrichelte Vertikale angedeutet.}}
+
*The inner eye lines determine the&nbsp; '''vertical eye opening'''&nbsp; $\ddot{o}(T_{\rm D})$.&nbsp; The smaller this is,&nbsp; the greater is the influence of intersymbol interference.&nbsp; For a&nbsp; $($ISI-free$)$&nbsp; Nyquist system the vertical eye opening is maximum.&nbsp; Normalized to the transmitted amplitude, &nbsp;$\ddot{o}(T_{\rm D})/s_0 = 2$&nbsp; is then valid. <br>
  
== Mittlere Fehlerwahrscheinlichkeit==
+
*With symmetrical basic detection pulse,&nbsp; the detection time &nbsp;$T_{\rm D} = 0$&nbsp; is optimal.&nbsp; With a different value&nbsp; $($for example  &nbsp;$T_{\rm D} = -T/10) $, &nbsp; $\ddot{o}(T_{\rm D})$&nbsp; would be somewhat smaller and thus the error probability would be significantly larger.&nbsp; This case is indicated by the purple&ndash;dashed vertical line in the right graph.}}
 +
 
 +
== Mean error probability==
 
<br>
 
<br>
Wir gehen wie bei den bisherigen Grafiken in diesem Kapitel von folgenden Voraussetzungen aus:
+
As with the previous graphs in this chapter,&nbsp; we assume the following:
*NRZ&ndash;Rechtecke mit Amplitude &nbsp;$s_0$, &nbsp;AWGN&ndash;Rauschen mit &nbsp;$N_0$, wobei
+
[[File:P ID1377 Dig T 3 2 S3 version1.png|right|frame|Eye diagram and discrete PDF of the signal component &nbsp;$d_{\rm S}(t)$&nbsp; from &nbsp;$d(t)$|class=fit]]
 +
*NRZ rectangles with amplitude &nbsp;$s_0$, &nbsp;AWGN noise with power-spectral density &nbsp;$N_0$,&nbsp; where
 
:$$10 \cdot {\rm lg}\hspace{0.1cm} \frac{s_0^2 \cdot T}{N_0}\approx
 
:$$10 \cdot {\rm lg}\hspace{0.1cm} \frac{s_0^2 \cdot T}{N_0}\approx
13\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
13\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
\frac{N_0}{s_0^2 \cdot T} = 0.05\hspace{0.05cm}.$$
 
\frac{N_0}{s_0^2 \cdot T} = 0.05\hspace{0.05cm}.$$
*Gaußförmiges Empfangsfilter mit der Grenzfrequenz &nbsp;$f_{\rm G} \cdot T = 0.4$:
+
*Gaussian receiver filter with cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.4$:
 
:$$\sigma_d^2 = \frac{(N_0 /T)\cdot (f_{\rm G}\cdot T)}{\sqrt{2}}= \frac{0.05 \cdot
 
:$$\sigma_d^2 = \frac{(N_0 /T)\cdot (f_{\rm G}\cdot T)}{\sqrt{2}}= \frac{0.05 \cdot
s_0^2\cdot0.4}{\sqrt{2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sigma_d = \sqrt{0.0141}\cdot s_0
+
s_0^2\cdot0.4}{\sqrt{2}}$$
 +
:$$ \Rightarrow \hspace{0.3cm} \sigma_d = \sqrt{0.0141}\cdot s_0
 
\approx 0.119 \cdot s_0 \hspace{0.05cm}.$$
 
\approx 0.119 \cdot s_0 \hspace{0.05cm}.$$
* Es gelte &nbsp;$g_d(\nu \cdot T) \approx 0$&nbsp; für &nbsp;$|\nu| \ge 2$. Die anderen Detektionsgrundimpulswerte sind wie folgt gegeben:
+
* Let &nbsp;$g_d(\nu \cdot T) \approx 0$&nbsp; be valid for &nbsp;$|\nu| \ge 2$.&nbsp; The other basic detection pulse values are given as follows:
:$$g_0  =  g_d(t=0) \approx 0.68 \cdot s_0, \hspace{0.5cm}g_1  =  g_d(t=T) \approx 0.16 \cdot s_0, \hspace{0.2cm} g_{-1} = g_d(t=-T) \approx
+
:$$g_0  =  g_d(t=0) \approx 0.68 \cdot s_0,$$
 +
:$$g_1  =  g_d(t=T) \approx 0.16 \cdot s_0,$$
 +
:$$g_{-1} = g_d(t=-T) \approx
 
0.16 \cdot s_0\hspace{0.05cm}.$$
 
0.16 \cdot s_0\hspace{0.05cm}.$$
  
[[File:P ID1377 Dig T 3 2 S3 version1.png|center|frame|Augendiagramm und WDF des Nutzsignals|class=fit]]
+
Let us now analyze the possible values for the signal component &nbsp;$d_{\rm S}(t)$&nbsp; at the detection times:
 +
*Of the total &nbsp;$32$&nbsp; eye lines,&nbsp; four lines intersect the ordinate &nbsp;$(t = 0)$&nbsp; at &nbsp;$g_0 + 2 \cdot g_1 = s_0$.&nbsp; These lines belong to the amplitude coefficients&nbsp; "$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$".&nbsp; &nbsp; Here,&nbsp; the&nbsp; "middle"&nbsp; coefficient &nbsp;$a_{\nu = 0}$&nbsp; is highlighted in italics.<br>
 +
 
 +
*The four eye lines,&nbsp; each representing the coefficients &nbsp;"$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} \text{...}$"&nbsp; result in the signal value &nbsp;$d_{\rm S}(T_{\rm D} = 0) =g_0 - 2 \cdot g_1 = 0.36 \cdot s_0$.<br>
 +
 
 +
*In contrast,&nbsp; the signal value &nbsp;$d_{\rm S}(T_{\rm D} = 0) =g_0 = 0.68 \cdot s_0$&nbsp; occurs twice as often.&nbsp; This goes back either to the coefficients &nbsp;"$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"&nbsp; or to  &nbsp;"$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$".&nbsp; <br>
  
Analysieren wir nun die möglichen Werte für das Detektionsnutzsignal &nbsp;$d_{\rm S}(t)$&nbsp; zu den Detektionszeitpunkten:
+
*For the &nbsp;$16$&nbsp; eye lines which intersect the ordinate &nbsp;$T_{\rm D} = 0$&nbsp; below the decision threshold &nbsp;$E = 0$,&nbsp; exactly mirror-image relations result.<br><br>
*Von den insgesamt &nbsp;$32$&nbsp; Augenlinien schneiden vier Linien die Ordinate &nbsp;$(t = 0)$&nbsp; bei &nbsp;$g_0 + 2 \cdot g_1 = s_0$. Diese Linien gehören zu den Amplitudenkoeffizienten "$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$&rdquo;. &nbsp; Kursiv hervorgehoben ist hierbei der "mittlere&rdquo; Koeffizient &nbsp;$a_{\nu = 0}$.<br>
 
*Die vier Augenlinien, die jeweils die Koeffizienten &nbsp;"$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} \text{...}$&rdquo;&nbsp; repräsentieren, ergeben den Nutzabtastwert &nbsp;$d_{\rm S}(T_{\rm D} = 0) =g_0 - 2 \cdot g_1 = 0.36 \cdot s_0$.<br>
 
*Dagegen tritt der Nutzabtastwert &nbsp;$d_{\rm S}(T_{\rm D} = 0) =g_0 = 0.68 \cdot s_0$&nbsp; doppelt so häufig auf. Dieser geht entweder auf die Koeffizienten &nbsp;"$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$&rdquo;&nbsp; oder auf  &nbsp;"$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$&rdquo;&nbsp; zurück.<br>
 
*Für die &nbsp;$16$&nbsp; Augenlinien, welche die Ordinate &nbsp;$T_{\rm D} = 0$&nbsp; unterhalb der Entscheiderschwelle &nbsp;$E = 0$&nbsp; schneiden, ergeben sich genau spiegelbildliche Verhältnisse.<br><br>
 
