Difference between revisions of "Channel Coding/Information Theoretical Limits of Channel Coding"

From LNTwww
 
(43 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Binäre Blockcodes zur Kanalcodierung
+
|Untermenü=Binary Block Codes for Channel Coding
|Vorherige Seite=Schranken für die Blockfehlerwahrscheinlichkeit
+
|Vorherige Seite=Limits for Block Error Probability
|Nächste Seite=Einige Grundlagen der Algebra
+
|Nächste Seite=Some Basics of Algebra
 
}}
 
}}
  
== Kanalcodierungstheorem und Kanalkapazität ==
+
== Channel coding theorem and channel capacity ==
 
<br>
 
<br>
Wir betrachten weiterhin einen binären Blockcode mit&nbsp; $k$&nbsp; Informationsbits pro Block und Codeworte der Länge&nbsp; $n$, woraus sich die Coderate&nbsp; $R=k/n$&nbsp; mit der Einheit &bdquo;Informationsbit/Codesymbol&rdquo; ergibt.<br>
+
We further consider a binary block code with&nbsp;  
 +
*$k$&nbsp; information bits per block,
 +
*code words of length&nbsp; $n$,  
 +
*resulting in the code rate&nbsp; $R=k/n$&nbsp; with the unit&nbsp; "information bit/code symbol".<br>
  
Der geniale Informationstheoretiker&nbsp; [https://de.wikipedia.org/wiki/Claude_Shannon Claude E. Shannon]&nbsp; hat sich schon 1948 sehr intensiv mit der Korrekturfähigkeit solcher Codes beschäftigt und hierfür für jeden Kanal eine Grenze angegeben, die sich allein aus informationstheoretischen Überlegungen ergibt. Bis heute wurde noch kein Code gefunden, der diese Grenze übersteigt, und dies wird auch so bleiben.<br>
+
 
 +
The ingenious information theorist&nbsp; [https://en.wikipedia.org/wiki/Claude_Shannon $\text{Claude E. Shannon}$]&nbsp; has dealt very intensively with the correctability of such codes already in 1948 and has given for this a limit for each channel which results from information-theoretical considerations alone.&nbsp; Up to this day,&nbsp; no code has been found which exceeds this limit,&nbsp; and this will remain so.<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Shannons Kanalcodierungstheorem:}$&nbsp;  Zu jedem Kanal mit der Kanalkapazität&nbsp; $C > 0$&nbsp; existiert stets (mindestens) ein Code, dessen Fehlerwahrscheinlichkeit gegen Null geht, so lange die Coderate&nbsp; $R$&nbsp; kleiner ist als die Kanalkapazität&nbsp; $C$. Voraussetzung hierfür ist, dass für die Blocklänge dieses Codes gilt: &nbsp; $n \to \infty$.}}<br>
+
$\text{Shannon's channel coding theorem:}$&nbsp;  For each channel with channel capacity&nbsp; $C > 0$&nbsp; there always exists&nbsp; (at least)&nbsp; one code whose error probability approaches zero as long as the code rate&nbsp; $R$&nbsp; is smaller than the channel capacity&nbsp; $C$.&nbsp; The prerequisite for this is that the following holds for the block length of this code: &nbsp;  
 +
:$$n \to \infty.$$}}<br>
 +
 
 +
Notes:&nbsp;
 +
*The statement&nbsp; "The error probability approaches zero"&nbsp; is not identical with the statement&nbsp; "The transmission is error-free".&nbsp; Example: &nbsp; For an infinitely long sequence,&nbsp; finitely many symbols are falsified.
  
''Anmerkungen:''&nbsp;
+
*For some channels,&nbsp; even with&nbsp; $R=C$&nbsp; the error probability still goes towards zero&nbsp; (but not for all).  
*Die Aussage &bdquo;Die Fehlerwahrscheinlichkeit geht gegen Null&rdquo; ist nicht identisch mit der Aussage &bdquo;Die Übertragung ist fehlerfrei&rdquo;. Beispiel: &nbsp; Bei einer unendlich langen Folge werden endlich viele Symbole verfälscht.
 
*Bei manchen Kanälen geht auch mit&nbsp; $R=C$&nbsp; die Fehlerwahrscheinlichkeit noch gegen Null (aber nicht bei allen).  
 
  
  
Die Umkehrung des Kanalcodierungstheorems ist ebenfalls zutreffend und besagt:<br>
+
The inverse of the channel coding theorem is also true and states:<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Umkehrschluss:}$&nbsp;  Ist die Coderate&nbsp; $R$&nbsp; größer als die Kanalkapazität&nbsp; $C$, so kann eine beliebig kleine Fehlerwahrscheinlichkeit auf keinen Fall erreicht werden.}}<br>
+
$\text{Inverse:}$&nbsp;  If the code rate&nbsp; $R$&nbsp; is larger than the channel capacity&nbsp; $C$,&nbsp; then an arbitrarily small error probability cannot be achieved in any case.}}<br>
  
Zur Herleitung und Berechnung der Kanalkapazität gehen wir zunächst von einem digitalen Kanal mit&nbsp; $M_x$&nbsp; möglichen Eingangswerten&nbsp; $x$&nbsp; und&nbsp; $M_y$&nbsp; möglichen Ausgangswerten&nbsp; $y$&nbsp; aus. Dann gilt für den mittleren Transinformationsgehalt  &ndash; kurz die&nbsp; [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen#Transinformation_zwischen_zwei_Zufallsgr.C3.B6.C3.9Fen|Transinformation]]&nbsp; (englisch: &nbsp; <i>Mutual Information</i>)  &ndash; zwischen der Zufallsgröße&nbsp; $x$&nbsp; am Kanaleingang und der Zufallsgröße&nbsp; $y$&nbsp; an seinem Ausgang:
+
To derive and calculate the channel capacity,&nbsp; we first assume a digital channel with&nbsp; $M_x$&nbsp; possible input values&nbsp; $x$&nbsp; and&nbsp; $M_y$&nbsp; possible output values&nbsp; $y$.&nbsp; Then,&nbsp; for the mean mutual information&nbsp; &ndash; in short,&nbsp; the&nbsp; [[Information_Theory/Different_Entropy_Measures_of_Two-Dimensional_Random_Variables#Mutual_information_between_two_random_variables|$\text{mutual information}$]] &nbsp; &ndash;&nbsp; between the random variable&nbsp; $x$&nbsp; at the channel input and the random variable&nbsp; $y$&nbsp; at its output:
  
 
::<math>I(x; y) =\sum_{i= 1 }^{M_X} \hspace{0.15cm}\sum_{j= 1 }^{M_Y} \hspace{0.15cm}{\rm Pr}(x_i, y_j) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i)}{{\rm Pr}(y_j)} =  \sum_{i= 1 }^{M_X} \hspace{0.15cm}\sum_{j= 1 }^{M_Y}\hspace{0.15cm}{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i) \cdot {\rm Pr}(x_i) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i)}{\sum_{k= 1}^{M_X} {\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_k) \cdot {\rm Pr}(x_k)}
 
::<math>I(x; y) =\sum_{i= 1 }^{M_X} \hspace{0.15cm}\sum_{j= 1 }^{M_Y} \hspace{0.15cm}{\rm Pr}(x_i, y_j) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i)}{{\rm Pr}(y_j)} =  \sum_{i= 1 }^{M_X} \hspace{0.15cm}\sum_{j= 1 }^{M_Y}\hspace{0.15cm}{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i) \cdot {\rm Pr}(x_i) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i)}{\sum_{k= 1}^{M_X} {\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_k) \cdot {\rm Pr}(x_k)}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Beim Übergang von der ersten zur zweiten Gleichung wurden dabei der&nbsp; [[Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit#Bedingte_Wahrscheinlichkeit_.281.29| Satz von Bayes]]&nbsp; sowie der&nbsp; [[Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit#R.C3.BCckschlusswahrscheinlichkeit| Satz von der totalen Wahrscheinlichkeit]]&nbsp; berücksichtigt.  
+
In the transition from the first to the second equation, the &nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability| $\text{Theorem of Bayes}$]] &nbsp; and the &nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Inference_probability| $\text{Theorem of Total Probability}$]] &nbsp; were considered.  
  
