Difference between revisions of "Channel Coding/Decoding of Convolutional Codes"

From LNTwww
Line 353: Line 353:
 
*the proposal of&nbsp; [https://en.wikipedia.org/wiki/Robert_Fano "Robert Mario Fano"]&nbsp; (1963), which became known as the <i>Fano algorithm</i>&nbsp;,<br>
 
*the proposal of&nbsp; [https://en.wikipedia.org/wiki/Robert_Fano "Robert Mario Fano"]&nbsp; (1963), which became known as the <i>Fano algorithm</i>&nbsp;,<br>
  
*die Arbeiten von Kamil Zigangirov (1966) und&nbsp; [https://en.wikipedia.org/wiki/Frederick_Jelinek "Frederick Jelinek"]&nbsp; (1969), deren Decodierverfahren auch als <i>Stack&ndash;Algorithmus</i>&nbsp; bezeichnet wird.<br><br>
+
*the work of Kamil Zigangirov (1966) and&nbsp; [https://en.wikipedia.org/wiki/Frederick_Jelinek "Frederick Jelinek"]&nbsp; (1969), whose decoding method is also referred to as the <i>stack algorithm</i>&nbsp;.<br><br>
  
 
All of these decoding schemes, as well as the Viterbi&ndash;algorithm as described so far, provide "hard" decided output values &nbsp; &#8658; &nbsp; $v_i &#8712; \{0, 1\}$. Often, however, information about the reliability of the decisions made would be desirable, especially when there is a concatenated coding scheme with an outer and an inner code.<br>
 
All of these decoding schemes, as well as the Viterbi&ndash;algorithm as described so far, provide "hard" decided output values &nbsp; &#8658; &nbsp; $v_i &#8712; \{0, 1\}$. Often, however, information about the reliability of the decisions made would be desirable, especially when there is a concatenated coding scheme with an outer and an inner code.<br>
Line 359: Line 359:
 
If the reliability of the bits decided by the inner decoder is known at least roughly, this information can be used to (significantly) reduce the bit error probability of the outer decoder. The <i>soft&ndash;output Viterbi algorithm</i>&nbsp; (SOVA) proposed by&nbsp; [[Biographies_and_Bibliographies/Lehrstuhlinhaber_des_LNT#Prof._Dr.-Ing._Dr.-Ing._E.h._Joachim_Hagenauer_.281993-2006.29|"Joachim Hagenauer"]]&nbsp; in&nbsp; [Hag90]<ref name='Hag90'>Hagenauer, J.: ''Soft Output Viterbi Decoder.'' In: Technischer Report, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), 1990.</ref> allows to specify a reliability measure in each case in addition to the decided symbols.
 
If the reliability of the bits decided by the inner decoder is known at least roughly, this information can be used to (significantly) reduce the bit error probability of the outer decoder. The <i>soft&ndash;output Viterbi algorithm</i>&nbsp; (SOVA) proposed by&nbsp; [[Biographies_and_Bibliographies/Lehrstuhlinhaber_des_LNT#Prof._Dr.-Ing._Dr.-Ing._E.h._Joachim_Hagenauer_.281993-2006.29|"Joachim Hagenauer"]]&nbsp; in&nbsp; [Hag90]<ref name='Hag90'>Hagenauer, J.: ''Soft Output Viterbi Decoder.'' In: Technischer Report, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), 1990.</ref> allows to specify a reliability measure in each case in addition to the decided symbols.
  