  
Die möglichen Werte &nbsp;$d_{\rm S}(T_{\rm D})$&nbsp; und deren Auftrittswahrscheinlichkeiten findet man in obiger Grafik auf der linken Seite in der &nbsp;[[Theory_of_Stochastic_Signals/Wahrscheinlichkeitsdichtefunktion#WDF-Definition_f.C3.BCr_diskrete_Zufallsgr.C3.B6.C3.9Fen|Wahrscheinlichkeitsdichtefunktion]]&nbsp; (WDF) der Detektionsnutzabtastwerte wieder:
+
The possible values &nbsp;$d_{\rm S}(T_{\rm D})$&nbsp; and their occurrence probabilities can be found in the above graph on the left side in the&nbsp; (discrete)&nbsp;  &nbsp;[[Theory_of_Stochastic_Signals/Probability_Density_Function#PDF_definition_for_discrete_random_variables|probability density function]]&nbsp; $\rm (PDF)$&nbsp; of the noise-free detection signal samples:
 
:$$f_{d{\rm S}}(d_{\rm S})  =  {1}/{8} \cdot \delta (d_{\rm S}
 
:$$f_{d{\rm S}}(d_{\rm S})  =  {1}/{8} \cdot \delta (d_{\rm S}
 
- s_0)+ {1}/{4} \cdot \delta (d_{\rm S} - 0.68 \cdot s_0)+
 
- s_0)+ {1}/{4} \cdot \delta (d_{\rm S} - 0.68 \cdot s_0)+
Line 153: Line 162:
 
\delta (d_{\rm S} + 0.36 \cdot s_0)\hspace{0.05cm}.$$
 
\delta (d_{\rm S} + 0.36 \cdot s_0)\hspace{0.05cm}.$$
  
Damit kann die (mittlere) Symbolfehlerwahrscheinlichkeit des impulsinterferenzbehafteten Systems angegeben werden. Unter Ausnutzung der Symmetrie erhält man mit &nbsp;$\sigma_d/s_0 = 0.119$:
+
Thus,&nbsp; the&nbsp; (average)&nbsp; symbol error probability of the of the ISI-afflicted system can be given.&nbsp; Taking advantage of the symmetry,&nbsp; one obtains with &nbsp;$\sigma_d/s_0 = 0.119$:
 
:$$p_{\rm S}  =  {1}/{4} \cdot {\rm Q} \left( \frac{s_0}{ \sigma_d}
 
:$$p_{\rm S}  =  {1}/{4} \cdot {\rm Q} \left( \frac{s_0}{ \sigma_d}
 
   \right)+ {1}/{2} \cdot {\rm Q} \left( \frac{0.68 \cdot s_0}{ \sigma_d}
 
   \right)+ {1}/{2} \cdot {\rm Q} \left( \frac{0.68 \cdot s_0}{ \sigma_d}
Line 163: Line 172:
 
   10^{-9}+ {1}/{4}  \cdot 1.26 \cdot 10^{-3} \approx 3.14 \cdot 10^{-4}
 
   10^{-9}+ {1}/{4}  \cdot 1.26 \cdot 10^{-3} \approx 3.14 \cdot 10^{-4}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
 +
<u>Note:</u> &nbsp; For redundancy-free binary bipolar transmission,&nbsp; the bit error probability&nbsp; $p_{\rm B}$&nbsp; is identical to the symbol error probability&nbsp; $p_{\rm S}$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Anhand dieses Zahlenbeispiels erkennt man:
+
$\text{On the basis of this numerical example one recognizes:}$&nbsp;  
*Bei Vorhandensein von Impulsinterferenzen wird die (mittlere) Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp; im Wesentlichen durch die inneren Augenlinien bestimmt.<br>
+
#In the presence of intersymbol interference,&nbsp; the&nbsp; (average)&nbsp; symbol error probability &nbsp;$p_{\rm S}$&nbsp; is essentially determined by the inner eye lines.<br>
 +
#The computational cost of determining  &nbsp;$p_{\rm S}$&nbsp; can become very large,&nbsp; especially if the ISI comes from very many basic detection pulse values &nbsp;$g_\nu$.&nbsp; }}
  
*Der Rechenaufwand zur Bestimmung der Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp; kann sehr groß werden, insbesondere dann, wenn die Impulsinterferenzen von sehr vielen Grundimpulswerten &nbsp;$g_\nu$&nbsp;  herrühren.}}
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp;
 +
*If the pulse values &nbsp;$g_{-5}, \text{...} \ , g_{+5}$&nbsp; are different from zero and &nbsp;$E \ne  0$, an averaging over &nbsp;$2^{11} = 2048$&nbsp;  eye lines is necessary to determine the error probability &nbsp;$p_{\rm S}$.
 +
 
 +
*If,&nbsp; on the other hand,&nbsp; only the pulse values &nbsp;$g_{-1}, \ g_0, \ g_{+1}$&nbsp; are different from zero and,&nbsp; in addition,&nbsp; the symmetry with respect to the threshold &nbsp;$E = 0$&nbsp; is taken into account,&nbsp; the effort is reduced to averaging over four terms.
  
{{GraueBox|TEXT= 
+
* If,&nbsp; in addition,&nbsp; the symmetry &nbsp;$g_{-1} = g_{+1}$&nbsp; applies as with the above numerical values,&nbsp; then the symmetry with respect to &nbsp;$T_{\rm D}$&nbsp; can also be exploited and averaging over three terms is sufficient. }} <br>
$\text{Beispiel 4:}$&nbsp;
 
*Sind die Grundimpulswerte &nbsp;$g_{-5}, \text{...} \ , g_{+5}$&nbsp; von Null verschieden und &nbsp;$E \ne  0$, so ist zur Bestimmung der Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp; eine Mittelung über &nbsp;$2^{11} = 2048$&nbsp; Augenlinien erforderlich.
 
*Sind dagegen nur die Grundimpulswerte &nbsp;$g_{-1}, \ g_0, \ g_{+1}$&nbsp; von Null verschieden und wird zudem die Symmetrie bezüglich der Schwelle &nbsp;$E = 0$&nbsp; berücksichtigt, so reduziert sich der Aufwand auf die Mittelung über vier Terme.
 
* Gilt zusätzlich die Symmetrie &nbsp;$g_{-1} = g_{+1}$&nbsp; wie bei den obigen Zahlenwerten, so kann auch die Symmetrie bezüglich &nbsp;$T_{\rm D}$&nbsp; ausgenutzt werden und es genügt die Mittelung über drei Terme. }} <br>
 
  
== Ungünstigste Fehlerwahrscheinlichkeit==
+
== Worst-case error probability==
 
<br>
 
<br>
In der Vergangenheit wurden eine Vielzahl von Näherungen für die mittlere Fehlerwahrscheinlichkeit angegeben, unter Anderem:
+
In the past,&nbsp; a variety of approximations for the average error probability have been given, among others:  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Als eine sehr einfache Näherung für die tatsächliche Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp;
+
$\text{Definition:}$&nbsp; As a very simple approximation for the actual error probability &nbsp;$p_{\rm S}$,&nbsp;
verwendet man häufig die &nbsp;'''ungünstigste Fehlerwahrscheinlichkeit'''&nbsp; (englisch: &nbsp; <i>Worst-Case Error Probability</i>)
+
the &nbsp;'''worst-case error probability'''&nbsp; (German:&nbsp; "ungünstigste Fehlerwahrscheinlichkeit" &nbsp; &rArr; &nbsp; subscript:&nbsp; "U")&nbsp; is often used:
[[File:P ID1379 Dig T 3 2 S4 version1.png|right|frame|Zusammenhang zwischen mittlerer und ungünstigster Fehlerwahrscheinlichkeit|class=fit]]
+
[[File:EN_Dig_T_3_2_S4_neu.png|right|frame|"Mean symbol error probability"&nbsp; $p_{\rm S}$&nbsp; vs.&nbsp; "worst-case symbol error probability"&nbsp; $p_{\rm U}$ |class=fit]]
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
   \right) \hspace{0.05cm}.$$
+
   \right) \hspace{0.05cm}.$$  
  
Für deren Berechnung wird stets von den ungünstigsten Symbolfolgen ausgegangen. Das bedeutet:
+
For their calculation,&nbsp; the&nbsp; "worst-case symbol sequences"&nbsp; are always assumed.&nbsp; This means:
  