Weiter ist anzumerken:  
+
Further,&nbsp; it should be noted:  
*Der <i>Logarithmus dualis</i>&nbsp; ist hier mit &bdquo;log<sub>2</sub>&rdquo; bezeichnet ist. Teilweise verwenden wir in unserem  Lerntutorial hierfür  auch &bdquo;ld&rdquo;.  
+
*The&nbsp; "binary logarithm"&nbsp; is denoted here with&nbsp; "log<sub>2</sub>".&nbsp; Partially,&nbsp; we also use&nbsp; "ld"&nbsp; ("logarithm dualis")&nbsp; for this in our learning tutorial.
*Im Gegensatz zum Buch&nbsp; [[Informationstheorie]]&nbsp; unterscheiden wir im Folgenden nicht zwischen der Zufallsgröße $($Großbuchstaben&nbsp; $X$&nbsp; bzw.&nbsp; $Y)$&nbsp; und den Realisierungen $($Kleinbuchstaben&nbsp; $x$&nbsp; bzw.&nbsp; $y)$.<br>
+
 +
*In contrast to the book&nbsp; [[Information_Theory|$\text{Information Theory}$]]&nbsp; we do not distinguish in the following between the random variable&nbsp; $($upper case letters&nbsp; $X$&nbsp; resp.&nbsp; $Y)$&nbsp; and the realizations $($lower case letters&nbsp; $x$&nbsp; resp.&nbsp; $y)$.<br>
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  Die von Shannon eingeführte&nbsp; '''Kanalkapazität'''&nbsp; gibt die maximale Transinformation&nbsp; $I(x; y)$&nbsp; zwischen der Eingangsgröße&nbsp; $x$&nbsp; und der Ausgangsgröße&nbsp; $y$&nbsp; an:
+
$\text{Definition:}$&nbsp;  The&nbsp; &raquo;'''channel capacity'''&laquo;&nbsp; introduced by Shannon gives the maximum mutual information&nbsp; $I(x; y)$&nbsp; between the input variable&nbsp; $x$&nbsp; and output variable&nbsp; $y$:
 
 
 
::<math>C = \max_{{{\rm Pr}(x_i)}} \hspace{0.1cm} I(X; Y) \hspace{0.05cm}.</math>
 
::<math>C = \max_{{{\rm Pr}(x_i)}} \hspace{0.1cm} I(X; Y) \hspace{0.05cm}.</math>
  
Hinzugefügt werden muss die Pseudo&ndash;Einheit &bdquo;bit/Kanalzugriff&rdquo;.}}<br>
+
*The pseudo&ndash;unit&nbsp; "bit/channel use"&nbsp; must be added.}}<br>
  
Da die Maximierung der Transinformation über alle möglichen (diskreten) Eingangsverteilungen&nbsp; ${\rm Pr}(x_i)$&nbsp; erfolgen muss, ist die Kanalkapazität unabhängig vom Eingang und damit eine reine Kanalkenngröße.<br>
+
:Since the maximization of the mutual information&nbsp; $I(x; y)$&nbsp; must be done over all possible&nbsp; (discrete)&nbsp; input distributions&nbsp; ${\rm Pr}(x_i)$,
 +
::&raquo;'''the channel capacity is independent of the input and thus a pure channel parameter'''&laquo;.<br>
  
== Kanalkapazität des BSC–Modells ==
+
== Channel capacity of the BSC model ==
 
<br>
 
<br>
Wir wenden nun diese Definitionen auf das&nbsp; [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|BSC&ndash;Modell]]&nbsp; (''Binary Symmetric Channel&nbsp;'') an:
+
We now apply these definitions to the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|$\text{BSC model}$]]&nbsp; ("Binary Symmetric Channel"):
  
 
::<math>I(x; y) = {\rm Pr}(y = 0 \hspace{0.03cm}| \hspace{0.03cm}x = 0) \cdot {\rm Pr}(x = 0)  
 
::<math>I(x; y) = {\rm Pr}(y = 0 \hspace{0.03cm}| \hspace{0.03cm}x = 0) \cdot {\rm Pr}(x = 0)  
Line 61: Line 68:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
[[File:KC_T_1_7_Zusatz_version2.png|right|frame|BSC–Kanalmodell|class=fit]]
+
The channel capacity is arrived at by the following considerations:
 +
[[File:KC_T_1_7_Zusatz_version2.png|right|frame|Binary symmetric channel|class=fit]]
  
Zur Kanalkapazität gelangt man durch folgende Überlegungen:
+
*Maximization with respect to the input distribution leads to equally probable symbols:
*Die Maximierung bezüglich der Eingangsverteilung führt auf gleichwahrscheinliche Symbole:
 
  
 
::<math>{\rm Pr}(x = 0) = {\rm Pr}(x = 1) = 1/2
 
::<math>{\rm Pr}(x = 0) = {\rm Pr}(x = 1) = 1/2
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Aufgrund der aus dem Modell erkennbaren Symmetrie gilt dann gleichzeitig:
+
*Due to the symmetry evident from the model,&nbsp; the following then holds simultaneously:
  
 
::<math>{\rm Pr}(y = 0) = {\rm Pr}(y = 1) = 1/2
 
::<math>{\rm Pr}(y = 0) = {\rm Pr}(y = 1) = 1/2
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Wir berücksichtigen zudem die BSC&ndash;Übergangswahrscheinlichkeiten:
+
*We also consider the BSC transmission probabilities:
  
 
::<math>{\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 0) = {\rm Pr}(y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 1) = \varepsilon \hspace{0.05cm},</math>
 
::<math>{\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 0) = {\rm Pr}(y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 1) = \varepsilon \hspace{0.05cm},</math>
 
::<math>{\rm Pr}(y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 0) = {\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 1) = 1-\varepsilon  \hspace{0.05cm}.</math>
 
::<math>{\rm Pr}(y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 0) = {\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 1) = 1-\varepsilon  \hspace{0.05cm}.</math>
  
*Nach Zusammenfassen je zweier Terme erhält man somit:
+
*After combining two terms each,&nbsp; we thus obtain:
  
 
::<math>C \hspace{0.15cm}  =  \hspace{0.15cm} 2 \cdot 1/2 \cdot \varepsilon \cdot {\rm log_2 } \hspace{0.15cm}\frac{\varepsilon}{1/2 }+  
 
::<math>C \hspace{0.15cm}  =  \hspace{0.15cm} 2 \cdot 1/2 \cdot \varepsilon \cdot {\rm log_2 } \hspace{0.15cm}\frac{\varepsilon}{1/2 }+  
 
2 \cdot 1/2 \cdot (1- \varepsilon)  \cdot {\rm log_2 } \hspace{0.15cm}\frac{1- \varepsilon}{1/2 }
 
2 \cdot 1/2 \cdot (1- \varepsilon)  \cdot {\rm log_2 } \hspace{0.15cm}\frac{1- \varepsilon}{1/2 }
 
\varepsilon \cdot {\rm ld } \hspace{0.15cm}2  - \varepsilon \cdot {\rm log_2 } \hspace{0.15cm} \frac{1}{\varepsilon }+  (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm} 2 - (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{1- \varepsilon}</math>
 
\varepsilon \cdot {\rm ld } \hspace{0.15cm}2  - \varepsilon \cdot {\rm log_2 } \hspace{0.15cm} \frac{1}{\varepsilon }+  (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm} 2 - (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{1- \varepsilon}</math>
::<math>\Rightarrow \hspace{0.3cm} C \hspace{0.15cm}  =  \hspace{0.15cm}  1 - H_{\rm bin}(\varepsilon). </math>
+
:::<math>\Rightarrow \hspace{0.3cm} C \hspace{0.15cm}  =  \hspace{0.15cm}  1 - H_{\rm bin}(\varepsilon). </math>
  
*Verwendet ist hier die ''binäre Entropiefunktion'':
+
*Here,&nbsp; the&nbsp; "binary entropy function"&nbsp; is used:
  
 
::<math>H_{\rm bin}(\varepsilon) =  \varepsilon \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{\varepsilon}+  
 
::<math>H_{\rm bin}(\varepsilon) =  \varepsilon \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{\varepsilon}+  
 
(1- \varepsilon)  \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{1- \varepsilon}\hspace{0.05cm}.</math>
 
(1- \varepsilon)  \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{1- \varepsilon}\hspace{0.05cm}.</math>
  
Die folgende rechte Grafik zeigt die BSC&ndash;Kanalkapazität abhängig von der Verfälschungswahrscheinlichkeit&nbsp; $\varepsilon$. Links ist zum Vergleich die binäre Entropiefunktion dargestellt, die bereits im Kapitel&nbsp; [[Informationstheorie/Ged%C3%A4chtnislose_Nachrichtenquellen#Bin.C3.A4re_Entropiefunktion|Gedächtnislose Nachrichtenquellen]]&nbsp; des Buches &bdquo;Informationstheorie&rdquo; definiert wurde.<br>
+
The right graph shows the BSC channel capacity depending on the falsificaion probability&nbsp; $\varepsilon$.&nbsp; On the left,&nbsp; for comparison,&nbsp; the binary entropy function is shown,&nbsp; which has already been defined in the chapter&nbsp; [[Information_Theory/Discrete_Memoryless_Sources#Binary_entropy_function|$\text{Discrete Memoryless Sources}$]]&nbsp; of the book&nbsp; "Information Theory".&nbsp; <br>
 +
[[File:P ID2379 KC T 1 7 S2 v2.png|right|frame|Channel capacity of the BSC model|class=fit]]
 +
One can see from this representation:
 +
*The falsificaion probability&nbsp; $\varepsilon$&nbsp; leads to the channel capacity&nbsp; $C(\varepsilon)$.&nbsp; According to the&nbsp; [[Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding#Channel_coding_theorem_and_channel_capacity |$\text{channel coding theorem}$]]&nbsp; error-free decoding is only possible if the code rate&nbsp; $R \le C(\varepsilon)$.
  
[[File:P ID2379 KC T 1 7 S2 v2.png|center|frame|Kanalkapazität des BSC–Modells|class=fit]]
+
*With&nbsp; $\varepsilon = 10\%$,&nbsp; error-free decoding is impossible&nbsp; if the code rate&nbsp; $R > 0.531$ &nbsp; $($because:&nbsp; $C(0.1) = 0.531)$.  
Man erkennt aus dieser Darstellung:
 
*Die Verfälschungswahrscheinlichkeit&nbsp; $\varepsilon$&nbsp; führt zur Kanalkapazität $C(\varepsilon)$. Eine fehlerfreie Decodierung nach bestmöglicher Codierung ist nach dem&nbsp; [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t |Kanalcodierungstheorem]]&nbsp; nur dann möglich, wenn die Coderate $R$ nicht größer ist als&nbsp; $C(\varepsilon)$.
 