Abschließend gehen wir noch etwas genauer auf den&nbsp; <i>BCJR&ndash;Algorithmus</i>&nbsp; ein, benannt nach dessen Erfindern L. R. Bahl, J. Cocke, F. Jelinek und J. Raviv&nbsp; [BCJR74]<ref name='BCJR74'>Bahl, L.R.; Cocke, J.; Jelinek, F.; Raviv, J.: ''Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate.'' In: IEEE Transactions on Information Theory, Vol. IT-20, S. 284-287, 1974.</ref>.  
+
Finally, we go into some detail about the&nbsp; <i>BCJR algorithm</i>&nbsp; named after its inventors L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv&nbsp; [BCJR74]<ref name='BCJR74'>Bahl, L.R.; Cocke, J.; Jelinek, F.; Raviv, J.: ''Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate.'' In: IEEE Transactions on Information Theory, Vol. IT-20, pp. 284-287, 1974.</ref>.  
*Während der Viterbi&ndash;Algorithmus nur eine Schätzung der Gesamtsequenz vornimmt &nbsp; &#8658; &nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Definitionen_der_verschiedenen_Optimalempf.C3.A4nger|''block&ndash;wise ML'']], schätzt der BCJR&ndash;Algorithmus ein einzelnes Symbol (Bit) unter Berücksichtigung der gesamten empfangenen Codesequenz.
+
*While the Viterbi algorithm only estimates the total sequence &nbsp; &#8658; &nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Definitions_of_the_different_optimal_receivers|''block-wise ML'']], the BCJR algorithm estimates a single symbol (bit) considering the entire received code sequence.
* Es handelt sich hierbei also um eine&nbsp; <i>symbolweise Maximum&ndash;Aposteriori&ndash;Decodierung</i> &nbsp; &#8658; &nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Definitionen_der_verschiedenen_Optimalempf.C3.A4nger|''bit&ndash;wise MAP'']].<br>
+
* So this is a&nbsp; <i>symbol-wise maximum a posteriori decoding</i> &nbsp; &#8658; &nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Definitions_of_the_different_optimal_receivers|''bit-wise MAP'']].<br>
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Der Unterschied zwischen Viterbi&ndash;Algorithmus und BCJR&ndash;Algorithmus soll &ndash; stark vereinfacht &ndash; am Beispiel eines terminierten Faltungscodes dargestellt werden:
+
$\text{Conclusion:}$&nbsp; The difference between Viterbi&ndash;algorithm and BCJR algorithm shall be &ndash; greatly simplified &ndash; illustrated by the example of a terminated convolutional code:
*Der&nbsp; <b>Viterbi&ndash;Algorithmus</b>&nbsp; arbeitet das Trellis nur in einer Richtung &ndash; der  <i>Vorwärtsrichtung</i>&nbsp; &ndash; ab und berechnet für jeden Knoten die Metriken&nbsp; ${\it \Lambda}_i(S_{\mu})$. Nach Erreichen des Endknotens wird der  überlebende Pfad gesucht, der die wahrscheinlichste Codesequenz kennzeichnet.<br>
+
*The&nbsp; <b>Viterbi algorithm</b>&nbsp; processes the trellis in only one direction&ndash; the <i>forward direction</i>&nbsp; &ndash; and computes the metrics&nbsp; ${\it \Lambda}_i(S_{\mu})$ for each node. After reaching the terminal node, the surviving path is searched, which identifies the most probable code sequence.<br>
  
*Beim&nbsp; <b>BCJR&ndash;Algorithmus</b>&nbsp; wird das Trellis zweimal abgearbeitet, einmal in Vorwärtsrichtung und anschließend in <i>Rückwärtsrichtung</i>. Für jeden Knoten sind dann zwei Metriken angebbar, aus denen für jedes Bit die Aposterori&ndash;Wahrscheinlichkeit bestimmt werden kann.}}<br>
+
*In the&nbsp; <b>BCJR algorithm</b>&nbsp; the trellis is processed twice, once in forward direction and then in <i>backward direction</i>. Two metrics can then be specified for each node, from which the aposterori probability can be determined for each bit}}.<br>
  
<i>Hinweise:</i>  
+
<i>Hints:</i>  
*Diese Kurzzusammenfassung basiert auf dem Lehrbüchern&nbsp;  [Bos98]<ref name='Bos98'>Bossert, M.: ''Kanalcodierung.'' Stuttgart: B. G. Teubner, 1998.</ref>&nbsp; bzw.&nbsp; [Bos99]<ref name='Bos99'>Bossert, M.: ''Channel Coding for Telecommunications.'' Wiley & Sons, 1999.</ref>.  
+
*This short summary is based on the textbook&nbsp;  [Bos98]<ref name='Bos98'>Bossert, M.: ''Kanalcodierung.'' Stuttgart: B. G. Teubner, 1998.</ref>&nbsp; bzw.&nbsp; [Bos99]<ref name='Bos99'>Bossert, M.: ''Channel Coding for Telecommunications.'' Wiley & Sons, 1999.</ref>.  
*Eine etwas ausführlichere Beschreibung des BCJR&ndash;Algorithmus' folgt auf der Seite&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Hard_Decision_vs._Soft_Decision| Hard Decision vs. Soft Decision]]&nbsp; [https://en.lntwww.de/Kanalcodierung im vierten Hauptkapitel]&nbsp; "Iterative Decodierverfahren".<br>
+
*A somewhat more detailed description of the BCJR&ndash;algorithm follows on page&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Hard_Decision_vs._Soft_Decision| "Hard Decision vs. Soft Decision"]]&nbsp; [https://en.lntwww.de/Channel_Coding "in the fourth main chapter"]&nbsp; "Iterative Decoding Methods".<br>
  
  

Revision as of 21:07, 17 October 2022

Block diagram and requirements


A significant advantage of convolutional coding is that there is a very efficient decoding method for this in the form of the Viterbi algorithm. This algorithm, developed by  "Andrew James Viterbi"  has already been described in the chapter  "Viterbi receiver"  of the book "Digital Signal Transmission" with regard to its use for equalization.

