Difference between revisions of "Aufgaben:Exercise 2.12: Non-coherent Demodulation"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Weitere AM–Varianten }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |ty…“)
 
 
(40 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Weitere AM–Varianten
+
{{quiz-Header|Buchseite=Modulation Methods/Further AM Variants
 
}}
 
}}
  
[[File:|right|]]
+
[[File:EN_Mod_A_2_12.png|right|frame|ASK Demodulation <br>(non-coherent) ]]
 +
Consider an amplitude modulated signal:
 +
:$$ s(t) = q(t)  \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
 +
Reaching the receiver based on the channel propagation time,&nbsp;  the signal is
 +
:$$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$
 +
The arrangement shown here allows perfect demodulation – that is: &nbsp;$v(t) = q(t)$ – without knowledge of the phase &nbsp;$Δϕ_T$,&nbsp; but only if the source signal &nbsp;$q(t)$&nbsp; satisfies certain conditions.
  
 +
The two receiver-side carrier signals are:
 +
:$$ z_{\rm 1, \hspace{0.08cm}E}(t)  =  2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},$$
 +
:$$ z_{\rm 2, \hspace{0.08cm}E}(t)  =  -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
  
===Fragebogen===
+
$\rm LP_1$&nbsp; and &nbsp;$\rm LP_2$&nbsp; denote two ideal&nbsp; (rectangular)&nbsp; low-pass filters,&nbsp; each with cutoff frequency equal to the carrier frequency &nbsp;$f_{\rm T}$.
 +
 
 +
We consider as (digital) source signals:
 +
# the unipolar square wave  signal &nbsp;$q_1(t)$&nbsp; with dimensionless amplitude values &nbsp;$0$&nbsp; and &nbsp;$3$,
 +
# the bipolar square wave signal &nbsp;$q_2(t)$&nbsp; with the dimensionless amplitude values &nbsp;$±3$.
 +
 
 +
 
 +
With respect to &nbsp;$s(t)$,&nbsp; these two signals result in
 +
#an &nbsp;[[Modulation_Methods/Linear_Digital_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|ASK signal]],&nbsp;
 +
#a &nbsp;[[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK signal]].
 +
 
 +
 
 +
The nonlinear function &nbsp;$v = g(b)$&nbsp; is to be determined in this exercise.
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Further_AM_Variants|Further AM Variants]].
 +
*Particular reference is made to the section&nbsp;  [[Modulation_Methods/Further_AM_Variants#Incoherent_.28non-coherent.29_Demodulation|Incoherent (non-coherent) Demodulation]].
 +
 +
*The following trigonometric transformations are given:
 +
:$$ \cos(\alpha) \cdot \cos(\beta)  = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
 +
:$$ \sin(\alpha) \cdot \sin(\beta)  = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
 +
:$$ \sin(\alpha) \cdot \cos(\beta)  =  1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What are the signals &nbsp;$b_1(t)$&nbsp; and &nbsp;$b_2(t)$&nbsp; in both branches – after multiplier and low-pass respectively?&nbsp; Which statements apply?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $b_1(t) = q(t) · \cos(Δϕ_{\rm T})$.
+ Richtig
+
-  $b_2(t) = q(t) · \cos(Δϕ_{\rm T})$.
 +
- $b_1(t) = q(t) · \sin(Δϕ_{\rm T})$.
 +
+ $b_2(t) = q(t) · \sin(Δϕ_{\rm T})$.
 +
-  $b_1(t) = b_2(t) = q(t)$.
 +
 
 +
{What values of &nbsp;$b_{\rm min}$&nbsp; and &nbsp;$b_{\rm max}$&nbsp; does the signal &nbsp;$b(t)$&nbsp; take on,&nbsp; when the unipolar source signal &nbsp;$q_1(t)$&nbsp; is applied to the input?
 +
|type="{}"}
 +
$b_{\rm min} \ = \ $  { 0. }
 +
$b_{\rm max} \ = \ $ { 9 3% }
 +
 
 +
{How should the characteristic curve &nbsp;$v = g(b)$&nbsp; be chosen,&nbsp; so that &nbsp;$v(t) = q(t)$&nbsp; holds?
 +
|type="()"}
 +
- $v=g(b) = b^2$.
 +
+ $v=g(b) = \sqrt{b}$.
 +
- $v=g(b) = \arctan(b).$
  
  
{Input-Box Frage
+
{What values of &nbsp;$b_{\rm min}$&nbsp; and &nbsp;$b_{\rm max}$&nbsp; does the signal &nbsp;$b(t)$&nbsp; take on,&nbsp; when the bipolar source signal &nbsp;$q_2(t)$&nbsp; is applied to the input?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$b_{\rm min} \ = \ $ { 9 3% }
 