  
*Mit&nbsp; $\varepsilon = 10\%$&nbsp; ist wegen&nbsp; $C(0.1) = 0.531$&nbsp; eine fehlerfreie Decodierung nicht möglich, wenn die Coderate&nbsp; $R > 0.531$&nbsp; beträgt. Bei 50&ndash;prozentiger Verfälschung ist eine fehlerfreie Decodierung auch bei beliebig kleiner Coderate unmöglich: &nbsp; $C(0.5) = 0$ .<br>
+
*With&nbsp; $\varepsilon = 50\%$,&nbsp; error-free decoding is impossible even if the code rate is arbitrarily small &nbsp; $($because:&nbsp; $C(0.5) = 0)$.<br>
  
*Aus informationstheoretischer Sicht ist&nbsp; $\varepsilon = 1$&nbsp; (Invertierung aller Bits) gleich gut wie&nbsp; $\varepsilon = 0$&nbsp; (fehlerfreie Übertragung). Ebenso ist&nbsp; $\varepsilon = 0.9$&nbsp; äquivalent zu&nbsp; $\varepsilon = 0.1$. Eine fehlerfreie Decodierung erzielt man hier durch Vertauschen der Nullen und Einsen, also durch ein  so genanntes <i>Mapping</i>.<br>
+
*From an information theory point of view&nbsp; $\varepsilon = 1$&nbsp; $($inversion of all bits$)$&nbsp; is equivalent to&nbsp; $\varepsilon = 0$&nbsp; $($"error-free transmission"$)$.  
  
== Kanalkapazität des AWGN–Modells==
+
*Error-free decoding is achieved here by swapping the zeros and ones, i.e. by a so-called&nbsp; "mapping".
 +
 
 +
*Similarly&nbsp; $\varepsilon = 0.9$&nbsp; is equivalent to&nbsp; $\varepsilon = 0.1$.&nbsp; <br>
 +
<br clear=all>
 +
== Channel capacity of the AWGN model==
 
<br>
 
<br>
[[File:P ID2372 KC T 1 7 S3a.png|right|frame|AWGN–Kanalmodell|class=fit]]
+
We now consider the&nbsp; [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Transmission_channel_and_interference|$\text{AWGN channel}$]]&nbsp; ("Additive White Gaussian Noise").
Wir betrachten nun den&nbsp; [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#.C3.9Cbertragungskanal_und_St.C3.B6rungen|AWGN&ndash;Kanal]]&nbsp; (<i>Additive White Gaussian Noise</i>&nbsp;). Hier gilt für das Ausgangssignal&nbsp; $y = x + n$, wobei&nbsp; $n$&nbsp; eine&nbsp; [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen|gaußverteilte Zufallsgröße]]&nbsp; beschreibt, und es gilt für deren Erwartungswerte (Momente):
+
[[File:P ID2372 KC T 1 7 S3a.png|right|frame|AWGN channel model|class=fit]]
:$${\rm E}[n] = 0,\hspace{1cm} {\rm E}[n^2] = P_n.$$
+
 
 +
Here,&nbsp; for the output signal&nbsp; $y = x + n$,&nbsp; where&nbsp; $n$&nbsp; describes a&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|$\text{Gaussian distributed random variable}$]]&nbsp; and it applies to their expected values&nbsp; ("moments"):
 +
 +
#&nbsp;${\rm E}[n] = 0,$
 +
#&nbsp;${\rm E}[n^2] = P_n.$
 +
 
  
Damit ergibt sich unabhängig vom Eingangssignal&nbsp; $x$&nbsp; (analog oder digital) stets ein wertkontinuierliches Ausgangssignal&nbsp; $y$, und in der&nbsp; [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t|Gleichung für die Transinformation]]&nbsp; ist&nbsp; $M_y \to\infty$&nbsp; einzusetzen.<br>
+
Thus,&nbsp; regardless of the input signal&nbsp; $x$&nbsp; $($analog or digital$)$,&nbsp; there is always a continuous-valued output signal&nbsp; $y$,&nbsp; and in the&nbsp; [[Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding#Channel_coding_theorem_and_channel_capacity|$\text{equation for mutual information}$]]&nbsp; is to be used:&nbsp;  
 +
:$$M_y \to\infty.$$
  
Die Berechnung der Kanalkapazität für den AWGN&ndash;Kanal wird hier nur in Stichworten angegeben. Die genaue Herleitung finden Sie im vierten Hauptkapitel &bdquo;Wertdiskrete Informationstheorie&rdquo; des Buches&nbsp; [[Informationstheorie]].
+
The calculation of the AWGN channel capacity is given here only in keywords.&nbsp; The exact derivation can be found in the fourth main chapter&nbsp; "Discrete Value Information Theory"&nbsp; of the textbook&nbsp; [[Information_theory|$\text{Information Theory}$]].
*Die im Hinblick auf maximale Transinformation optimierte Eingangsgröße&nbsp; $x$&nbsp; wird mit Sicherheit wertkontinuierlich sein, das heißt, beim AWGN&ndash;Kanal gilt außer&nbsp; $M_y \to\infty$&nbsp; auch&nbsp; $M_x \to\infty$.
+
*The input quantity&nbsp; $x$&nbsp; optimized with respect to maximum mutual information will certainly be continuous-valued,&nbsp; that is,&nbsp; for the AWGN channel in addition to &nbsp; $M_y \to\infty$ &nbsp; also holds &nbsp; $M_x \to\infty$.
  
*Während bei wertdiskretem Eingang über alle&nbsp; ${\rm Pr}(x_i)$&nbsp; zu optimieren ist, erfolgt nun die Optimierung anhand der&nbsp; [[Stochastische_Signaltheorie/Gau%C3%9Fverteilte_Zufallsgr%C3%B6%C3%9Fe#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion| WDF]]&nbsp; $f_x(x)$ des Eingangssignals unter der Nebenbedingung&nbsp; [[Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Leistungs.E2.80.93_und_Spitzenwertbegrenzung| Leistungsbegrenzung]]:
+
*While for discrete-valued input optimization is to be done over all probabilities&nbsp; ${\rm Pr}(x_i)$&nbsp; now optimization is done using the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.E2.80.93_Cumulative_density_function|$\text{probability density function&nbsp; $\rm (PDF)$}$]]&nbsp; $f_x(x)$&nbsp; of the input signal under the constraint&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Power_and_peak_limitation|$\text{power limitation}$]]:
  
::<math>C = \max_{f_x(x)} \hspace{0.1cm} I(x; y)\hspace{0.05cm},\hspace{0.3cm}{\rm wobei \hspace{0.15cm} gelten  \hspace{0.15cm} muss} \text{:}\hspace{0.15cm} {\rm E} \left [ x^2 \right ] \le P_x  \hspace{0.05cm}.</math>
+
::<math>C = \max_{f_x(x)} \hspace{0.1cm} I(x; y)\hspace{0.05cm},\hspace{0.3cm}{\rm where \hspace{0.15cm} must \hspace{0.15cm} apply} \text{:}\hspace{0.15cm} {\rm E} \left [ x^2 \right ] \le P_x  \hspace{0.05cm}.</math>
  
*Die Optimierung liefert für die Eingangs&ndash;WDF ebenfalls eine Gaußverteilung &nbsp; &#8658; &nbsp; $x$,&nbsp; $n$&nbsp; und&nbsp; $y$&nbsp; sind gaußverteilt gemäß den Dichtefunktionen&nbsp; $f_x(x)$,&nbsp; $f_n(n)$&nbsp; und&nbsp; $f_y(y)$. Die entsprechenden Leistungen benennen wir&nbsp; $P_x$,&nbsp; $P_n$&nbsp; und&nbsp; $P_y$.<br>
+
*The optimization also yields a Gaussian distribution for the input PDF &nbsp; &#8658; &nbsp; $x$,&nbsp; $n$&nbsp; and&nbsp; $y$&nbsp; are Gaussian distributed according to the probability density functions&nbsp; $f_x(x)$, &nbsp; $f_n(n)$ &nbsp; and &nbsp; $f_y(y)$.&nbsp; We designate the corresponding powers&nbsp; $P_x$,&nbsp; $P_n$&nbsp; and&nbsp; $P_y$.<br>
  
*Nach längerer Rechnung erhält man für die Kanalkapazität unter Verwendung des <i>Logarithmus dualis</i>&nbsp; $\log_2(\cdot)$ &ndash; wiederum mit der Pseudo&ndash;Einheit &bdquo;bit/Kanalzugriff&rdquo;:
+
*After longer calculation one gets for the channel capacity using the&nbsp; "binary logarithm"&nbsp; $\log_2(\cdot)$&nbsp; &ndash;&nbsp; again with the pseudo-unit&nbsp; "bit/channel use":
  
 
::<math>C = {\rm log_2 } \hspace{0.15cm} \sqrt{\frac{P_y}{P_n }} = {\rm log_2 } \hspace{0.15cm} \sqrt{\frac{P_x + P_n}{P_n }} =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + \frac{P_x}{P_n } \right )\hspace{0.05cm}.</math>
 