System model for the description of the decoding of convolutional codes

For its use as a convolutional decoder we assume the above block diagram and the following prerequisites:

  • The information sequence  $\underline{u} = (u_1, \ u_2, \ \text{... } \ )$  is here in contrast to the description of linear block codes   ⇒   "first main chapter"  or of Reed– Solomon–Codes   ⇒   "second main chapter"  generally infinitely long  ("semi–infinite" ). For the information symbols always applies  $u_i ∈ \{0, 1\}$.
  • The code sequence  $\underline{x} = (x_1, \ x_2, \ \text{... })$  with  $x_i ∈ \{0, 1\}$  depends not only on  $\underline{u}$  but also on the code rate  $R = 1/n$, the memory  $m$  and the transfer function matrix  $\mathbf{G}(D)$  . For finite number  $L$  of information bits, the convolutional code should be terminated by appending  $m$  zeros:
\[\underline{u}= (u_1,\hspace{0.05cm} u_2,\hspace{0.05cm} \text{...} \hspace{0.1cm}, u_L, \hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.1cm}, 0 ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (x_1,\hspace{0.05cm} x_2,\hspace{0.05cm} \text{...} \hspace{0.1cm}, x_{2L}, \hspace{0.05cm} x_{2L+1} ,\hspace{0.05cm} \text{...} \hspace{0.1cm}, \hspace{0.05cm} x_{2L+2m} ) \hspace{0.05cm}.\]
  • The Viterbi algorithm provides an estimate  $\underline{z}$  for the code sequence  $\underline{x}$  and another estimate  $\underline{v}$  for the information sequence  $\underline{u}$. Thereby holds:
\[{\rm Pr}(\underline{z} \ne \underline{x})\stackrel{!}{=}{\rm Minimum} \hspace{0.25cm}\Rightarrow \hspace{0.25cm} {\rm Pr}(\underline{\upsilon} \ne \underline{u})\stackrel{!}{=}{\rm Minimum} \hspace{0.05cm}.\]

$\text{Conclusion:}$  Given a digital channel model (for example, the BSC model), the Viterbi algorithm searches from all possible code sequences  $\underline{x}\hspace{0.05cm}'$  the sequence  $\underline{z}$  with the minimum Hamming distance  $d_{\rm H}(\underline{x}\hspace{0.05cm}', \underline{y})$  to the receiving sequence  $\underline{y}$:

\[\underline{z} = {\rm arg} \min_{\underline{x}\hspace{0.05cm}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm H}( \underline{x}\hspace{0.05cm}'\hspace{0.02cm},\hspace{0.02cm} \underline{y} ) = {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm} \vert \hspace{0.05cm} \underline{x}')\hspace{0.05cm}.\]

This also means:   The Viterbi algorithm satisfies the  "maximum likelihood criterion".


Preliminary remarks on the following decoding examples


Trellis for decoding the received sequence  $\underline{y}$

The following  prerequisites apply to all examples in this chapter:

  • Standard convolutional encoder:   Rate $R = 1/2$,  Memory  $m = 2$;
  • transfer function matrix:   $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
  • Length of information sequence:   $L = 5$;
  • Consideration of termination:   $L\hspace{0.05cm}' = 7$;
  • Length of sequences  $\underline{x}$  and  $\underline{y}$ :   $14$ bits each;
  • Distribution according to  $\underline{y} = (\underline{y}_1, \ \underline{y}_2, \ \text{...} \ , \ \underline{y}_7)$
    ⇒   bit pairs  $\underline{y}_i ∈ \{00, 01, 10, 11\}$;
  • Viterbi decoding using trellis diagram:
red arrow   ⇒   hypothesis  $u_i = 0$,
blue arrow   ⇒   hypothesis  $u_i = 1$;
  • hypothetical code sequence  $\underline{x}_i\hspace{0.01cm}' ∈ \{00, 01, 10, 11\}$;
  • all hypothetical quantities with apostrophe.


We always assume that the Viterbi decoding is done at the  Hamming distance  $d_{\rm H}(\underline{x}_i\hspace{0. 01cm}', \ \underline{y}_i)$  between the received word  $\underline{y}_i$  and the four possible codewords  $x_i\hspace{0.01cm}' ∈ \{00, 01, 10, 11\}$  is based. We then proceed as follows:

  • In the still empty circles the error value  ${\it \Gamma}_i(S_{\mu})$  of the states  $S_{\mu} (0 ≤ \mu ≤ 3)$  at the time points  $i$  are entered. The initial value is always  ${\it \Gamma}_0(S_0) = 0$.
  • The error values for  $i = 1$  and  $i = 2$  are given by
\[{\it \Gamma}_1(S_0) =d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_1 \big ) \hspace{0.05cm}, \hspace{2.38cm}{\it \Gamma}_1(S_1) = d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_1 \big ) \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_0) ={\it \Gamma}_1(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big )\hspace{0.05cm}, \hspace{0.6cm}{\it \Gamma}_2(S_1) = {\it \Gamma}_1(S_0)+ d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big ) \hspace{0.05cm},\hspace{0.6cm}{\it \Gamma}_2(S_2) ={\it \Gamma}_1(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big )\hspace{0.05cm}, \hspace{0.6cm}{\it \Gamma}_2(S_3) = {\it \Gamma}_1(S_1)+ d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big ) \hspace{0.05cm}.\]
  • From  $i = 3$  the trellis has reached its basic form, and to compute all  ${\it \Gamma}_i(S_{\mu})$  the minimum between two sums must be determined in each case:
\[{\it \Gamma}_i(S_0) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm},\]
\[{\it \Gamma}_i(S_1)={\rm Min} \left [{\it \Gamma}_{i-1}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm},\]
\[{\it \Gamma}_i(S_2) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm},\]
\[{\it \Gamma}_i(S_3) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm}.\]
  • Of the two branches arriving at a node  ${\it \Gamma}_i(S_{\mu})$  the worse one (which would have led to a larger  ${\it \Gamma}_i(S_{\mu})$ ) is eliminated. Only one branch then leads to each node.
  • Once all error values up to and including  $i = 7$  have been determined, the viterbi algotithm can be completed by searching the connected path from the end of the trellis   ⇒   ${\it \Gamma}_7(S_0)$  to the beginning   ⇒   ${\it \Gamma}_0(S_0)$ .