*Die tatsächliche WDF der Nutzabtastwerte (linke Grafik: &nbsp;sechs rote Diracs) wird durch eine vereinfachte WDF mit nur den  inneren Diracfunktionen (rechte Grafik: &nbsp;zwei grüne Diracs) ersetzt.<br>
+
*The actual probability density function&nbsp; $\rm (PDF)$&nbsp; of the samples&nbsp;$d_{\rm S}(T_{\rm D})$&nbsp; (left graph: &nbsp;six red Dirac delta functions)&nbsp; is replaced by a simplified PDF with only the inner Dirac delta functions&nbsp; (right graph: &nbsp;two green Diracs).<br>
  
*Für die halbe vertikale Augenöffnung gilt mit den Grundimpulswerten &nbsp;$g_\nu = g_d( T_{\rm D}+ \nu \cdot T)$&nbsp; allgemein:
+
*For the half vertical eye opening,&nbsp; with the basic detection pulse values &nbsp;$g_\nu = g_d( T_{\rm D}+ \nu \cdot T)$&nbsp; generally holds:
 
:$$\ddot{o}(T_{\rm D})/{ 2}= g_0 - \sum_{\nu = 1}^{n} \vert g_{\nu} \vert- \sum_{\nu = 1}^{v} \vert g_{-\nu} \vert  \hspace{0.05cm}.$$}}
 
:$$\ddot{o}(T_{\rm D})/{ 2}= g_0 - \sum_{\nu = 1}^{n} \vert g_{\nu} \vert- \sum_{\nu = 1}^{v} \vert g_{-\nu} \vert  \hspace{0.05cm}.$$}}
  
  
Diese Gleichung kann wie folgt interpretiert werden:
+
This equation can be interpreted as follows:
*$g_0 = g_d( T_{\rm D})$&nbsp; ist der so genannte ''Hauptwert''&nbsp; des Grundimpulses. Bei Nyquistsystemen gilt stets  &nbsp;$\ddot{o}(T_{\rm D})/{ 2}= g_0$. Im Folgenden wird (meist) &nbsp;$T_{\rm D}= 0$&nbsp; gesetzt.<br>
+
*$g_0 = g_d( T_{\rm D})$&nbsp; is the so-called&nbsp; "main value"&nbsp; of the basic detection pulse.&nbsp; For Nyquist systems &nbsp;$\ddot{o}(T_{\rm D})/{ 2}= g_0$&nbsp; is always valid.&nbsp; In the following&nbsp; (mostly)&nbsp; &nbsp;$T_{\rm D}= 0$&nbsp; is set.<br>
*Die erste Summe beschreibt die Impulsinterferenzen der &nbsp;$n$&nbsp; ''Nachläufer''&nbsp; vorangegangener Impulse. Stillschweigend vorausgesetzt wird &nbsp;$g_\nu = 0$&nbsp; für &nbsp;$\nu  \gt n$.<br>
+
 
*Die zweite Summe berücksichtigt den Einfluss der &nbsp;$v$&nbsp; ''Vorläufer''&nbsp; nachfolgender Impulse unter der Voraussetzung &nbsp;$g_{-\nu} = 0$&nbsp; für &nbsp;$\nu  \gt v$.<br>
+
*The first sum describes the ISI influence of the &nbsp;$n$&nbsp; "trailers"&nbsp; $($German:&nbsp; "Nachläufer"&nbsp; &rArr; &nbsp; variable&nbsp; $n)$&nbsp; of preceding pulses&nbsp; $($sometimes we use the term&nbsp; "postcursor"$)$.&nbsp; Tacitly assumed is &nbsp;$g_\nu = 0$&nbsp; for &nbsp;$\nu  \gt n$.&nbsp;  <br>
*Sind alle Impulsvor&ndash; und &ndash;nachläufer positiv, so lauten die beiden ungünstigsten Symbolfolgen &nbsp;"$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} -\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$&rdquo;&nbsp; und &nbsp;"$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} +\hspace{-0.05cm}1,\hspace{0.05cm} {\it -\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1,\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$&rdquo;&nbsp; (der Koeffizient &nbsp;$a_{\nu = 0}$&nbsp; ist jeweils kursiv). Diese Angaben treffen zum Beispiel für das hier betrachtete gaußförmige Empfangsfilter zu.<br>
+
 
*Sind einige Grundimpulswerte negativ, so wird dies in obiger Gleichung durch die Betragsbildung berücksichtigt. Es ergeben sich dann andere "Worst&ndash;Case&rdquo;&ndash;Folgen als gerade genannt.<br>
+
*The second sum considers the influence of the &nbsp;$v$&nbsp; "precursors"&nbsp; $($German:&nbsp; "Vorläufer"&nbsp; &rArr; &nbsp; variable&nbsp; $v)$&nbsp; of following pulses under the condition &nbsp;$g_{-\nu} = 0$&nbsp; for &nbsp;$\nu  \gt v$.<br>
 +
 
 +
*If all precursors and trailers are positive,&nbsp; the two worst-case symbol sequences are &nbsp;"$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} -\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"&nbsp; and &nbsp;"$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} +\hspace{-0.05cm}1,\hspace{0.05cm} {\it -\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1,\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"&nbsp; (coefficient &nbsp;$a_{\nu = 0}$&nbsp; is in italics in each case).&nbsp; These specifications apply,&nbsp; for example,&nbsp; to the Gaussian receiver filter considered here.<br>
 +
 
 +
*If some basic detection pulse values&nbsp; $g_{\nu\ne 0}$&nbsp; are negative,&nbsp; this is taken into account in the above equation by the magnitude formation.&nbsp; This results in other "worst&ndash;case" sequences than those just mentioned.<br>
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp; Die Grafik zeigt die Fehlerwahrscheinlichkeiten des AWGN&ndash;Kanals in Abhängigkeit des (logarithmierten) Quotienten &nbsp;$E_{\rm B}/N_0$, nämlich
+
$\text{Example 5:}$&nbsp; The graph shows the error probabilities of the AWGN channel as a function of the (logarithmized) quotient &nbsp;$E_{\rm B}/N_0$,&nbsp; namely
*die mittlere Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp; bei gaußförmigem Empfangsfilter (blaue Kreise),<br>
+
 
*die ungünstigste Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U}$&nbsp; bei gaußförmigem Empfangsfilter (blaue Rechtecke),<br>
+
*the average error probability &nbsp;$p_{\rm S}$&nbsp; with Gaussian receiver filter&nbsp; (blue circles),<br>
*die kleinstmögliche Fehlerwahrscheinlichkeit gemäß der Seite &nbsp;[[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung#Optimaler_Bin.C3.A4rempf.C3.A4nger_-_Realisierung_mit_Matched-Filter| Optimaler Binärempfänger]]&nbsp; (rote Kurve).<br><br>
+
*the worst-case error probability &nbsp;$p_{\rm U}$&nbsp; with Gaussian receiver filter&nbsp; (blue rectangles),<br>
 +
*the smallest possible error probability according to the section&nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Matched_Filter.22_realization|"Optimal binary receiver"]]&nbsp; (red curve).<br><br>
  
Die Energie pro Bit ist dabei gleich &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; (NRZ&ndash;Rechteck&ndash;Sendeimpulse).<br>
+
Here,&nbsp; the energy per bit is equal to &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; (redundancy-free binary bipolar transmission,&nbsp; NRZ rectangular transmitted pulses).<br>
  
[[File:P ID1385 Dig T 3 2 S4b version2.png|center|frame|Mittlere und ungünstigste Fehlerwahrscheinlichkeit vs. &nbsp;$E_{\rm B}/N-0$|class=fit]]<br>
+
The left graph is for the&nbsp; (normalized)&nbsp; cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.4$,&nbsp; the right one for a broader band receiver filter with &nbsp;$f_{\rm G} \cdot T = 0.8$.
  