+
$b_{\rm max} \ = \ $ { 9 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;  Applying the trigonometric transformations given on the exercise page and taking into account the two low-pass filters&nbsp; (the components around twice the carrier frequency are removed),&nbsp; we obtain:
'''2.'''
+
:$$b_1(t)  =  q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
'''3.'''
+
:$$ b_2(t)  =  q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
'''4.'''
+
*Thus,&nbsp; <u>the first and fourth answers</u>&nbsp; are correct.
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
 
 +
'''(2)'''&nbsp;  The sum of the squares of the two partial signals gives:
 +
:$$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$
 +
The possible amplitude values are thus:
 +
:$$b_{\rm min}\hspace{0.15cm}\underline{ = 0},$$
 +
:$$ b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The <u>second answer</u> is correct:
 +
:$$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp;  The result&nbsp; $b(t) = q^2(t)$ – see subtask '''(2)'''&nbsp; – leads here to the result: 
 +
:$$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$
 +
:$$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$
 +
 
 +
This shows that the demodulator considered here only functions,
 +
*if at all times &nbsp; $q(t) ≥ 0$ &nbsp; or &nbsp; $q(t) ≤ 0$ &nbsp; holds,
 +
*and this is known at the receiver.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben Modulationsverfahren|^2.5 Weitere AM–Varianten^ ]]
+
[[Category:Modulation Methods: Exercises|^2.5 Other AM Variants^ ]]

Latest revision as of 13:46, 17 November 2022

ASK Demodulation
(non-coherent)

Consider an amplitude modulated signal:

$$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$

Reaching the receiver based on the channel propagation time,  the signal is

$$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$

The arrangement shown here allows perfect demodulation – that is:  $v(t) = q(t)$ – without knowledge of the phase  $Δϕ_T$,  but only if the source signal  $q(t)$  satisfies certain conditions.

The two receiver-side carrier signals are:

$$ z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},$$
$$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$

$\rm LP_1$  and  $\rm LP_2$  denote two ideal  (rectangular)  low-pass filters,  each with cutoff frequency equal to the carrier frequency  $f_{\rm T}$.

We consider as (digital) source signals:

  1. the unipolar square wave signal  $q_1(t)$  with dimensionless amplitude values  $0$  and  $3$,
  2. the bipolar square wave signal  $q_2(t)$  with the dimensionless amplitude values  $±3$.


With respect to  $s(t)$,  these two signals result in

  1. an  ASK signal
  2. a  BPSK signal.


The nonlinear function  $v = g(b)$  is to be determined in this exercise.



Hints:

  • The following trigonometric transformations are given:
$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$


Questions

1

What are the signals  $b_1(t)$  and  $b_2(t)$  in both branches – after multiplier and low-pass respectively?  Which statements apply?

$b_1(t) = q(t) · \cos(Δϕ_{\rm T})$.
$b_2(t) = q(t) · \cos(Δϕ_{\rm T})$.
$b_1(t) = q(t) · \sin(Δϕ_{\rm T})$.
$b_2(t) = q(t) · \sin(Δϕ_{\rm T})$.
$b_1(t) = b_2(t) = q(t)$.

2

What values of  $b_{\rm min}$  and  $b_{\rm max}$  does the signal  $b(t)$  take on,  when the unipolar source signal  $q_1(t)$  is applied to the input?

$b_{\rm min} \ = \ $

$b_{\rm max} \ = \ $

3

How should the characteristic curve  $v = g(b)$  be chosen,  so that  $v(t) = q(t)$  holds?

$v=g(b) = b^2$.
$v=g(b) = \sqrt{b}$.
$v=g(b) = \arctan(b).$

4

What values of  $b_{\rm min}$  and  $b_{\rm max}$  does the signal  $b(t)$  take on,  when the bipolar source signal  $q_2(t)$  is applied to the input?

$b_{\rm min} \ = \ $

$b_{\rm max} \ = \ $


Solution

(1)  Applying the trigonometric transformations given on the exercise page and taking into account the two low-pass filters  (the components around twice the carrier frequency are removed),  we obtain:

$$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
$$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
  • Thus,  the first and fourth answers  are correct.


(2)  The sum of the squares of the two partial signals gives:

$$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$

The possible amplitude values are thus:

$$b_{\rm min}\hspace{0.15cm}\underline{ = 0},$$
$$ b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$


(3)  The second answer is correct:

$$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$


(4)  The result  $b(t) = q^2(t)$ – see subtask (2)  – leads here to the result:

$$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$
$$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$

This shows that the demodulator considered here only functions,

  • if at all times   $q(t) ≥ 0$   or   $q(t) ≤ 0$   holds,
  • and this is known at the receiver.