  • Through this path, the most likely code sequence  $\underline{z}$  and the most likely information sequence  $\underline{v}$  are then fixed.
  • Not all receive sequences  $\underline{y}$  are true, however  $\underline{z} = \underline{x}$  and  $\underline{v} = \underline{u}$. That is,   If there are too many transmission errors, the Viterbi algorithm also fails.

Creating the trellis in the error-free case  –  error value calculation.


First, we assume the receive sequence  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$  which here – is already divided into bit pairs  $\underline{y}_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ \underline{y}_7$  is subdivided. The numerical values entered in the trellis and the different types of strokes are explained in the following text.

Viterbi scheme for the received vector  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$
  • Starting from the initial value  ${\it \Gamma}_0(S_0) = 0$  we get  $\underline{y}_1 = (11)$  by adding the Hamming distances
$$d_{\rm H}((00), \ \underline{y}_1) = 2\text{ or }d_{\rm H}((11), \ \underline{y}_1) = 0$$
to the error values  ${\it \Gamma}_1(S_0) = 2, \ {\it \Gamma}_1(S_1) = 0$.
  • In the second decoding step there are error values for all four states:   With  $\underline{y}_2 = (01)$  one obtains:
\[{\it \Gamma}_2(S_0) = {\it \Gamma}_1(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 2+1 = 3 \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_1) ={\it \Gamma}_1(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 2+1 = 3 \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_2) ={\it \Gamma}_1(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 0+2=2 \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_3) = {\it \Gamma}_1(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 0+0=0 \hspace{0.05cm}.\]
  • In all further decoding steps, two values must be compared in each case, whereby the node  ${\it \Gamma}_i(S_{\mu})$  is always assigned the smaller value. For example, for  $i = 3$  with  $\underline{y}_3 = (01)$:
\[{\it \Gamma}_3(S_0) ={\rm min} \left [{\it \Gamma}_{2}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \big ] = 3\hspace{0.05cm},\]
\[{\it \Gamma}_3(S_3) ={\rm min} \left [{\it \Gamma}_{2}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+0\hspace{0.05cm},\hspace{0.05cm} 0+2 \big ] = 2\hspace{0.05cm}.\]
  • From  $i = 6$  the termination of the convolutional code becomes effective in the considered example. Here only two comparisons are left to determine  ${\it \Gamma}_6(S_0) = 3$  and  ${\it \Gamma}_6(S_2)= 0$  and for  $i = 7$  only one comparison with the final result  ${\it \Gamma}_7(S_0) = 0$.


The description of the Viterbi decoding process continues on the next page.

Evaluating the trellis in the error-free case  –  Path search.


After all error values  ${\it \Gamma}_i(S_{\mu})$  –  have been determined for  $1 ≤ i ≤ 7$  and  $0 ≤ \mu ≤ 3$  –  in the present example, the Viterbi decoder can start the path search:

Viterbi path search for for the received vector  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$
  • The graphic shows the trellis after the error value calculation. All circles are assigned numerical values.
  • However, the most probable path already drawn in the graphic is not yet known.
  • Of the two branches arriving at a node, only the one that led to the minimum error value  ${\it \Gamma}_i(S_{\mu})$  is used for the final path search.
  • The "bad" branches are discarded. They are each shown dotted in the above graph.


The path search runs as follows:

  • Starting from the end value  ${\it \Gamma}_7(S_0)$  a continuous path is searched in backward direction to the start value  ${\it \Gamma}_0(S_0)$ . Only the solid branches are allowed. Dotted lines cannot be part of the selected path.
  • The selected path traverses from right to left the states  $S_0 ← S_2 ← S_1 ← S_0 ← S_2 ← S_3 ← S_1 ← S_0$  and is grayed out in the graph. There is no second continuous path from  ${\it \Gamma}_7(S_0)$ to ${\it \Gamma}_0(S_0)$. This means:   The decoding result is unique.
  • The result  $\underline{v} = (1, 1, 0, 0, 1, 0, 0)$  of the Viterbi decoder with respect to the information sequence is obtained if for the continuous path  –  but now in forward direction from left to right  –  the colors of the individual branches are evaluated $($red corresponds to a  $0$ and blue to a  $1)$.