Die linke Grafik gilt für die (normierte) Grenzfrequenz &nbsp;$f_{\rm G} \cdot T = 0.4$, die rechte für ein breitbandigeres Empfangsfilter mit &nbsp;$f_{\rm G} \cdot T = 0.8$. Die Ergebnisse können wie folgt interpretiert werden:
+
[[File:EN_Dig_T_3_2_S4_b_neu.png|right|frame|Mean error probability&nbsp; $p_{\rm S}$&nbsp; and&nbsp; worst-case error probability&nbsp; $p_{\rm U}$&nbsp; as a function of &nbsp;$E_{\rm B}/N_0$|class=fit]]
*Die ungünstigste Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U}$&nbsp; ist stets eine obere Schranke für die tatsächliche Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$. Je kleiner der Einfluss der Impulsinterferenzen ist (große Grenzfrequenz), um so näher liegen &nbsp;$p_{\rm S}$&nbsp; und &nbsp;$p_{\rm U}$&nbsp; zusammen. Beim Optimalempfänger gilt  &nbsp;$p_{\rm S} = p_{\rm U}.$
+
The results can be interpreted as follows:
*Bei gaußförmigem Empfangsfilter mit &nbsp;$f_{\rm G} \cdot T \ge 0.3$&nbsp; werden die Impulsinterferenzen allein durch die Nachbarimpulse hervorgerufen &nbsp;$(g_2 = g_3 = \text{...} \approx 0)$, so dass für &nbsp;$p_{\rm S}$&nbsp; auch eine untere Schranke angegeben werden kann:
+
*$p_{\rm U}$&nbsp; is always an upper bound for the actual symbol error probability &nbsp;$p_{\rm S}$.&nbsp;  The smaller the influence of the intersymbol interference&nbsp; (large cutoff frequency),&nbsp; the closer &nbsp;$p_{\rm S}$&nbsp; and &nbsp;$p_{\rm U}$&nbsp; are to each other.&nbsp; For the optimal receiver &nbsp;$p_{\rm S} = p_{\rm U}.$
:$${p_{\rm U} }/{ 4} \le p_{\rm S} \le p_{\rm U}
+
 
   \hspace{0.05cm}.$$
+
*For a Gaussian receiver filter with &nbsp;$f_{\rm G} \cdot T \ge 0.3$,&nbsp; the ISI are caused by the neighboring pulses alone &nbsp;$(g_2 = g_3 = \text{...} \approx 0)$,&nbsp; so that a lower bound can also be given:&nbsp; ${p_{\rm U} }/{ 4} \le p_{\rm S} \le p_{\rm U}
*Die starken Impulsinterferenzen eines gaußförmigen Empfangsfilters mit &nbsp;$f_{\rm G} \cdot T = 0.4$&nbsp; führen dazu, dass gegenüber dem Optimalempfänger ein um &nbsp;$6 \ \rm dB$ größeres $E_{\rm B}/N_0$&nbsp; aufgewendet werden muss (vierfache Leistung), damit die Fehlerwahrscheinlichkeit den Wert &nbsp;$10^{-8}$&nbsp; nicht überschreitet.<br>
+
   \hspace{0.05cm}.$
*Der horizontale Abstand zwischen der blauen &nbsp;$p_{\rm S}$&ndash;Kurve (markiert durch Kreise) und der roten Vergleichskurve ist aber nicht konstant. Bei &nbsp;$p_{\rm S} = 10^{-2}$&nbsp; beträgt der Abstand nur &nbsp;$4 \ \rm dB$.<br>
+
 
*Die rechte Grafik zeigt, dass mit &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; der Abstand zum Vergleichssystem weniger als &nbsp;$1 \ \rm dB$&nbsp; beträgt. Auf der nächsten Seite wird gezeigt, dass bei einem gaußförmigen Empfangsfilter die (normierte) Grenzfrequenz &nbsp;$f_{\rm G} \cdot T \approx 0.8$&nbsp; das Optimum darstellt.}}<br>
+
*The strong ISI of a Gaussian receiver filter with &nbsp;$f_{\rm G} \cdot T = 0.4$&nbsp; leads to the fact that compared to the optimal receiver a &nbsp;$6 \ \rm dB$ larger $E_{\rm B}/N_0$&nbsp; must be applied (four times the power), so that the error probability does not exceed the value &nbsp;$10^{-8}$.&nbsp; <br>
 +
 
 +
*However,&nbsp; the horizontal distance between the blue &nbsp;$p_{\rm S}$ curve&nbsp; (marked by circles)&nbsp; and the red comparison curve is not constant.&nbsp; At &nbsp;$p_{\rm S} = 10^{-2}$&nbsp; the distance is only &nbsp;$4 \ \rm dB$.<br>
 +
 
 +
 
 +
The right graph shows that with &nbsp;$f_{\rm G} \cdot T = 0.8$&nbsp; the distance to the comparison system is less than &nbsp;$1 \ \rm dB$.&nbsp; In the next section it is shown that with a Gaussian receiver filter the&nbsp; (normalized)&nbsp; cutoff frequency &nbsp;$f_{\rm G} \cdot T \approx 0.8$&nbsp; is the optimum.}}<br>
  
== Optimierung der Grenzfrequenz==
+
== Optimization of the cutoff frequency==
 
<br>
 
<br>
[[File:P ID1380 Dig T 3 2 S5 version1.png|right|frame|SNR in Abhängigkeit der Grenzfrequenz eines Gaußtiefpasses|class=fit]]
+
For system optimization and system comparison, it turns out to be convenient,&nbsp; instead of using the worst-case error probability &nbsp;$p_{\rm U}$&nbsp; to use the&nbsp; "worst&ndash;case signal&ndash;to&ndash;noise power ratio"&nbsp;  $\text{(S/N ratio)}$:
Für die Systemoptimierung und den Systemvergleich erweist es sich als zweckmäßig,  
+
[[File:EN_Dig_T_3_2_S5.png|right|frame|SNR as a function of the cutoff frequency of a Gaussian low-pass filter|class=fit]]
*anstelle der ''ungünstigsten Fehlerwahrscheinlichkeit'' &nbsp;$p_{\rm U}$  
+
 
*das ''ungünstigste Signal&ndash;zu&ndash;Rausch&ndash;Leistungsverhältnis''&nbsp;  (S/N-Verhältnis) zu verwenden:  
 
 
:$$\rho_{\rm U} = [\ddot{o}(T_{\rm D})]^2/ \sigma_d^2.$$  
 
:$$\rho_{\rm U} = [\ddot{o}(T_{\rm D})]^2/ \sigma_d^2.$$  
 
+
*In the case of Gaussian perturbation, the following relationship exists:
Bei Gaußscher Störung  besteht folgender Zusammenhang:
 
 
:$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
 
:$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
 
   \right) \hspace{0.05cm}.$$
 
   \right) \hspace{0.05cm}.$$
 
+
*The error probability &nbsp;$p_{\rm S}$&nbsp; can also be formally expressed by a S/N ratio via the Q&ndash;function:
Die mittlere Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp; kann formal über die Q&ndash;Funktion ebenfalls durch ein S/N&ndash;Verhältnis ausgedrückt werden:
 
 
 
 
:$$\rho_d = \left[{\rm Q}^{-1} \left( p_{\rm S}
 
:$$\rho_d = \left[{\rm Q}^{-1} \left( p_{\rm S}
 
   \right)\right]^2 \hspace{0.05cm}.$$
 
   \right)\right]^2 \hspace{0.05cm}.$$
  
 +
The diagram shows the two quantities &nbsp;$\rho_d$&nbsp; and &nbsp;$\rho_{\rm U}$&nbsp; in logarithmic form depending on the normalized cutoff frequency &nbsp;$f_{\rm G} \cdot T$&nbsp; of a Gaussian receiver filter,&nbsp; where &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; is the basis.
 +
*The blue circles are for &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$ &nbsp; &#8658; &nbsp; "mean detection SNR",<br>
  
Die Grafik zeigt die beiden Größen &nbsp;$\rho_d$&nbsp; und &nbsp;$\rho_{\rm U}$&nbsp; in logarithmischer Form abhängig von der normierten Grenzfrequenz &nbsp;$f_{\rm G} \cdot T$&nbsp; eines gaußförmigen Empfangsfilters, wobei &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; zugrunde liegt.
+
*The blue squares mark &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$ &nbsp; &#8658; &nbsp; "worst-case detection SNR".
*Die blau umrandeten Kreise gelten für  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$ &nbsp; &#8658; &nbsp; "mittleres&rdquo; Detektions&ndash;SNR,<br>
 
*Die blau umrandeten Quadrate  markieren &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$ &nbsp; &#8658; &nbsp; "ungünstigstes&rdquo; SNR.
 