::<math>C = {\rm log_2 } \hspace{0.15cm} \sqrt{\frac{P_y}{P_n }} = {\rm log_2 } \hspace{0.15cm} \sqrt{\frac{P_x + P_n}{P_n }} =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + \frac{P_x}{P_n } \right )\hspace{0.05cm}.</math>
  
*Beschreibt&nbsp; $x$ ein&nbsp; zeitdiskretes Signal mit der Symbolrate&nbsp; $1/T_{\rm S}$, so muss dieses auf&nbsp; $B = 1/(2T_{\rm S})$&nbsp; bandbegrenzt sein, und die gleiche Bandbreite&nbsp; $B$&nbsp; muss man auch für das Rauschsignal&nbsp; $n$&nbsp;  ansetzen &nbsp; &#8658; &nbsp; &bdquo;Rauschbandbreite&rdquo;:
+
*If&nbsp; $x$&nbsp; describes a&nbsp; discrete-time signal with symbol rate&nbsp; $1/T_{\rm S}$,&nbsp; it must be bandlimited to &nbsp; $B = 1/(2T_{\rm S})$, &nbsp; and the same bandwidth&nbsp; $B$&nbsp; must be applied to the noise signal&nbsp; $n$&nbsp; &#8658; &nbsp; "noise bandwidth":
  
 
::<math>P_X  = \frac{E_{\rm S}}{T_{\rm S} } \hspace{0.05cm}, \hspace{0.4cm} P_N  = \frac{N_0}{2T_{\rm S} }\hspace{0.05cm}. </math>
 
::<math>P_X  = \frac{E_{\rm S}}{T_{\rm S} } \hspace{0.05cm}, \hspace{0.4cm} P_N  = \frac{N_0}{2T_{\rm S} }\hspace{0.05cm}. </math>
  
*Somit lässt sich die AWGN&ndash;Kanalkapazität auch durch die&nbsp; '''Sendeenergie pro Symbol''' $(E_{\rm S})$&nbsp; und die&nbsp; '''Rauschleistungsdichte'''&nbsp; $(N_0)$ ausdrücken:
+
*Thus, the AWGN channel capacity can also be expressed by the&nbsp; &raquo;transmitted energy per symbol'''&laquo;&nbsp; $(E_{\rm S})$&nbsp; and the&nbsp; &raquo;'''noise power density'''&laquo;&nbsp; $(N_0)$:
  
 
::<math>C =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + {2 E_{\rm S}}/{N_0 } \right )\hspace{0.05cm}, \hspace{1.9cm}
 
::<math>C =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + {2 E_{\rm S}}/{N_0 } \right )\hspace{0.05cm}, \hspace{1.9cm}
\text {Einheit:}\hspace{0.3cm} \frac{\rm bit}{\rm Kanalzugriff}\hspace{0.05cm}.</math>
+
\text {unit:}\hspace{0.3cm} \frac{\rm bit}{\rm channel\:use}\hspace{0.05cm}.</math>
*Mit der folgenden Gleichung erhält man die Kanalkapazität pro Zeiteinheit (Kennzeichnung durch $^{\star})$:
+
*The following equation gives the channel capacity per unit time&nbsp; $($denoted by $^{\star})$:
 
::<math>C^{\star} = \frac{C}{T_{\rm S} } =    B \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + {2  E_{\rm S}}/{N_0 } \right )\hspace{0.05cm}, \hspace{0.8cm}
 
::<math>C^{\star} = \frac{C}{T_{\rm S} } =    B \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + {2  E_{\rm S}}/{N_0 } \right )\hspace{0.05cm}, \hspace{0.8cm}
\text {Einheit:} \hspace{0.3cm} \frac{\rm bit}{\rm Zeiteinheit}\hspace{0.05cm}.</math><br>
+
\text {unit:} \hspace{0.3cm} \frac{\rm bit}{\rm time\:unit}\hspace{0.05cm}.</math><br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;   
+
$\text{Example 1:}$&nbsp;   
*Für&nbsp; $E_{\rm S}/N_0  = 7.5$ &nbsp; &#8658; &nbsp; $10 \cdot \lg \, E_{\rm S}/N_0 = 8.75 \, \rm dB$&nbsp; erhält man die Kanalkapazität&nbsp; $C =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm} (16) = 2 \, \rm  bit/Kanalzugriff$.
+
*For&nbsp; $E_{\rm S}/N_0  = 7.5$ &nbsp; &#8658; &nbsp; $10 \cdot \lg \, E_{\rm S}/N_0 = 8.75 \, \rm dB$&nbsp; the channel capacity is&nbsp;  
*Bei einem Kanal mit der (physikalischen) Bandbreite&nbsp; $B = 4 \, \rm kHz$, was der Abtastrate&nbsp; $f_{\rm A} = 8\, \rm kHz$&nbsp; entspricht, gilt zudem&nbsp; $C^\star = 16 \, \rm kbit/s$.}}<br>
+
:$$C =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm} (16) = 2 \, \rm  bit/channel\:use.$$
 +
 +
*For a channel with the&nbsp; (physical)&nbsp; bandwidth&nbsp; $B = 4 \, \rm kHz$,&nbsp; which corresponds to the sampling rate&nbsp; $f_{\rm A} = 8\, \rm kHz$:&nbsp;  
 +
:$$C^\star = 16 \, \rm kbit/s.$$}}
  
Ein Vergleich verschiedener Codierverfahren bei konstantem&nbsp; $E_{\rm S}$&nbsp; (Energie ''pro übertragenem Symbol''&nbsp;) ist allerdings nicht fair. Vielmehr sollte man für diesen Vergleich die Energie&nbsp; $E_{\rm B}$&nbsp; ''pro Nutzbit''&nbsp; fest vorgeben. Dabei gelten folgende Zusammenhänge:
+
 
 +
*However,&nbsp; a comparison of different encoding methods at constant&nbsp; "energy per transmitted symbol" &nbsp; &rArr; &nbsp; $E_{\rm S}$&nbsp; is not fair.&nbsp;
 +
 
 +
*Rather,&nbsp; for this comparison,&nbsp; the&nbsp; "energy per source bit" &nbsp; &rArr; &nbsp; $E_{\rm B}$&nbsp; should be fixed.&nbsp; The following relationships apply:
  
 
::<math>E_{\rm S} = R \cdot E_{\rm B}  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
::<math>E_{\rm S} = R \cdot E_{\rm B}  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
Line 145: Line 169:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Kanalcodierungstheorem für den AWGN&ndash;Kanal:}$&nbsp;  
+
$\text{Channel Coding Theorem for the AWGN channel:}$&nbsp;  
  
Eine fehlerfreie Decodierung $($bei unendlich langen Blöcken &nbsp; &#8658; &nbsp; $n \to \infty)$&nbsp; ist immer dann möglich, falls die Coderate&nbsp; $R$&nbsp; kleiner ist als die Kanalkapazität&nbsp; $C$:
+
*Error-free decoding $($at infinitely long blocks &nbsp; &#8658; &nbsp; $n \to \infty)$&nbsp; is always possible if the code rate&nbsp; $R$&nbsp; is smaller than the channel capacity&nbsp; $C$:
  
 
::<math>R < C =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 +2 \cdot R\cdot E_{\rm B}/{N_0 } \right )\hspace{0.05cm}.</math>
 
::<math>R < C =  {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 +2 \cdot R\cdot E_{\rm B}/{N_0 } \right )\hspace{0.05cm}.</math>
  
Für jede Coderate&nbsp $R$&nbsp; lässt sich damit  das erforderliche&nbsp; $E_{\rm B}/N_0$&nbsp; des AWGN&ndash;Kanals ermitteln, damit eine fehlerfreie Decodierung gerade noch möglich ist. Man erhält für den Grenzfall&nbsp; $R = C$:
+
*For each code rate&nbsp; $R$&nbsp; the required&nbsp; $E_{\rm B}/N_0$&nbsp; of the AWGN channel can thus be determined so that error-free decoding is just possible.  
 +
 
 +
*One obtains for the limiting case&nbsp; $R = C$:
  
 
::<math>{E_{\rm B} }/{N_0} >  \frac{2^{2R}-1}{2R } \hspace{0.05cm}.</math>}}
 
::<math>{E_{\rm B} }/{N_0} >  \frac{2^{2R}-1}{2R } \hspace{0.05cm}.</math>}}
  
  
Die Grafik fasst das Ergebnis zusammen, wobei die Ordinate&nbsp; $R$&nbsp; im linearen Maßstab und die Abszisse&nbsp; $E_{\rm B}/{N_0 }$&nbsp; logarithmisch aufgetragen ist.
+
The graph summarizes the result,&nbsp; with the ordinate&nbsp; $R$&nbsp; plotted on a linear scale and the abscissa&nbsp; $E_{\rm B}/{N_0 }$&nbsp; plotted logarithmically.
[[File:P ID2373 KC T 1 7 S3b v3.png|right|frame|Kanalkapazität des AWGN–Kanals|class=fit]]  
+
[[File:EN_KC_T_1_7_S3b_v2.png|right|frame|AWGN channel capacity |class=fit]]  
*Außerhalb der blauen Fläche ist eine fehlerfreie Codierung nicht möglich.
+
*Error-free coding is not possible outside the blue area.  
*Die blaue Grenzkurve gibt die Kanalkapazität&nbsp; $C$&nbsp; des AWGN&ndash;Kanals an.<br>
 