From the final value  ${\it \Gamma}_7(S_0) = 0$  it can be seen that there were no transmission errors in this first example:

  • The decoding result  $\underline{z}$  thus matches the received vector  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$  and the actual code sequence  $\underline{x}$ .
  • With error-free transmission,  $\underline{v}$  is not only the most probable information sequence according to the ML criterion  $\underline{u}$, but both are even identical:   $\underline{v} \equiv \underline{u}$.


Note:   In the decoding described, of course, no use was made of the "error-free case" information already contained in the heading.

Now follow three examples of Viterbi decoding for the errorneous case.

Decoding examples for the erroneous case


$\text{Example 1:}$  We assume here the received vector  $\underline{y} = \big (11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) $  which does not represent a valid code sequence  $\underline{x}$ . The calculation of error values  ${\it \Gamma}_i(S_{\mu})$  and the path search is done as described on page  "Preliminaries"  and demonstrated on the last two pages for the error-free case.

Decoding example with two bit errors

As  summary  of this first example, it should be noted:

  • Also with the above trellis, a unique path (with a dark gray background) can be traced, leading to the following results.
    (recognizable by the labels or the colors of this path):
\[\underline{z} = \big (00\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \big ) \hspace{0.05cm},\]
\[ \underline{\upsilon} =\big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big ) \hspace{0.05cm}.\]
  • Comparing the most likely transmitted code sequence  $\underline{z}$  with the received vector  $\underline{y}$  shows that there were two bit errors here (right at the beginning). But since the used convolutional code has the "free distance" $d_{\rm F} = 5$, two errors do not yet lead to a wrong decoding result.
  • There are other paths such as the lighter highlighted path $(S_0 → S_1 → S_3 → S_3 → S_2 → S_0 → S_0)$ that initially appear to be promising. Only in the last decoding step $(i = 7)$ can this light gray path finally be discarded.
  • The example shows that a too early decision is often not purposeful. One can also see the expediency of termination:   With final decision at $i = 5$ (end of information sequence), the sequences  $(0, 1, 0, 1, 1)$  and  $(1, 1, 1, 1, 0)$  would still have been considered equally likely.

Notes:   In the calculation of  ${\it \Gamma}_5(S_0) = 3$  and  ${\it \Gamma}_5(S_1) = 3$  here in each case the two comparison branches lead to exactly the same minimum error value. In the graph these two special cases are marked by dash dots.

  • In this example, this special case has no effect on the path search.
  • Nevertheless, the algorithm always expects a decision between two competing branches.
  • In practice, one helps oneself by randomly selecting one of the two paths if they are equal.


$\text{Example 2:}$  In this example, we assume the following assumptions regarding source and encoder:

\[\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.\]
Decoding example with three bit errors

From the graphic you can see that here the decoder decides for the correct path (dark background) despite three bit errors.

  • So there is not always a wrong decision, if more than  $d_{\rm F}/2$  bit errors occurred.
  • But with statistical distribution of the three transmission errors, wrong decision would be more frequent than right.


$\text{Example 3:}$  Here also applies  \(\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.\) Unlike  $\text{example 2}$  however, a fourth bit error is added in the form of  $\underline{y}_7 = (01)$.

Decoding example with four bit errors
  • Now both branches in step  $i = 7$  lead to the minimum error value  ${\it \Gamma}_7(S_0) = 4$, recognizable by the dash-dotted transitions. If one decides in the then required lottery procedure for the path with dark background, the correct decision is still made even with four bit errors:   $\underline{v} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )$.
  • Otherwise, a wrong decision is made. Depending on the outcome of the dice roll in step  $i =6$  between the two dash-dotted competitors, you choose either the purple or the light gray path. Both have little in common with the correct path.


Relationship between Hamming distance and correlation


Especially for the  "BSC Model"  – but also for any other binary channel  ⇒   input  $x_i ∈ \{0,1\}$,  output $y_i ∈ \{0,1\}$  such as the  "Gilbert–Elliott model"  – provides the Hamming distance  $d_{\rm H}(\underline{x}, \ \underline{y})$  exactly the same information about the similarity of the input sequence  $\underline{x}$  and the output sequence  $\underline{y}$  as the  "inner product". Assuming that the two sequences are in bipolar representation (denoted by tildes) and that the sequence length is  $L$  in each case, the inner product is:

\[<\hspace{-0.1cm}\underline{\tilde{x}}, \hspace{0.05cm}\underline{\tilde{y}} \hspace{-0.1cm}> \hspace{0.15cm} = \sum_{i = 1}^{L} \tilde{x}_i \cdot \tilde{y}_i \hspace{0.3cm}{\rm mit } \hspace{0.2cm} \tilde{x}_i = 1 - 2 \cdot x_i \hspace{0.05cm},\hspace{0.2cm} \tilde{y}_i = 1 - 2 \cdot y_i \hspace{0.05cm},\hspace{0.2cm} \tilde{x}_i, \hspace{0.05cm}\tilde{y}_i \in \hspace{0.1cm}\{ -1, +1\} \hspace{0.05cm}.\]

We sometimes refer to this inner product as the "correlation value". The quotation marks are to indicate that the range of values of a  "correlation coefficient"  is actually $±1$.