  
  
Zum Vergleich ist als rote horizontale Linie auch das Ergebnis für den &nbsp;[[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung#Optimaler_Bin.C3.A4rempf.C3.A4nger_-_Realisierung_mit_Matched-Filter| optimalen Binärempfänger]]&nbsp; eingezeichnet. Für diesen gilt:
+
For comparison,&nbsp; the result for the &nbsp;[[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Matched_Filter.22_realization|"optimal binary receiver"]]&nbsp; is also plotted as a red horizontal line.&nbsp; For this optimum binary system holds:
 
:$$\rho_d = \rho_{\rm U} = {2 \cdot E_{\rm B}}/{ N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\rho_d = \rho_{\rm U} = {2 \cdot E_{\rm B}}/{ N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   10 \cdot {\rm lg}\hspace{0.1cm} \rho_d = 10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx 16\,{\rm dB}
 
   10 \cdot {\rm lg}\hspace{0.1cm} \rho_d = 10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx 16\,{\rm dB}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Man erkennt aus der Darstellung:
+
One can see from the plot:
*Das Optimierungskriterium &nbsp;$\rho_d$&nbsp; führt  zur optimalen Grenzfrequenz &nbsp;$f_\text{G, opt} \cdot T = 0.8$. Eine kleinere Grenzfrequenz hat stärkere Impulsinterferenzen zur Folge (kleinere Augenöffnung), eine größere Grenzfrequenz bewirkt einen größeren Rauscheffektivwert &nbsp;$\sigma_d$.<br>
+
#The optimization criterion &nbsp;$\rho_d$&nbsp; leads to the optimal cutoff frequency &nbsp;$f_\text{G, opt} \cdot T = 0.8$.&nbsp; A smaller cutoff frequency results in stronger intersymbol interference&nbsp; $($smaller eye opening$)$,&nbsp; a larger cutoff frequency results in a larger noise power &nbsp;$\sigma_d^2$.<br>
*Ein solches gaußförmiges Empfangsfilter mit &nbsp;$f_\text{G, opt} \cdot T \approx 0.8$&nbsp; führt zum Störabstand &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d  \approx 15 \ \rm dB$&nbsp; und damit zur Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S} \approx 10^{-8}$. Zum Vergleich: &nbsp; Für den optimalen Empfänger (an den Sender angepasste Impulsantwort) ergeben sich &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d  \approx 16 \ \rm dB$&nbsp; und &nbsp;$p_{\rm S} \approx 10^{-10}$.<br>
+
#Such a Gaussian receiver filter with &nbsp;$f_\text{G, opt} \cdot T \approx 0.8$&nbsp; leads to the signal-to-noise ratio &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d  \approx 15 \ \rm dB$&nbsp; and thus to the error probability &nbsp;$p_{\rm S} \approx 10^{-8}$.&nbsp; For comparison: &nbsp; With the optimal receiver&nbsp; $($impulse response matched to the transmitter$)$,&nbsp; the results are &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d  \approx 16 \ \rm dB$&nbsp; and &nbsp;$p_{\rm S} \approx 10^{-10}$.<br>
*Die Grafik zeigt aber auch, dass das sehr viel einfachere Optimierungskriterien &nbsp;$ \rho_{\rm U}$&nbsp;  &nbsp;$($bzw. &nbsp;$ p_{\rm U})$&nbsp; näherungsweise zur gleichen optimalen Grenzfrequenz &nbsp;$f_\text{G, opt} \cdot T = 0.8$&nbsp; führt. Für diese Grenzfrequenz erhält man &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}  \approx 14.7 \ \rm dB$&nbsp; sowie die ungünstigste Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} \approx 3 \cdot 10^{-8}$.<br>
+
#However,&nbsp; the graph also shows that the much simpler optimization criterion &nbsp;$ \rho_{\rm U}$&nbsp;  $($or &nbsp;$ p_{\rm U})$&nbsp; leads approximately to the same optimal cutoff frequency &nbsp;$f_\text{G, opt} \cdot T = 0.8$.&nbsp; For this cutoff frequency,&nbsp; we obtain the worst-case SNR  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}  \approx 14.7 \ \rm dB$&nbsp; and the worst-case error probability &nbsp;$p_{\rm U} \approx 3 \cdot 10^{-8}$.<br>
*Ist die Grenzfrequenz &nbsp;$f_\text{G} \cdot T < 0.27$, so ergibt sich für die vertikale Augenöffnung immer &nbsp;$\ddot{o}(T_{\rm D}) = 0$. Man spricht von einem <i>geschlossenen Auge</i>. Dies hat zur Folge, dass einige ungünstige Impulsfolgen auch ohne Rauschen immer falsch entschieden würden. Es tritt ein systematischer Fehler auf.<br>
+
#If the cutoff frequency &nbsp;$f_\text{G} \cdot T < 0.27$,&nbsp; the vertical eye opening will always be &nbsp;$\ddot{o}(T_{\rm D}) \equiv 0$.&nbsp; This is called a&nbsp; "closed eye".&nbsp; As a consequence,&nbsp; some worst-case symbol sequences would always be wrongly decided even without noise.&nbsp; A systematic error occurs.<br>
*Weitere Untersuchungen haben gezeigt, dass das Optimierungskriterium &nbsp;$ \rho_{\rm U}$&nbsp; auch bei kleinerem &nbsp;$E_{\rm B}/N_0$&nbsp; ausreichend ist. Bei einem verzerrungsfreien Kanal &nbsp; &rArr; &nbsp;  $H_{\rm K}(f) = 1$, ergibt sich somit die optimale Grenzfrequenz des Gaußtiefpasses stets zu &nbsp;$f_\text{G, opt} \cdot T \approx 0.8$, zumindest bei realitätsnaher Betrachtungsweise.<br><br>
+
#Further investigations have shown that the optimization criterion &nbsp;$ \rho_{\rm U}$&nbsp; is sufficient even with smaller &nbsp;$E_{\rm B}/N_0$.&nbsp; Thus,&nbsp; for a distortion-free channel &nbsp; &rArr; &nbsp;  $H_{\rm K}(f) = 1$,&nbsp; the optimal cutoff frequency of the Gaussian low-pass always results in &nbsp;$f_\text{G, opt} \cdot T \approx 0.8$,&nbsp; at least in a realistic approach.<br><br>
  
Alle Aussagen dieses Kapitels können mit dem interaktiven Applet [[Applets:Augendiagramm|Augendiagramm und Augenöffnung]] nachvollzogen werden.
+
&rArr; &nbsp; All statements of this chapter can be reproduced with the interactive HTML5/JavaScript applet&nbsp; [[Applets:Augendiagramm|"Eye diagram and eye opening"]].
  
==Aufgaben zum Kapitel ==
+
==Exercises for the chapter ==
 
<br>
 
<br>
  
[[Aufgaben:3.2_Augendiagramm_nach_Gaußtiefpass|Aufgabe 3.2: Augendiagramm nach Gaußtiefpass]]
+
[[Aufgaben:Exercise_3.2:_Eye_Pattern_according_to_Gaussian_Low-Pass|Exercise 3.2: Eye Pattern according to Gaussian Low-Pass]]
  
[[Aufgaben:3.2Z_Optimale_Grenzfrequenz_bei_Gauß-Tiefpass|Aufgabe 3.2Z: Optimale Grenzfrequenz bei Gauß-Tiefpass]]
+
[[Aufgaben:Exercise_3.2Z:_Optimum_Cut-off_Frequency_for_Gaussian_Low-pass|Exercise 3.2Z: Optimum Cutoff Frequency for Gaussian Low-pass]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 12:15, 10 October 2022

Gaussian receiver filter


We start from the block diagram sketched below.  The following configuration is assumed for quantitative consideration of  "intersymbol interference"

  • Rectangular NRZ basic transmission pulse  $g_s(t)$  with height  $s_0$  and duration  $T$,
  • Gaussian-shaped receiver filter  $H_{\rm G}(f)$  with cutoff frequency $f_{\rm G}$:
$$H_{\rm E}(f) = H_{\rm G}(f) = {\rm exp}\left [- \frac{\pi \cdot f^2}{(2f_{\rm G})^2} \right ] \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.2cm}h_{\rm E}(t) = h_{\rm G}(t) = {\rm exp}\left [- \pi \cdot (2 f_{\rm G} t)^2\right ] \hspace{0.05cm},\hspace{0.5cm}\text{note: }\hspace{0.2cm}{\rm exp} [x] = {\rm e}^x.$$
  • AWGN channel   ⇒   channel frequency response  $H_{\rm K}(f) = 1 $  and  noise power-spectral density  ${\it \Phi}_n(f) = N_0/2$.