<br clear=all>
 
Aus dieser Grafik und obiger Gleichung lässt sich Folgendes ableiten:
 
*Die Kanalkapazität&nbsp; $C$&nbsp; steigt etwas weniger als linear mit&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 $&nbsp; an. In der Grafik sind einige ausgewählte Funktionswerte als blaue Kreuze angegeben.<br>
 
  
*Ist&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0  < -1.59 \, \rm dB$, so ist eine fehlerfreie Decodierung prinzipiell unmöglich. Beträgt die Coderate&nbsp; $R = 0.5$, so muss&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0  > 0 \, \rm dB$&nbsp; sein &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $E_{\rm B} > N_0$.<br>
+
*The blue limit curve indicates the AWGN channel capacity&nbsp; $C$.<br>
  
*Für alle binären Codes gilt per se&nbsp; $0 < R &#8804; 1$. Nur mit <i>nichtbinären</i> Codes sind Coderaten&nbsp; $R >  1$&nbsp; möglich. Beispielsweise beträgt die maximal mögliche Coderate eines quaternären Codes&nbsp; $R = \log_2 \, M_y = \log_2 \, 4 = 2$.<br>
 
  
*Alle eindimensionalen Modulationsarten &ndash; also solche Verfahren, die nur die Inphase&ndash; oder nur die Quadraturkomponente nutzen wie&nbsp; [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#On.E2.80.93Off.E2.80.93Keying_.282.E2.80.93ASK.29|2&ndash;ASK]],&nbsp; [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Binary_Phase_Shift_Keying_.28BPSK.29|BPSK]]&nbsp; und&nbsp; [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_bin.C3.A4rer_FSK_.282.E2.80.93FSK.29|2&ndash;FSK]]&nbsp; &ndash; müssen im blauen Bereich der vorliegenden Grafik liegen.<br>
+
From this graph and the above equation,&nbsp; the following can be deduced:
*Wie im Kapitel&nbsp; [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Maximale_Coderate_f.C3.BCr_QAM.E2.80.93Strukturen|Maximale Coderate für QAM&ndash;Strukturen]]&nbsp; des Buches &bdquo;Informationstheorie&rdquo; gezeigt wird, gibt es für zweidimensionale Modulationsarten wie zum Beispiel die&nbsp; [[Modulationsverfahren/Quadratur–Amplitudenmodulation|Quadratur&ndash;Amplitudenmodulation]]&nbsp; eine &bdquo;freundlichere&rdquo; Grenzkurve.   
+
#Channel capacity&nbsp; $C$&nbsp; increases with&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 $&nbsp; somewhat less than linearly.&nbsp; In the graph,&nbsp; some selected function values are indicated as blue crosses.<br>
 +
#If&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 < -1.59 \, \rm dB$,&nbsp; error-free decoding is impossible in principle.&nbsp; If the code rate&nbsp; $R = 0.5$,&nbsp; then&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 > 0 \, \rm dB$&nbsp; must be &nbsp;&nbsp;&#8658;&nbsp; $E_{\rm B} > N_0$.<br>
 +
#For all binary codes holds per se&nbsp; $0 < R &#8804; 1$. Only with non-binary codes&nbsp; &rArr; &nbsp; rates&nbsp; $R > 1$&nbsp; are possible.&nbsp; For example,&nbsp; the maximum possible code rate of a quaternary code:&nbsp; $R = \log_2 \, M_y = \log_2 \, 4 = 2$.<br>
 +
#All one-dimensional modulation types &ndash; i.e., those methods that use only the in-phase&ndash; or only the quadrature component such as&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#On.E2.80.93off_keying_.282.E2.80.93ASK.29|$\text{2&ndash;ASK}$]],&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_phase_shift_keying_.28BPSK.29 |$\text{BPSK}$]]&nbsp; and&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_binary_FSK_.282.E2.80.93FSK.29|$\text{2&ndash;FSK}$]]&nbsp; must be in the blue area of the present graphic.<br>
 +
#As shown in the chapter&nbsp; [[Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input#Maximum_code_rate_for_QAM_structures|"Maximum code rate for QAM structures"]],&nbsp; there is a&nbsp; "friendlier"&nbsp; limit curve for two-dimensional modulation types such as the&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]].   
  
== AWGN–Kanalkapazität für binäre Eingangssignale ==
+
== AWGN channel capacity for binary input signals ==
 
<br>
 
<br>
In diesem Buch beschränken wir uns vorwiegend auf binäre Codes, also auf das Galoisfeld&nbsp; ${\rm GF}(2^n)$. Damit ist
+
In this book we restrict ourselves mainly to binary codes,&nbsp; that is,&nbsp; to the Galois field&nbsp; ${\rm GF}(2^n)$.&nbsp; With this
[[File:P ID2374 KC T 1 7 S4a.png|right|frame|Bedingte Dichtefunktionen bei AWGN–Kanal und binärem Eingang]]
+
[[File:P ID2374 KC T 1 7 S4a.png|right|frame|Conditional PDFs for AWGN channel and binary input]]
*zum einen die Coderate auf den Bereich&nbsp; $R &#8804; 1$&nbsp; begrenzt,<br>
 
*zum zweiten auch für&nbsp; $R &#8804; 1$&nbsp; nicht die gesamte blaue Region verfügbar  (siehe vorherige Seite).
 
  
 +
*firstly,&nbsp; the code rate is limited to the range&nbsp; $R &#8804; 1$,<br>
  
Die nun gültige Region ergibt sich aus der&nbsp; [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t|allgemeinen Gleichung]]&nbsp; der Transinformation durch
+
*secondly,&nbsp; also for&nbsp; $R &#8804; 1$&nbsp; not the whole blue region is available&nbsp; (see previous section).
*die Parameter&nbsp; $M_x = 2$&nbsp; und&nbsp; $M_y \to \infty$,<br>
 
*bipolare Signalisierung &nbsp; &#8658; &nbsp; $x=0$ &nbsp; &#8594; &nbsp; $\tilde{x} = +1$&nbsp; und&nbsp; $x=1$ &nbsp; &#8594; &nbsp; $\tilde{x} = -1$,<br>
 
*den Übergang von bedingten Wahrscheinlichkeiten&nbsp; ${\rm Pr}(\tilde{x}_i)$&nbsp; zu bedingten Wahrscheinlichkeitsdichtefunktionen,<br>
 
*Ersetzen der Summe durch eine Integration.<br><br>
 
  
Die Optimierung der Quelle führt auf gleichwahrscheinliche Symbole:
+
 
 +
*The now valid region results from the&nbsp; [[Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding#Channel_coding_theorem_and_channel_capacity|$\text{general equation}$]]&nbsp; of mutual information by
 +
#the parameters&nbsp; $M_x = 2$&nbsp; and&nbsp; $M_y \to \infty$,<br>
 +
#bipolar signaling &nbsp; &#8658; &nbsp; $x=0$ &nbsp; &#8594; &nbsp; $\tilde{x} = +1$&nbsp; and&nbsp; $x=1$ &nbsp; &#8594; &nbsp; $\tilde{x} = -1$,<br>
 +
#the transition from conditional probabilities&nbsp; ${\rm Pr}(\tilde{x}_i)$&nbsp; to conditional probability density functions,<br>
 +
#replace the sum with an integration.<br><br>
 +
 
 +
*The optimization of the source leads to equally probable symbols:
  
 
::<math>{\rm Pr}(\tilde{x} = +1) = {\rm Pr}(\tilde{x} = -1) = 1/2  \hspace{0.05cm}. </math>
 
::<math>{\rm Pr}(\tilde{x} = +1) = {\rm Pr}(\tilde{x} = -1) = 1/2  \hspace{0.05cm}. </math>
  
Damit erhält man  für das Maximum der Transinformation, also für die Kanalkapazität:  
+
*This gives for the maximum of the mutual information,&nbsp; i.e. for the channel capacity:  
  
 
::<math>C \hspace{-0.15cm} = {1}/{2} \cdot \int_{-\infty }^{+ \infty}
 
::<math>C \hspace{-0.15cm} = {1}/{2} \cdot \int_{-\infty }^{+ \infty}
Line 197: Line 224:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Das Integral lässt sich nicht in mathematisch&ndash;geschlossener Form lösen, sondern kann nur numerisch ausgewertet werden.  
+
The integral cannot be solved in mathematical closed form, but can only be evaluated numerically.
*Die grüne Kurve zeigt das Ergebnis.  
+
[[File:EN_KC_T_1_7_S4b_v2.png|right|frame|AWGN channel capacity for binary input signals |class=fit]]
*Die blaue Kurve gibt zum Vergleich die auf der letzten Seite hergeleitete Kanalkapazität für gaußverteilte Eingangssignale an.
+
 +
#The green curve shows the result.
 +
#The blue curve gives for comparison the channel capacity for Gaussian distributed input signals derived in the last section.
 