Relationship between Haming distance and "correlation value"

$\text{Beispiel 4:}$  Wir betrachten hier zwei Binärfolgen der Länge  $L = 10$.

  • Shown on the left are the unipolar sequences  $\underline{x}$  and  $\underline{y}$  and the product  $\underline{x} \cdot \underline{y}$.
  • You can see the Hamming distance  $d_{\rm H}(\underline{x}, \ \underline{y}) = 6$   ⇒   six bit errors at the arrow positions.
  • The inner product  $ < \underline{x} \cdot \underline{y} > \hspace{0.15cm} = \hspace{0.15cm}0$  has no significance here. For example, $< \underline{0} \cdot \underline{y} > $ is always zero regardless of  $\underline{y}$ .


The Hamming distance  $d_{\rm H} = 6$  can also be seen from the bipolar (antipodal) plot of the right graph.

  • The "correlation value" now has the correct value:
$$4 \cdot (+1) + 6 \cdot (-1) = \, -2.$$
  • The deterministic relation between the two quantities with the sequence length  $L$ holds:
$$ < \underline{ \tilde{x} } \cdot \underline{\tilde{y} } > \hspace{0.15cm} = \hspace{0.15cm} L - 2 \cdot d_{\rm H} (\underline{\tilde{x} }, \hspace{0.05cm}\underline{\tilde{y} })\hspace{0.05cm}. $$


$\text{Conclusion:}$  Let us now interpret this equation for some special cases:

  • Identical sequences:   The Hamming distance is equal  $0$  and the "correlation value" is equal  $L$.
  • Inverted: Consequences:   The Hamming distance is equal to  $L$  and the "correlation value" is equal to  $-L$.
  • Uncorrelated sequences:   The Hamming distance is equal to  $L/2$, the "correlation value" is equal to  $0$.

Viterbi algorithm based on correlation and metrics


Using the insights of the last page, the Viterbi algorithm can also be characterized as follows.

$\text{Alternative description:}$  The Viterbi algorithm searches from all possible code sequences  $\underline{x}' ∈ \mathcal{C}$  the sequence  $\underline{z}$  with the maximum " correlation value" to the receiving sequence  $\underline{y}$:

\[\underline{z} = {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} \left\langle \tilde{\underline{x} }'\hspace{0.05cm} ,\hspace{0.05cm} \tilde{\underline{y} } \right\rangle \hspace{0.4cm}{\rm mit }\hspace{0.4cm}\tilde{\underline{x} }\hspace{0.05cm}'= 1 - 2 \cdot \underline{x}'\hspace{0.05cm}, \hspace{0.2cm} \tilde{\underline{y} }= 1 - 2 \cdot \underline{y} \hspace{0.05cm}.\]

$〈\ \text{ ...} \ 〉$  denotes a "correlation value" according to the statements on the last page. The tildes again indicate the bipolar (antipodal) representation.


The graphic shows the corresponding trellis evaluation. As for the  "Trellis evaluation according to example 1"  – based on the minimum Hamming istance and the error values${\it \Gamma}_i(S_{\mu})$ – again the input sequence  $\underline{u} = \big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big )$   ⇒   code sequence $\underline{x} = \big (00, 11, 10, 00, 01, 01, 11 \big ) \hspace{0.05cm}.$

Viterbi decoding based on correlation and metrics

Further are assumed:

  • the standard convolutional encoder:   Rate  $R = 1/2$,  Memory  $m = 2$;
  • the transfer function matrix:   $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
  • length of the information sequence:   $L = 5$;
  • consideration of termination:  $L' = 7$;
  • the received vector   $\underline{y} = (11, 11, 10, 00, 01, 01, 11)$
    ⇒   two bit errors at the beginning;
  • Viterbi decoding using trellis diagram:
    • red arrow ⇒   hypothesis $u_i = 0$,
    • blue arrow ⇒   hypothesis $u_i = 1$.


Adjacent trellis and the  "Trellis evaluation according to example 1"  are very similar. Just like the search for the sequence with the minimum Hamming distance, the  search for the maximum correlation value  is also done step by step:

  • The nodes here are called the cumulative metric  ${\it \Lambda}_i(S_{\mu})$.
  • Branch Metric  specifies the metric increment.
  • The final value  ${\it \Lambda}_7(S_0) = 10$  indicates the "correlation value" between the selected sequence  $\underline{z}$  and the received vector  $\underline{y}$ .
  • In the error-free case, the result would be  ${\it \Lambda}_7(S_0) = 14$.