Note: 

  1. We restrict ourselves in this chapter exclusively to  redundancy-free binary bipolar transmission
  2. The ISI influence in multi-level and/or coded transmission will not be discussed until the chapter  "Intersymbol Interference for Multi-Level Transmission".


Based on the assumptions made here,  the following holds for the basic detection pulse:

$$g_d(t) = g_s(t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot s_0 \cdot \int_{t-T/2}^{t+T/2} {\rm e}^{- \pi \hspace{0.05cm}\cdot\hspace{0.05cm} (2 \hspace{0.05cm}\cdot\hspace{0.05cm} f_{\rm G}\hspace{0.05cm}\cdot\hspace{0.05cm} \tau )^2} \,{\rm d} \tau \hspace{0.05cm}.$$

The integration leads to the following equivalent results:

$$g_d(t) = s_0 \cdot \big [ {\rm Q} \left ( 2 \cdot \sqrt {2 \pi} \cdot f_{\rm G}\cdot ( t - {T}/{2})\right )- {\rm Q} \left ( 2 \cdot \sqrt {2 \pi} \cdot f_{\rm G}\cdot ( t + {T}/{2} )\right ) \big ],$$
$$g_d(t) = s_0 \cdot\big [ {\rm erfc} \left ( 2 \cdot \sqrt {\pi} \cdot f_{\rm G}\cdot ( t - {T}/{2})\right )- {\rm erfc} \left ( 2 \cdot \sqrt {\pi} \cdot f_{\rm G}\cdot ( t + {T}/{2} )\right ) \big ]\hspace{0.05cm}.$$
Block diagram for the chapter  "Error Probability with Intersymbol Interference"

Here,  two variants of the complementary Gaussian error function are used,  viz.

$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d {\it u} \hspace{0.05cm},$$
$$ {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$

⇒   The  "Complementary Gaussian Error Functions"  provides the numerical values of the functions  ${\rm Q} (x)$  and  $0.5 \cdot {\rm erfc} (x)$.

The noise power at the output of the Gaussian receiver filter  $H_{\rm G}(f)$  is

$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0\cdot f_{\rm G}}{\sqrt{2}}\hspace{0.05cm}.$$

$\text{From these equations one can already see:}$ 

  1. The smaller the cutoff frequency  $f_{\rm G}$  of the Gaussian low-pass filter,  the smaller the noise rms value  $\sigma_d$  and consequently the better the noise performance.
  2. However,  a small cutoff frequency leads to a strong deviation of the basic detection pulse  $g_d(t)$  from the rectangular form and thus to intersymbol interference.


$\text{Example 1:}$  The left graph shows the basic detection pulse  $g_d(t)$  at the output of a Gaussian low-pass filter  $H_{\rm G}(f)$  with the cutoff frequency  $f_{\rm G}$  when an NRZ rectangular pulse (blue curve) is applied at the input.

Basic detection pulse and noise power-spectral density  $\rm (PSD)$  with Gaussian receiver filter

One can see from this plot:

  • The Gaussian low-pass filter  $H_{\rm G}(f)$  causes the detection pulse  $g_d(t)$  to be reduced and broadened compared to the transmitted pulse  $g_s(t)$  ⇒   "'time dispersion".
  • The pulse deformation is the stronger,  the smaller the cutoff frequency  $f_{\rm G}$  is.  For example,  with  $f_{\rm G} \cdot T = 0.4$  (red curve)  the pulse maximum is already reduced to  $\approx 68\%$. 
  • In the limiting case  $f_{\rm G} \to \infty$  the Gaussian low-pass has no effect   ⇒   $g_d(t) = g_s(t)$.  However,  in this case,  there is no noise limitation at all,  as can be seen from the right figure.


$\text{Example 2:}$  The same preconditions apply as for the last example.  The graph shows the detection signal  $d(t)$  after the Gaussian low-pass  $($before the decision$)$  for two different cutoff frequencies,  namely  $f_{\rm G} \cdot T = 0.8$  and  $f_{\rm G} \cdot T = 0.4$.  We want to analyze these images in terms of intersymbol interference.

Detection signal with Gaussian receiver filter

In both diagrams are shown:

  • the component  $d_{\rm S}(\nu \cdot T)$  of the detection signal without considering the noise  $($blue circles at the detection times$)$,
  • the total detection signal  $d(t)$  including the noise component (yellow curve),
  • the transmitted signal  $s(t)$  as reference signal (green dotted in the upper graph; equally valid for the lower graph).

By comparing these images, the following statements can be verified in terms of Intersymbol Interference  $\rm (ISI)$:

  • With the cutoff frequency  $f_{\rm G} \cdot T = 0.8$  (upper graph),  only minor ISI result at the detection times  $($at multiples of  $T)$.  Due to the Gaussian low-pass here primarily the corners of the transmitted signal  $s(t)$  are rounded.
  • In contrast,  in the lower image  $(f_{\rm G} \cdot T = 0.4)$  the ISI effects are clearly visible.  At the detection times  $(\nu \cdot T)$,  the  $($blue$)$  signal component  $d_{\rm S}(\nu \cdot T)$  of the detection signal can assume six different values  $($compare grid lines drawn$)$.
  • The noise component  $d_{\rm N}(t)$ – recognizable as the difference between yellow curve and blue circles – is on average larger with $f_{\rm G} \cdot T = 0.8$  than with $f_{\rm G} \cdot T = 0.4$.
  • This result can be explained by the right graph of  $\text{Example 1}$,  which shows the PSD of the noise component  $d_{\rm N}(t)$: 
$${\it \Phi}_{d{\rm N} }(f) = {N_0}/{2} \cdot \vert H_{\rm G}(f) \vert^2 = {N_0}/{2} \cdot {\rm exp}\left [- \frac{2\pi f^2}{(2f_{\rm G})^2} \right ] .$$
  • The integral over  ${\it \Phi}_{d{\rm N} }(f)$  – i.e. the noise power  $\sigma_d^2$  – is twice as large for  $f_{\rm G} \cdot T = 0.8$  (purple curve) than with  $f_{\rm G} \cdot T = 0.4$  (red curve).


Definition and statements of the eye diagram


The above mentioned facts can also be explained by the eye diagram.

$\text{Definition:}$  The  eye diagram  (or  "eye pattern")  is the sum of all superimposed sections of the detection signal  $d(t)$,  whose duration is an integer multiple of the symbol duration  $T$.  This diagram has a certain resemblance to an eye, which led to its naming.


$\text{Example 3:}$  We assume a redundancy-free binary bipolar NRZ rectangular signal  $s(t)$  and the Gaussian low-pass filter with cutoff frequency  $f_{\rm G} \cdot T = 0.4$. 

On the left:  Eye diagram with noise  ⇒   signal  $d(t)=d_{\rm S}(t) +d_{\rm N}(t)$,
on the right:  Eye diagram without noise  ⇒   signal  $d_{\rm S}(t)$

In the graphic shown are the eye diagrams after the Gaussian low-pass,

  • left inclusive the noise component   ⇒   signal  $d(t)=d_{\rm S}(t) +d_{\rm N}(t)$,
  • on the right without taking noise into account   ⇒   signal  $d_{\rm S}(t)$.