   
 
   
[[File:P ID2375 KC T 1 7 S4b v3.png|right|frame|AWGN–Kanalkapazität für binäre Eingangssignale|class=fit]]
 
  
 +
It can be seen:
 +
*For&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 < 0 \, \rm dB$&nbsp; the two capacitance curves differ only slightly.
 +
 +
*So,&nbsp; for binary bipolar input,&nbsp; compared to the optimum (Gaussian) input,&nbsp; the characteristic&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0$&nbsp; only needs to be increased by about&nbsp; $0.1 \, \rm dB$&nbsp; to also allow the code rate&nbsp; $R = 0.5$.<br>
  
Man erkennt:
+
*From&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 \approx6 \, \rm dB$&nbsp; the capacity&nbsp; $C = 1 \, \rm bit/channel\:use$&nbsp; of the AWGN channel for binary input is almost reached.
*Für&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0  < 0  \, \rm dB$&nbsp; unterscheiden sich die beiden Kapazitätskurven nur geringfügig.
+
*So muss man bei binärem bipolaren Eingang gegenüber dem Optimum (Gaußscher Eingang) die Kenngröße&nbsp;  $10 \cdot \lg \, E_{\rm B}/N_0$&nbsp; nur etwa um&nbsp; $0.1 \, \rm dB$&nbsp; erhöhen, um ebenfalls die Coderate&nbsp; $R = 0.5$&nbsp; zu ermöglichen.<br>
+
*In between, the limit curve is approximately exponentially increasing.
 
 
*Ab&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 \approx6 \, \rm dB$&nbsp; ist die Kapazität&nbsp; $C = 1 \, \rm bit/Kanalzugriff$&nbsp; des AWGN&ndash;Kanals für binären Eingang (fast) erreicht.  
 
*Dazwischen verläuft die Grenzkurve annähernd  exponentiell ansteigend.
 
 
<br clear=all>
 
<br clear=all>
== Gebräuchliche Kanalcodes im Vergleich zur Kanalkapazität ==
+
== Common channel codes versus channel capacity ==
 
<br>
 
<br>
Nun soll gezeigt werden, in wie weit sich etablierte Kanalcodes der BPSK&ndash;Kanalkapazität (grüne Kurve) annähern. In der folgenden Grafik ist als Ordinate die Rate&nbsp; $R=k/n$&nbsp; dieser Codes bzw. die Kapazität&nbsp; $C$&nbsp; (mit der zusätzlichen Pseudo&ndash;Einheit &bdquo;bit/Kanalzugriff&rdquo;) aufgetragen. Weiter ist vorausgesetzt:
+
Now it shall be shown to what extent established channel codes approximate the BPSK channel capacity&nbsp; (green curve). &nbsp; In the following graph the rate &nbsp; $R=k/n$ &nbsp; of these codes or the capacity &nbsp; $C$ &nbsp; (with the additional pseudo&ndash;unit "bit/channel use")&nbsp; is plotted as ordinate.  
*der AWGN&ndash;Kanal, gekennzeichnet durch&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0$&nbsp; in dB, und<br>
+
[[File:EN_KC_T_1_7_S5a.png|right|frame|Rates and required &nbsp;$E_{\rm B}/{N_0}$&nbsp; of different channel codes]]
  
*für die durch Kreuze markierten Codes eine Bitfehlerrate (BER) von&nbsp; $10^{-5}$.<br>
+
Further,&nbsp; it is assumed:
 
+
*the AWGN&ndash;channel,&nbsp; denoted by&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0$&nbsp; in dB,&nbsp; and<br>
 
 
[[File:P ID2968 KC T 1 7 S5a v3.png|right|frame|Raten und erforderliches&nbsp; $E_{\rm B}/N_0$&nbsp; verschiedener Kanalcodes|class=fit]]
 
  
 +
*bit error rate&nbsp; $\rm BER=10^{-5}$ for all codes marked by crosses.<br>
  
 
   
 
   
$\text{Bitte beachten Sie:}$&nbsp;  
+
$\text{Please note:}$&nbsp;  
*Die Kanalkapazitätskurven gelten stets für&nbsp; $n \to \infty$&nbsp; und&nbsp; $\rm BER \to 0$&nbsp; gelten.  
+
#The channel capacity curves always apply to&nbsp; $n \to \infty$&nbsp; and&nbsp; $\rm BER \to 0$&nbsp;.  
*Würde man diese strenge Forderung &bdquo;fehlerfrei&rdquo; auch an die betrachteten Kanalcodes endlicher Codelänge&nbsp; $n$&nbsp; anlegen, so wäre hierfür stets&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 \to \infty$&nbsp; erforderlich.  
+
#If one would apply this strict requirement&nbsp; "error-free"&nbsp; also to the considered channel codes of finite code length&nbsp; $n$,&nbsp; this would always require&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 \to \infty$&nbsp;.  
*Dies ist aber ein akademisches Problem, das für die Praxis wenig Bedeutung hat. Für&nbsp; $\rm BER = 10^{-10}$&nbsp; ergäbe sich eine qualitativ und auch quantitativ ähnliche Grafik.<br>
+
#But this is an academic problem of little practical significance.&nbsp; For&nbsp; $\rm BER = 10^{-10}$&nbsp; a qualitatively and also quantitatively similar graph would result.<br>
 +
#For convolutional codes,&nbsp; the third identifier parameter has a different meaning than for block codes.&nbsp; For example,&nbsp; $\text{CC (2, 1, 32)}$&nbsp; indicates the memory&nbsp; $m = 32$<br>
 
<br clear=all>
 
<br clear=all>
Es folgen einige Erläuterungen zu den Daten, die der Vorlesung [Liv10]<ref name='Liv10'>Liva, G.: Channel Coding. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, TU München und DLR Oberpfaffenhofen, 2010.</ref> entnommen wurden:
+
The following are some&nbsp; &raquo;'''explanations of the data taken from the lecture [Liv10]<ref name='Liv10'>Liva, G.: Channel Coding. Lecture manuscript, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010.</ref>'''&laquo;:
*Die Punkte&nbsp; $\rm A$,&nbsp; $\rm B$&nbsp; und&nbsp; $\rm C$&nbsp; markieren&nbsp; [[Kanalcodierung/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Hamming&ndash;Codes]]&nbsp; unterschiedlicher Rate. Sie alle benötigen für&nbsp; $\rm BER = 10^{-5}$&nbsp; mehr alss&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 = 8 \, \rm dB$.
+
#The points&nbsp; $\rm A$,&nbsp; $\rm B$&nbsp; and&nbsp; $\rm C$&nbsp; mark&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|$\text{Hamming codes}$]]&nbsp; of different rate.&nbsp; They all require for&nbsp; $\rm BER = 10^{-5}$&nbsp; more than&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 = 8 \, \rm dB$.
*Die Markierung&nbsp; $\rm D$&nbsp; kennzeichnet den binären&nbsp; [https://de.wikipedia.org/wiki/Golay-Code Golay&ndash;Code]&nbsp; mit der Rate&nbsp; $1/2$&nbsp; und die Markierung&nbsp; $\rm E$&nbsp; einen&nbsp; [https://de.wikipedia.org/wiki/Reed-Muller-Code Reed&ndash;Muller&ndash;Code]. Dieser sehr niederratige Code kam bereits 1971 bei der Raumsonde Mariner 9 zum Einsatz.
+
#$\rm D$&nbsp; denotes the binary&nbsp; [https://en.wikipedia.org/wiki/Binary_Golay_code $\text{Golay code}$]&nbsp; with rate&nbsp; $1/2$&nbsp; and&nbsp; $\rm E$&nbsp; denotes a&nbsp; [https://en.wikipedia.org/wiki/Reed-Muller_code $\text{Reed&ndash;Muller code}$].&nbsp; This very low rate code was used 1971 on the Mariner 9 spacecraft.
*Die&nbsp; [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed–Solomon–Codes|Reed&ndash;Solomon&ndash;Codes]]&nbsp; (RS&ndash;Codes) werden im zweiten Hauptkapitel ausführlich behandelt. Mit&nbsp; $\rm F$&nbsp; markiert ist ein hochratiger RS&ndash;Code&nbsp; $(R = 223/255 > 0.9)$&nbsp; und einem erforderlichen&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 < 6 \, \rm dB$.  
+
#Marked by&nbsp; $\rm F$&nbsp; is a high rate&nbsp; [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes|$\text{Reed&ndash;Solomon codes}$]] &nbsp; $(R = 223/255 > 0.9)$ &nbsp;and a required&nbsp; $10 \cdot \lg \, E_{\rm B}/N_0 < 6 \, \rm dB$.  
*Die Markierungen&nbsp; $\rm G$&nbsp; und&nbsp; $\rm H$&nbsp; bezeichnen beispielhafte&nbsp; [[Kanalcodierung/Grundlagen_der_Faltungscodierung|Faltungscodes]]&nbsp; (englisch: &nbsp; <i>Convolutional Codes</i>, CC) mittlerer Rate. Der Code&nbsp; $\rm G$&nbsp; wurde schon 1972 bei der Pioneer10&ndash;Mission eingesetzt.
+
#The markers&nbsp; $\rm G$&nbsp; and&nbsp; $\rm H$&nbsp; denote exemplary&nbsp; [[Channel_Coding/Basics_of_Convolutional_Coding|$\text{convolutional codes}$]]&nbsp; medium rate. The code&nbsp; $\rm G$&nbsp; was used as early as 1972 on the Pioneer10 mission.
*Die Kanalcodierung der Voyager&ndash;Mission Ende der 1970er Jahre ist mit&nbsp; $\rm I$&nbsp; markiert. Es handelt sich um die Verkettung eines&nbsp; $\text{(2, 1, 7)}$&ndash;Faltungscodes mit einem Reed&ndash;Solomon&ndash;Code, wie im vierten Hauptkapitel beschrieben.<br><br>
+
#The channel coding of the Voyager&ndash;mission in the late 1970s is marked by&nbsp; $\rm I$.&nbsp; It is the concatenation of a&nbsp; $\text{CC (2, 1, 7)}$&nbsp; with a&nbsp; [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes|$\text{Reed&ndash;Solomon code}$]].<br><br>
 