$\text{Example 5:}$  The following detailed description of the trellis evaluation refer to the above trellis:

  • The metrics at time  $i = 1$  result with  $\underline{y}_1 = (11)$  to
\[{\it \Lambda}_1(S_0) \hspace{0.15cm} = \hspace{0.15cm} <\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.2cm}<(+1,\hspace{0.05cm} +1)\hspace{0.05cm}, \hspace{0.05cm}(-1,\hspace{0.05cm} -1) >\hspace{0.1cm} = \hspace{0.1cm} -2 \hspace{0.05cm},\]
\[{\it \Lambda}_1(S_1) \hspace{0.15cm} = \hspace{0.15cm} <\hspace{-0.05cm}(11)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.2cm}<(-1,\hspace{0.05cm} -1)\hspace{0.05cm}, \hspace{0.05cm}(-1,\hspace{0.05cm} -1) >\hspace{0.1cm} = \hspace{0.1cm} +2 \hspace{0.05cm}.\]
  • Accordingly, at time  $i = 2$  with  $\underline{y}_2 = (11)$:
\[{\it \Lambda}_2(S_0) = {\it \Lambda}_1(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} -2-2 = -4 \hspace{0.05cm},\]
\[{\it \Lambda}_2(S_1) = {\it \Lambda}_1(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(11)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} -2+2 = 0 \hspace{0.05cm},\]
\[{\it \Lambda}_2(S_2)= {\it \Lambda}_1(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(10)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} +2+0 = +2 \hspace{0.05cm},\]
\[{\it \Lambda}_2(S_3)= {\it \Lambda}_1(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(01)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} +2+0 = +2 \hspace{0.05cm}.\]
  • From time  $i =3$  a decision must be made between two metrics. For example, $\underline{y}_3 = (10)$  is obtained for the top and bottom metrics in the trellis:
\[{\it \Lambda}_3(S_0)={\rm max} \left [{\it \Lambda}_{2}(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}> \right ] = {\rm max} \left [ -4+0\hspace{0.05cm},\hspace{0.05cm} +2+0 \right ] = +2\hspace{0.05cm},\]
\[{\it \Lambda}_3(S_3) ={\rm max} \left [{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(01)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_3) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(10)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}> \right ] = {\rm max} \left [ 0+0\hspace{0.05cm},\hspace{0.05cm} +2+2 \right ] = +4\hspace{0.05cm}.\]

Comparing the metrics to be maximized  ${\it \Lambda}_i(S_{\mu})$  with the branch metrics to be minimized  ${\it \Gamma}_i(S_{\mu})$  according to the  $\text{"Example 1"}$, one sees the following deterministic relationship:

\[{\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [ i - {\it \Gamma}_i(S_{\mu}) \big ] \hspace{0.05cm}.\]

The selection of branches surviving to each decoding step is identical for both methods, and the path search also gives the same result.


$\text{Conclusion:}$ 

  • In the binary channel – for example according to the BSC model – the two described Viterbi variants "branch metric minimization" and "metric maximization" lead to the same result.
  • In the AWGN channel, on the other hand, error size minimization is not applicable because no Hamming–distance can be specified between the binary input  $\underline{x}$  and the analog output  $\underline{y}$ .
  • Another advantage of metric maximization is that a reliability information about the received values  $\underline{y}$  can be considered in a simple way.


Viterbi decision for non-terminated convolutional codes


So far, a terminated convolutional code of length  $L\hspace{0.05cm}' = L + m$  has always been considered, and the result of the Viterbi–decoder was the continuous trellis path from the start time  $(i = 0)$  to the end  $(i = L\hspace{0.05cm}')$.

  • For non–terminated convolutional codes  $(L\hspace{0.05cm}' → ∞)$  this decision strategy is not applicable.
  • Here, the algorithm must be modified to provide a best estimate (according to maximum likelihood) of the incoming bits of the code sequence in finite time.


The graphic shows in the upper part an exemplary trellis for

  • "our" standard encoder   ⇒   $R = 1/2, \ m = 2, \ {\rm G}(D) = (1 + D + D^2, \ 1 + D^2)$,
  • the zero sequence   ⇒   $\underline{u} = \underline{0} = (0, 0, 0, \ \text{...})$   ⇒   $\underline{x} = \underline{0} = (00, 00, 00, \ \text{...})$,
  • in each case, a transmission error at  $i = 4$  and  $i = 5$.

Based on the stroke types, one can recognize allowed (solid) and forbidden (dotted) arrows in red $(u_i = 0)$ and blue $(u_i = 1)$. Dotted lines have lost a comparison against a competitor and cannot be part of the selected path.

Exemplary trellis and surviving paths

The lower part of the graph shows the  $2^m = 4$  surviving paths  ${\it \Phi}_9(S_{\mu})$  at time  $i = 9$.

  • It is easiest to find these paths from right to left (backward direction).
  • The following specification shows the states traversed  $S_{\mu}$  but in the forward direction:
$${\it \Phi}_9(S_0) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0,$$
$${\it \Phi}_9(S_1) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_1 → S_2 → S_1 → S_3 → S_2 → S_1,$$
$${\it \Phi}_9(S_2) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_1 → S_2 → S_1 → S_2 → S_1 → S_2,$$
$${\it \Phi}_9(S_3) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_1 → S_2 → S_1 → S_2 → S_1 → S_3.$$

At earlier times  $(i<9)$  other survivors  ${\it \Phi}_i(S_{\mu})$  would result. Therefore, we define:

$\text{Definition:}$  The  survivor  ${\it \Phi}_i(S_{\mu})$  is the continuous path from the start  $S_0$  $($at  $i = 0)$  to the node  $S_{\mu}$ at time  $i$. It is recommended to search for paths in the backward direction

.