This representation allows important statements about the quality of a digital transmission system:

  • Only the eye diagram of the signal  $d(t)$  can be displayed metrologically on an oscilloscope,  which is triggered with the clock signal.  From this eye diagram  $($left graph$)$,  for example,  the noise rms value  $\sigma_d$  $($⇒   noise power  $\sigma_d^2)$  can be read – or rather:  estimated.
  • The eye diagram without noise  (right graph)  refers to the signal component  $d_{\rm S}(t)$  of the detection signal and can only be determined by means of a computer simulation.  For an implemented system,  this eye diagram cannot be displayed,  since the noise component  $d_{\rm N}(t)$  cannot be eliminated.
  • In both diagrams of this example,  $2^{11}=2048$  eye lines were drawn in each case.  In the right graph,  however,  only  $2^5 = 32$  eye lines are distinguishable because the present detection pulse  $g_d(t)$  is limited to the time range  $\vert t\vert \le 2T$ 
    $($see  graph in Example 1  with  $f_{\rm G} \cdot T = 0.4$,  red curve$)$.
  • The inner eye lines determine the  vertical eye opening  $\ddot{o}(T_{\rm D})$.  The smaller this is,  the greater is the influence of intersymbol interference.  For a  $($ISI-free$)$  Nyquist system the vertical eye opening is maximum.  Normalized to the transmitted amplitude,  $\ddot{o}(T_{\rm D})/s_0 = 2$  is then valid.
  • With symmetrical basic detection pulse,  the detection time  $T_{\rm D} = 0$  is optimal.  With a different value  $($for example  $T_{\rm D} = -T/10) $,   $\ddot{o}(T_{\rm D})$  would be somewhat smaller and thus the error probability would be significantly larger.  This case is indicated by the purple–dashed vertical line in the right graph.

Mean error probability


As with the previous graphs in this chapter,  we assume the following:

Eye diagram and discrete PDF of the signal component  $d_{\rm S}(t)$  from  $d(t)$
  • NRZ rectangles with amplitude  $s_0$,  AWGN noise with power-spectral density  $N_0$,  where
$$10 \cdot {\rm lg}\hspace{0.1cm} \frac{s_0^2 \cdot T}{N_0}\approx 13\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{N_0}{s_0^2 \cdot T} = 0.05\hspace{0.05cm}.$$
  • Gaussian receiver filter with cutoff frequency  $f_{\rm G} \cdot T = 0.4$:
$$\sigma_d^2 = \frac{(N_0 /T)\cdot (f_{\rm G}\cdot T)}{\sqrt{2}}= \frac{0.05 \cdot s_0^2\cdot0.4}{\sqrt{2}}$$
$$ \Rightarrow \hspace{0.3cm} \sigma_d = \sqrt{0.0141}\cdot s_0 \approx 0.119 \cdot s_0 \hspace{0.05cm}.$$
  • Let  $g_d(\nu \cdot T) \approx 0$  be valid for  $|\nu| \ge 2$.  The other basic detection pulse values are given as follows:
$$g_0 = g_d(t=0) \approx 0.68 \cdot s_0,$$
$$g_1 = g_d(t=T) \approx 0.16 \cdot s_0,$$
$$g_{-1} = g_d(t=-T) \approx 0.16 \cdot s_0\hspace{0.05cm}.$$

Let us now analyze the possible values for the signal component  $d_{\rm S}(t)$  at the detection times:

  • Of the total  $32$  eye lines,  four lines intersect the ordinate  $(t = 0)$  at  $g_0 + 2 \cdot g_1 = s_0$.  These lines belong to the amplitude coefficients  "$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$".    Here,  the  "middle"  coefficient  $a_{\nu = 0}$  is highlighted in italics.
  • The four eye lines,  each representing the coefficients  "$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} \text{...}$"  result in the signal value  $d_{\rm S}(T_{\rm D} = 0) =g_0 - 2 \cdot g_1 = 0.36 \cdot s_0$.
  • In contrast,  the signal value  $d_{\rm S}(T_{\rm D} = 0) =g_0 = 0.68 \cdot s_0$  occurs twice as often.  This goes back either to the coefficients  "$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"  or to  "$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$". 
  • For the  $16$  eye lines which intersect the ordinate  $T_{\rm D} = 0$  below the decision threshold  $E = 0$,  exactly mirror-image relations result.

The possible values  $d_{\rm S}(T_{\rm D})$  and their occurrence probabilities can be found in the above graph on the left side in the  (discrete)   probability density function  $\rm (PDF)$  of the noise-free detection signal samples:

$$f_{d{\rm S}}(d_{\rm S}) = {1}/{8} \cdot \delta (d_{\rm S} - s_0)+ {1}/{4} \cdot \delta (d_{\rm S} - 0.68 \cdot s_0)+ {1}/{8} \cdot \delta (d_{\rm S} - 0.36 \cdot s_0)+ $$

$$\hspace{2.15cm} + \hspace{0.2cm} {1}/{8} \cdot \delta (d_{\rm S} + s_0)+{1}/{4} \cdot \delta (d_{\rm S} + 0.68 \cdot s_0)+{1}/{8} \cdot \delta (d_{\rm S} + 0.36 \cdot s_0)\hspace{0.05cm}.$$

Thus,  the  (average)  symbol error probability of the of the ISI-afflicted system can be given.  Taking advantage of the symmetry,  one obtains with  $\sigma_d/s_0 = 0.119$:

$$p_{\rm S} = {1}/{4} \cdot {\rm Q} \left( \frac{s_0}{ \sigma_d} \right)+ {1}/{2} \cdot {\rm Q} \left( \frac{0.68 \cdot s_0}{ \sigma_d} \right)+{1}/{4} \cdot {\rm Q} \left( \frac{0.36 \cdot s_0}{ \sigma_d} \right)$$
$$\Rightarrow \hspace{0.3cm}p_{\rm S} \approx {1}/{4} \cdot {\rm Q}(8.40) +{1}/{2} \cdot {\rm Q}(5.71)+ {1}/{4} \cdot {\rm Q}(3.02)\approx {1}/{4} \cdot 2.20 \cdot 10^{-17}+ {1}/{2} \cdot 1.65 \cdot 10^{-9}+ {1}/{4} \cdot 1.26 \cdot 10^{-3} \approx 3.14 \cdot 10^{-4} \hspace{0.05cm}.$$

Note:   For redundancy-free binary bipolar transmission,  the bit error probability  $p_{\rm B}$  is identical to the symbol error probability  $p_{\rm S}$.

$\text{On the basis of this numerical example one recognizes:}$ 

  1. In the presence of intersymbol interference,  the  (average)  symbol error probability  $p_{\rm S}$  is essentially determined by the inner eye lines.
  2. The computational cost of determining  $p_{\rm S}$  can become very large,  especially if the ISI comes from very many basic detection pulse values  $g_\nu$. 


$\text{Example 4:}$ 

  • If the pulse values  $g_{-5}, \text{...} \ , g_{+5}$  are different from zero and  $E \ne 0$, an averaging over  $2^{11} = 2048$  eye lines is necessary to determine the error probability  $p_{\rm S}$.
  • If,  on the other hand,  only the pulse values  $g_{-1}, \ g_0, \ g_{+1}$  are different from zero and,  in addition,  the symmetry with respect to the threshold  $E = 0$  is taken into account,  the effort is reduced to averaging over four terms.
  • If,  in addition,  the symmetry  $g_{-1} = g_{+1}$  applies as with the above numerical values,  then the symmetry with respect to  $T_{\rm D}$  can also be exploited and averaging over three terms is sufficient.


Worst-case error probability


In the past,  a variety of approximations for the average error probability have been given, among others:

$\text{Definition:}$  As a very simple approximation for the actual error probability  $p_{\rm S}$,  the  worst-case error probability  (German:  "ungünstigste Fehlerwahrscheinlichkeit"   ⇒   subscript:  "U")  is often used:

"Mean symbol error probability"  $p_{\rm S}$  vs.  "worst-case symbol error probability"  $p_{\rm U}$
$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.05cm}.$$

For their calculation,  the  "worst-case symbol sequences"  are always assumed.  This means:

  • The actual probability density function  $\rm (PDF)$  of the samples $d_{\rm S}(T_{\rm D})$  (left graph:  six red Dirac delta functions)  is replaced by a simplified PDF with only the inner Dirac delta functions  (right graph:  two green Diracs).
  • For the half vertical eye opening,  with the basic detection pulse values  $g_\nu = g_d( T_{\rm D}+ \nu \cdot T)$  generally holds:
$$\ddot{o}(T_{\rm D})/{ 2}= g_0 - \sum_{\nu = 1}^{n} \vert g_{\nu} \vert- \sum_{\nu = 1}^{v} \vert g_{-\nu} \vert \hspace{0.05cm}.$$