 
''Anmerkung'': &nbsp; Bei den Faltungscodes hat insbesondere der dritte Kennungsparameter eine andere Bedeutung als bei den Blockcodes. $\text{CC (2, 1, 32)}$&nbsp; weist beispielsweise auf das Memory&nbsp; $m = 32$&nbsp; hin.<br>
 
[[File:P ID2377 KC T 1 7 S5b v4.png|right|frame|Raten und erforderliches&nbsp; $E_{\rm B}/N_0$&nbsp;  für iterative Codierverfahren |class=fit]]
 
 
 
 
 
  
  
Mit iterativer Decodierung lassen sich deutlich bessere Ergebnisse erzielen, wie die zweite Grafik zeigt.
+
Much better results can be achieved with&nbsp; &raquo;'''iterative decoding methods'''&laquo;&nbsp; (see fourth main chapter),&nbsp; as the second graph shows.
*Das heißt: &nbsp;Die einzelnen Markierungspunkte liegen sehr viel näher an der Kapazitätskurve.<br>
+
[[File:EN_KC_T_1_7_S5b.png|right|frame|Rates and required&nbsp; $E_{\rm B}/N_0$&nbsp; for iterative coding methods |class=fit]]  
*Die bisher mit &bdquo;Gauß&ndash;Kapazität&rdquo; beschriftete durchgezogene blaue Kurve wird hier &bdquo;Gauß (reell)&rdquo; genannt.  
+
*This means: &nbsp;The individual marker points are much closer to the capacity curve&nbsp; $C_{\rm BPSK}$&nbsp; for digital input.<br>
<br clear=all>
 
Hier noch einige weitere Erläuterungen zu dieser Grafik:
 
* Rote Kreuze markieren sogenannte&nbsp; [[Kanalcodierung/Grundlegendes_zu_den_Turbocodes|Turbocodes]]&nbsp; nach&nbsp; [https://en.wikipedia.org/wiki/Consultative_Committee_for_Space_Data_Systems CCSDS]&nbsp; (<i>Consultative Committee for Space Data Systems</i>&nbsp;) mit jeweils&nbsp; $k = 6920$&nbsp; Informationsbits und unterschiedlichen Codelängen&nbsp; $n$. Diese von&nbsp; [http://perso.telecom-bretagne.eu/claudeberrou/ Claude Berrou]&nbsp; um 1990 erfundenen Codes können iterativ decodiert werden. Die (roten) Markierungen liegen jeweils weniger als&nbsp; $1 \, \rm dB$&nbsp; von der Shannon&ndash;Grenze entfernt.<br>
 
 
 
*Ähnliches Verhalten zeigen die durch weiße Rechtecke gekennzeichneten&nbsp; [[Kanalcodierung/Grundlegendes_zu_den_Low–density_Parity–check_Codes|LDPC&ndash;Codes]]&nbsp; (<i>Low Density Parity&ndash;check Codes</i>&nbsp;), die seit 2006 bei&nbsp; [https://de.wikipedia.org/wiki/DVB-SDVB&ndash;S2 DVB-SDVB&ndash;S2]&nbsp; (<i>Digital Video Broadcast over Satellite</i>&nbsp;) eingesetzt werden. Diese eignen sich aufgrund der spärlichen Belegung der Prüfmatrix&nbsp; $\boldsymbol {\rm H}$&nbsp; (mit Einsen) sehr gut für die iterative Decodierung mittels ''Faktor&ndash;Graphen'' &nbsp; und &nbsp;  ''Exit Charts''. Siehe  [Hag02]<ref name='Hag02'>Hagenauer, J.: ''The Turbo Principle in Mobile Communications''. In: Int. Symp. on Information Theory and Its Applications, Oct.2010,  [http://wwwmayr.in.tum.de/konferenzen/Jass05/courses/4/papers/prof_hagenauer.pdf PDF&ndash;Dokument.]</ref><br>
 
  
*Die schwarzen Punkte markieren die von CCSDS spezifizierten&nbsp; [[Kanalcodierung/Grundlegendes_zu_den_Low–density_Parity–check_Codes|LDPC&ndash;Codes]], die alle von einer konstanten Anzahl von Informationsbits ausgehen&nbsp; $(k = 16384)$. Dagegen ist bei allen weißen Rechtecken die Codelänge&nbsp; $n = 64800$&nbsp; konstant, während sich die Anzahl&nbsp; $k$&nbsp; der Informationsbits entsprechend der Rate&nbsp; $R = k/n$&nbsp; ändert.<br>
+
*The solid blue Gaussian capacity curve is labeled&nbsp; $C_{\rm Gaussian}$.  
  
*Um das Jahr 2000 hatten viele Forscher den Ehrgeiz, sich der Shannon&ndash;Grenze bis auf Bruchteile von einem &nbsp;$\rm dB$&nbsp; anzunähern. Das gelbe Kreuz markiert ein solches Ergebnis aus [CFRU01]<ref name='CFRU01'>Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.: ''On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit''. – In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58–60.''</ref>. Verwendet wurde ein irregulärer Rate&ndash;1/2&ndash;LDPC&ndash;Code der Codelänge&nbsp; $n = 2 \cdot10^6$.<br><br>
+
Here are some more explanations about this graph:
 +
# Red crosses mark so-called&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes|$\text{turbo codes}$]]&nbsp; accordingt to&nbsp; [https://en.wikipedia.org/wiki/Consultative_Committee_for_Space_Data_Systems $\text{CCSDS}$]&nbsp; ("Consultative Committee for Space Data Systems")&nbsp; with each&nbsp; $k = 6920$&nbsp; information bits and different code lengths&nbsp; $n$.
 +
#These codes,&nbsp; invented by&nbsp; [http://perso.telecom-bretagne.eu/claudeberrou/ $\text{Claude Berrou}$]&nbsp; around 1990,&nbsp; can be decoded iteratively.&nbsp; The&nbsp; (red)&nbsp; marks are each less than&nbsp; $1 \, \rm dB$&nbsp; from the Shannon bound.<br>
 +
#Similar behavior is shown by&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes|$\text{LDPC codes}$]]&nbsp; ("Low Density Parity&ndash;check Codes")&nbsp; marked by white rectangles,&nbsp; which have been used since in 2006 on&nbsp; [https://en.wikipedia.org/wiki/DVB-S2 $\text{DVB&ndash;S(2)}$]&nbsp; ("Digital Video Broadcast over Satellite").
 +
#These are well suited for iterative decoding using&nbsp; "factor&ndash;graphs"&nbsp; &nbsp; and &nbsp; "exit charts"&nbsp; due to the sparse occupancy of the parity-check matrix&nbsp; $\boldsymbol {\rm H}$&nbsp; (with "ones").&nbsp; See  [Hag02]<ref name='Hag02'>Hagenauer, J.: The Turbo Principle in Mobile Communications.&nbsp; In: Int. Symp. on Information Theory and Its Applications, Oct.2010,&nbsp;  [http://wwwmayr.in.tum.de/konferenzen/Jass05/courses/4/papers/prof_hagenauer.pdf $\text{PDF document}$.]</ref><br>
 +
#The black dots mark the CCSDS specified&nbsp; [[Channel_Coding/The_Basics_of_Low-Density_Parity_Check_Codes|$\text{LDPC codes}$]],&nbsp; all of which assume a constant number of information bits&nbsp; $(k = 16384)$.&nbsp;
 +
#In contrast,&nbsp; for all white rectangles,&nbsp; the code length&nbsp; $n = 64800$&nbsp; is constant,&nbsp; while the number&nbsp; $k$&nbsp; of information bits changes according to the rate&nbsp; $R = k/n$.<br>
 +
#Around the year 2000,&nbsp; many researchers had the ambition to approach the Shannon bound to within fractions of a &nbsp;$\rm dB$.&nbsp; The yellow cross marks such a result from [CFRU01]<ref name='CFRU01'>Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.:&nbsp; On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit. – In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58–60.</ref>. Used an irregular rate&ndash;1/2&ndash;LDPC of code length&nbsp; $n = 2 \cdot10^6$.<br><br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Festzuhalten ist, dass Shannon bereits 1948 erkannt und nachgewiesen hat, dass kein eindimensionales Modulationsverfahren links von der durchgehend eingezeichneten AWGN&ndash;Grenzkurve &bdquo;Gauß (reell)&rdquo; liegen kann.   
+
$\text{Conclusion:}$&nbsp; It should be noted that Shannon recognized and proved as early as 1948 that no one-dimensional modulation method can lie to the left of the AWGN limit curve "Gaussian (real)" drawn throughout.   
*Für zweidimensionale Verfahren wie QAM und mehrstufige PSK gilt dagegen die Grenzkurve &bdquo;Gauß (komplex)&rdquo;, die hier gestrichelt gezeichnet ist und stets links von der durchgezogenen Kurve liegt.  
+
*For two-dimensional methods such as QAM and multilevel PSK, on the other hand, the "Gaussian (complex)" limit curve applies, which is drawn here as a dashed line and always lies to the left of the solid curve.  
*Näheres hierzu finden Sie im Abschnitt&nbsp; [[Informationstheorie/AWGN%E2%80%93Kanalkapazit%C3%A4t_bei_wertdiskretem_Eingang#Maximale_Coderate_f.C3.BCr_QAM.E2.80.93Strukturen|Maximale Coderate für QAM&ndash;Strukturen]]&nbsp; des Buches &bdquo;Informationstheorie&rdquo;.<br>
+
*For more details, see the&nbsp; [[Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input#Maximum_code_rate_for_QAM_structures|$\text{Maximum code rate for QAM structures}$]]&nbsp; section of the "Information Theory" book.<br>
*Auch diese Grenzkurve wurde mit QAM&ndash;Verfahren und sehr langen Kanalcodes inzwischen nahezu erreicht, ohne dass sie jemals überschritten werden wird.}}<br>
+
*Also, this limit curve has now been nearly reached with QAM methods and very long channel codes, without ever being exceeded.}}<br>
  