The following graph shows the surviving paths for time points  $i = 6$  to  $i = 9$. In addition, the respective metrics  ${\it \Lambda}_i(S_{\mu})$  for all four states are given.

The survivors  ${\it \Phi}_6, \ \text{...} \ , \ {\it \Phi}_9$

This graph is to be interpreted as follows:

  • At time  $i = 9$  no final ML decision can yet be made about the first nine bits of the information sequence. However, it is already certain that the most probable bit sequence is represented by one of the paths  ${\it \Phi}_9(S_0), \ \text{...} \ , \ {\it \Phi}_9(S_3)$  is correctly reproduced.
  • Since all four paths up to  $i = 3$  are identical, the decision "$v_1 = 0, v_2 = 0, \ v_3 = 0$" is the best possible (light gray background). Also at a later time no other decision would be made. Regarding the bits  $v_4, \ v_5, \ \text{...}$  one should not decide at this early stage.
  • If one had to make a constraint decision at time  $i = 9$  one would choose  ${\it \Phi}_9(S_0)$   ⇒   $\underline{v} = (0, 0, \text{. ..} \ , 0)$ since the metric  ${\it \Lambda}_9(S_0) = 14$  is larger than the comparison metrics.
  • The forced decision at time  $i = 9$  leads to the correct result in this example. At time  $i = 6$  such a constraint decision would have been wrong  ⇒   $\underline{v} = (0, 0, 0, 1, 0, 1)$, and at time  $i = 7$  and  $i = 8$  respectively, not clear.


Other decoding methods for convolutional codes


We have so far dealt only with the Viterbi algorithm in the form presented in 1967 by Andrew J. Viterbi in  [Vit67][1] was published. It was not until 1974 that  "George David Forney"  proved that this algorithm performs maximum likelihood decoding of convolutional codes.

But even in the years before that, many scientists were very eager to provide efficient decoding methods for the convolutional codes first described by  "Peter Elias"  in 1955. Among others, – more detailed descriptions can be found for example in  [Bos98][2] or the English edition  [Bos99][3].

  • the work of Kamil Zigangirov (1966) and  "Frederick Jelinek"  (1969), whose decoding method is also referred to as the stack algorithm .

All of these decoding schemes, as well as the Viterbi–algorithm as described so far, provide "hard" decided output values   ⇒   $v_i ∈ \{0, 1\}$. Often, however, information about the reliability of the decisions made would be desirable, especially when there is a concatenated coding scheme with an outer and an inner code.

If the reliability of the bits decided by the inner decoder is known at least roughly, this information can be used to (significantly) reduce the bit error probability of the outer decoder. The soft–output Viterbi algorithm  (SOVA) proposed by  "Joachim Hagenauer"  in  [Hag90][4] allows to specify a reliability measure in each case in addition to the decided symbols.

Finally, we go into some detail about the  BCJR algorithm  named after its inventors L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv  [BCJR74][5].

  • While the Viterbi algorithm only estimates the total sequence   ⇒   block-wise ML, the BCJR algorithm estimates a single symbol (bit) considering the entire received code sequence.
  • So this is a  symbol-wise maximum a posteriori decoding   ⇒   bit-wise MAP.


$\text{Conclusion:}$  The difference between Viterbi–algorithm and BCJR algorithm shall be – greatly simplified – illustrated by the example of a terminated convolutional code:

  • The  Viterbi algorithm  processes the trellis in only one direction– the forward direction  – and computes the metrics  ${\it \Lambda}_i(S_{\mu})$ for each node. After reaching the terminal node, the surviving path is searched, which identifies the most probable code sequence.
  • In the  BCJR algorithm  the trellis is processed twice, once in forward direction and then in backward direction. Two metrics can then be specified for each node, from which the aposterori probability can be determined for each bit

.

Hints:


Aufgaben zum Kapitel


Aufgabe 3.9: Grundlegendes zum Viterbi–Algorithmus

Aufgabe 3.9Z: Nochmals Viterbi–Algorithmus

Aufgabe 3.10: Fehlergrößenberechnung

Aufgabe 3.10Z: ML–Decodierung von Faltungscodes

Aufgabe 3.11: Viterbi–Pfadsuche

Quellenverzeichnis

  1. Viterbi, A.J.: Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. In: IEEE Transactions on Information Theory, vol. IT-13, pp. 260-269, April 1967.
  2. 2.0 2.1 Bossert, M.: Kanalcodierung. Stuttgart: B. G. Teubner, 1998.
  3. 3.0 3.1 Bossert, M.: Channel Coding for Telecommunications. Wiley & Sons, 1999.
  4. Hagenauer, J.: Soft Output Viterbi Decoder. In: Technischer Report, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), 1990.
  5. Bahl, L.R.; Cocke, J.; Jelinek, F.; Raviv, J.: Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate. In: IEEE Transactions on Information Theory, Vol. IT-20, pp. 284-287, 1974.