This equation can be interpreted as follows:

  • $g_0 = g_d( T_{\rm D})$  is the so-called  "main value"  of the basic detection pulse.  For Nyquist systems  $\ddot{o}(T_{\rm D})/{ 2}= g_0$  is always valid.  In the following  (mostly)   $T_{\rm D}= 0$  is set.
  • The first sum describes the ISI influence of the  $n$  "trailers"  $($German:  "Nachläufer"  ⇒   variable  $n)$  of preceding pulses  $($sometimes we use the term  "postcursor"$)$.  Tacitly assumed is  $g_\nu = 0$  for  $\nu \gt n$. 
  • The second sum considers the influence of the  $v$  "precursors"  $($German:  "Vorläufer"  ⇒   variable  $v)$  of following pulses under the condition  $g_{-\nu} = 0$  for  $\nu \gt v$.
  • If all precursors and trailers are positive,  the two worst-case symbol sequences are  "$\text{...}\hspace{0.05cm} -\hspace{-0.1cm}1,\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} {\it +\hspace{-0.05cm}1},\hspace{0.05cm} -\hspace{-0.05cm}1,\hspace{0.05cm} -\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"  and  "$\text{...}\hspace{0.05cm} +\hspace{-0.1cm}1,\hspace{0.05cm} +\hspace{-0.05cm}1,\hspace{0.05cm} {\it -\hspace{-0.05cm}1},\hspace{0.05cm} +\hspace{-0.05cm}1,\hspace{0.05cm} +\hspace{-0.05cm}1\hspace{0.05cm} \text{...}$"  (coefficient  $a_{\nu = 0}$  is in italics in each case).  These specifications apply,  for example,  to the Gaussian receiver filter considered here.
  • If some basic detection pulse values  $g_{\nu\ne 0}$  are negative,  this is taken into account in the above equation by the magnitude formation.  This results in other "worst–case" sequences than those just mentioned.


$\text{Example 5:}$  The graph shows the error probabilities of the AWGN channel as a function of the (logarithmized) quotient  $E_{\rm B}/N_0$,  namely

  • the average error probability  $p_{\rm S}$  with Gaussian receiver filter  (blue circles),
  • the worst-case error probability  $p_{\rm U}$  with Gaussian receiver filter  (blue rectangles),
  • the smallest possible error probability according to the section "Optimal binary receiver"  (red curve).

Here,  the energy per bit is equal to  $E_{\rm B} = s_0^2 \cdot T$  (redundancy-free binary bipolar transmission,  NRZ rectangular transmitted pulses).

The left graph is for the  (normalized)  cutoff frequency  $f_{\rm G} \cdot T = 0.4$,  the right one for a broader band receiver filter with  $f_{\rm G} \cdot T = 0.8$.

Mean error probability  $p_{\rm S}$  and  worst-case error probability  $p_{\rm U}$  as a function of  $E_{\rm B}/N_0$

The results can be interpreted as follows:

  • $p_{\rm U}$  is always an upper bound for the actual symbol error probability  $p_{\rm S}$.  The smaller the influence of the intersymbol interference  (large cutoff frequency),  the closer  $p_{\rm S}$  and  $p_{\rm U}$  are to each other.  For the optimal receiver  $p_{\rm S} = p_{\rm U}.$
  • For a Gaussian receiver filter with  $f_{\rm G} \cdot T \ge 0.3$,  the ISI are caused by the neighboring pulses alone  $(g_2 = g_3 = \text{...} \approx 0)$,  so that a lower bound can also be given:  ${p_{\rm U} }/{ 4} \le p_{\rm S} \le p_{\rm U} \hspace{0.05cm}.$
  • The strong ISI of a Gaussian receiver filter with  $f_{\rm G} \cdot T = 0.4$  leads to the fact that compared to the optimal receiver a  $6 \ \rm dB$ larger $E_{\rm B}/N_0$  must be applied (four times the power), so that the error probability does not exceed the value  $10^{-8}$. 
  • However,  the horizontal distance between the blue  $p_{\rm S}$ curve  (marked by circles)  and the red comparison curve is not constant.  At  $p_{\rm S} = 10^{-2}$  the distance is only  $4 \ \rm dB$.


The right graph shows that with  $f_{\rm G} \cdot T = 0.8$  the distance to the comparison system is less than  $1 \ \rm dB$.  In the next section it is shown that with a Gaussian receiver filter the  (normalized)  cutoff frequency  $f_{\rm G} \cdot T \approx 0.8$  is the optimum.


Optimization of the cutoff frequency


For system optimization and system comparison, it turns out to be convenient,  instead of using the worst-case error probability  $p_{\rm U}$  to use the  "worst–case signal–to–noise power ratio"  $\text{(S/N ratio)}$:

SNR as a function of the cutoff frequency of a Gaussian low-pass filter
$$\rho_{\rm U} = [\ddot{o}(T_{\rm D})]^2/ \sigma_d^2.$$
  • In the case of Gaussian perturbation, the following relationship exists:
$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}} \right) \hspace{0.05cm}.$$
  • The error probability  $p_{\rm S}$  can also be formally expressed by a S/N ratio via the Q–function:
$$\rho_d = \left[{\rm Q}^{-1} \left( p_{\rm S} \right)\right]^2 \hspace{0.05cm}.$$

The diagram shows the two quantities  $\rho_d$  and  $\rho_{\rm U}$  in logarithmic form depending on the normalized cutoff frequency  $f_{\rm G} \cdot T$  of a Gaussian receiver filter,  where  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$  is the basis.

  • The blue circles are for  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$   ⇒   "mean detection SNR",
  • The blue squares mark  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$   ⇒   "worst-case detection SNR".


For comparison,  the result for the  "optimal binary receiver"  is also plotted as a red horizontal line.  For this optimum binary system holds:

$$\rho_d = \rho_{\rm U} = {2 \cdot E_{\rm B}}/{ N_0}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm} \rho_d = 10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx 16\,{\rm dB} \hspace{0.05cm}.$$

One can see from the plot:

  1. The optimization criterion  $\rho_d$  leads to the optimal cutoff frequency  $f_\text{G, opt} \cdot T = 0.8$.  A smaller cutoff frequency results in stronger intersymbol interference  $($smaller eye opening$)$,  a larger cutoff frequency results in a larger noise power  $\sigma_d^2$.
  2. Such a Gaussian receiver filter with  $f_\text{G, opt} \cdot T \approx 0.8$  leads to the signal-to-noise ratio  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_d \approx 15 \ \rm dB$  and thus to the error probability  $p_{\rm S} \approx 10^{-8}$.  For comparison:   With the optimal receiver  $($impulse response matched to the transmitter$)$,  the results are  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_d \approx 16 \ \rm dB$  and  $p_{\rm S} \approx 10^{-10}$.
  3. However,  the graph also shows that the much simpler optimization criterion  $ \rho_{\rm U}$  $($or  $ p_{\rm U})$  leads approximately to the same optimal cutoff frequency  $f_\text{G, opt} \cdot T = 0.8$.  For this cutoff frequency,  we obtain the worst-case SNR  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx 14.7 \ \rm dB$  and the worst-case error probability  $p_{\rm U} \approx 3 \cdot 10^{-8}$.
  4. If the cutoff frequency  $f_\text{G} \cdot T < 0.27$,  the vertical eye opening will always be  $\ddot{o}(T_{\rm D}) \equiv 0$.  This is called a  "closed eye".  As a consequence,  some worst-case symbol sequences would always be wrongly decided even without noise.  A systematic error occurs.
  5. Further investigations have shown that the optimization criterion  $ \rho_{\rm U}$  is sufficient even with smaller  $E_{\rm B}/N_0$.  Thus,  for a distortion-free channel   ⇒   $H_{\rm K}(f) = 1$,  the optimal cutoff frequency of the Gaussian low-pass always results in  $f_\text{G, opt} \cdot T \approx 0.8$,  at least in a realistic approach.

⇒   All statements of this chapter can be reproduced with the interactive HTML5/JavaScript applet  "Eye diagram and eye opening".

Exercises for the chapter


Exercise 3.2: Eye Pattern according to Gaussian Low-Pass

Exercise 3.2Z: Optimum Cutoff Frequency for Gaussian Low-pass