== Aufgaben zum Kapitel ==
+
== Exercises for the chapter ==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_1.17:_Zum_Kanalcodierungstheorem|Aufgabe 1.17: Zum Kanalcodierungstheorem]]
+
[[Aufgaben:Exercise_1.17:_About_the_Channel_Coding_Theorem|Exercise 1.17: About the Channel Coding Theorem]]
  
[[Aufgaben:Aufgabe_1.17Z:_BPSK–Kanalkapazität|Aufgabe 1.17Z: BPSK–Kanalkapazität]]
+
[[Aufgaben:Exercise_1.17Z:_BPSK_Channel_Capacity|Exercise 1.17Z: BPSK Channel Capacity]]
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 11:12, 22 November 2022

Channel coding theorem and channel capacity


We further consider a binary block code with 

  • $k$  information bits per block,
  • code words of length  $n$,
  • resulting in the code rate  $R=k/n$  with the unit  "information bit/code symbol".


The ingenious information theorist  $\text{Claude E. Shannon}$  has dealt very intensively with the correctability of such codes already in 1948 and has given for this a limit for each channel which results from information-theoretical considerations alone.  Up to this day,  no code has been found which exceeds this limit,  and this will remain so.

$\text{Shannon's channel coding theorem:}$  For each channel with channel capacity  $C > 0$  there always exists  (at least)  one code whose error probability approaches zero as long as the code rate  $R$  is smaller than the channel capacity  $C$.  The prerequisite for this is that the following holds for the block length of this code:  

$$n \to \infty.$$


Notes: 

  • The statement  "The error probability approaches zero"  is not identical with the statement  "The transmission is error-free".  Example:   For an infinitely long sequence,  finitely many symbols are falsified.
  • For some channels,  even with  $R=C$  the error probability still goes towards zero  (but not for all).


The inverse of the channel coding theorem is also true and states:

$\text{Inverse:}$  If the code rate  $R$  is larger than the channel capacity  $C$,  then an arbitrarily small error probability cannot be achieved in any case.


To derive and calculate the channel capacity,  we first assume a digital channel with  $M_x$  possible input values  $x$  and  $M_y$  possible output values  $y$.  Then,  for the mean mutual information  – in short,  the  $\text{mutual information}$   –  between the random variable  $x$  at the channel input and the random variable  $y$  at its output:

\[I(x; y) =\sum_{i= 1 }^{M_X} \hspace{0.15cm}\sum_{j= 1 }^{M_Y} \hspace{0.15cm}{\rm Pr}(x_i, y_j) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i)}{{\rm Pr}(y_j)} = \sum_{i= 1 }^{M_X} \hspace{0.15cm}\sum_{j= 1 }^{M_Y}\hspace{0.15cm}{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i) \cdot {\rm Pr}(x_i) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_i)}{\sum_{k= 1}^{M_X} {\rm Pr}(y_j \hspace{0.05cm}| \hspace{0.05cm}x_k) \cdot {\rm Pr}(x_k)} \hspace{0.05cm}.\]

In the transition from the first to the second equation, the   $\text{Theorem of Bayes}$   and the   $\text{Theorem of Total Probability}$   were considered.

Further,  it should be noted:

  • The  "binary logarithm"  is denoted here with  "log2".  Partially,  we also use  "ld"  ("logarithm dualis")  for this in our learning tutorial.
  • In contrast to the book  $\text{Information Theory}$  we do not distinguish in the following between the random variable  $($upper case letters  $X$  resp.  $Y)$  and the realizations $($lower case letters  $x$  resp.  $y)$.


$\text{Definition:}$  The  »channel capacity«  introduced by Shannon gives the maximum mutual information  $I(x; y)$  between the input variable  $x$  and output variable  $y$:

\[C = \max_{{{\rm Pr}(x_i)}} \hspace{0.1cm} I(X; Y) \hspace{0.05cm}.\]
  • The pseudo–unit  "bit/channel use"  must be added.


Since the maximization of the mutual information  $I(x; y)$  must be done over all possible  (discrete)  input distributions  ${\rm Pr}(x_i)$,
»the channel capacity is independent of the input and thus a pure channel parameter«.

Channel capacity of the BSC model


We now apply these definitions to the  $\text{BSC model}$  ("Binary Symmetric Channel"):

\[I(x; y) = {\rm Pr}(y = 0 \hspace{0.03cm}| \hspace{0.03cm}x = 0) \cdot {\rm Pr}(x = 0) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y = 0 \hspace{0.03cm}| \hspace{0.03cm}x = 0)}{{\rm Pr}(y = 0)} + {\rm Pr}(y = 1 \hspace{0.03cm}| \hspace{0.03cm}x = 0) \cdot {\rm Pr}(x = 0) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(Y = 1 \hspace{0.03cm}| \hspace{0.03cm}x = 0)}{{\rm Pr}(y = 1)} + \]
\[\hspace{1.45cm} + \hspace{0.15cm}{\rm Pr}(y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 1) \cdot {\rm Pr}(x = 1) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(Y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 1)}{{\rm Pr}(y = 0)} + {\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 1) \cdot {\rm Pr}(x = 1) \cdot {\rm log_2 } \hspace{0.15cm}\frac{{\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 1)}{{\rm Pr}(y = 1)} \hspace{0.05cm}.\]

The channel capacity is arrived at by the following considerations:

Binary symmetric channel
  • Maximization with respect to the input distribution leads to equally probable symbols:
\[{\rm Pr}(x = 0) = {\rm Pr}(x = 1) = 1/2 \hspace{0.05cm}.\]
  • Due to the symmetry evident from the model,  the following then holds simultaneously:
\[{\rm Pr}(y = 0) = {\rm Pr}(y = 1) = 1/2 \hspace{0.05cm}.\]
  • We also consider the BSC transmission probabilities:
\[{\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 0) = {\rm Pr}(y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 1) = \varepsilon \hspace{0.05cm},\]
\[{\rm Pr}(y = 0 \hspace{0.05cm}| \hspace{0.05cm}x = 0) = {\rm Pr}(y = 1 \hspace{0.05cm}| \hspace{0.05cm}x = 1) = 1-\varepsilon \hspace{0.05cm}.\]
  • After combining two terms each,  we thus obtain:
\[C \hspace{0.15cm} = \hspace{0.15cm} 2 \cdot 1/2 \cdot \varepsilon \cdot {\rm log_2 } \hspace{0.15cm}\frac{\varepsilon}{1/2 }+ 2 \cdot 1/2 \cdot (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm}\frac{1- \varepsilon}{1/2 } \varepsilon \cdot {\rm ld } \hspace{0.15cm}2 - \varepsilon \cdot {\rm log_2 } \hspace{0.15cm} \frac{1}{\varepsilon }+ (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm} 2 - (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{1- \varepsilon}\]
\[\Rightarrow \hspace{0.3cm} C \hspace{0.15cm} = \hspace{0.15cm} 1 - H_{\rm bin}(\varepsilon). \]
  • Here,  the  "binary entropy function"  is used:
\[H_{\rm bin}(\varepsilon) = \varepsilon \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{\varepsilon}+ (1- \varepsilon) \cdot {\rm log_2 } \hspace{0.15cm}\frac{1}{1- \varepsilon}\hspace{0.05cm}.\]

The right graph shows the BSC channel capacity depending on the falsificaion probability  $\varepsilon$.  On the left,  for comparison,  the binary entropy function is shown,  which has already been defined in the chapter  $\text{Discrete Memoryless Sources}$  of the book  "Information Theory". 

Channel capacity of the BSC model

One can see from this representation:

  • The falsificaion probability  $\varepsilon$  leads to the channel capacity  $C(\varepsilon)$.  According to the  $\text{channel coding theorem}$  error-free decoding is only possible if the code rate  $R \le C(\varepsilon)$.
  • With  $\varepsilon = 10\%$,  error-free decoding is impossible  if the code rate  $R > 0.531$   $($because:  $C(0.1) = 0.531)$.
  • With  $\varepsilon = 50\%$,  error-free decoding is impossible even if the code rate is arbitrarily small   $($because:  $C(0.5) = 0)$.
  • From an information theory point of view  $\varepsilon = 1$  $($inversion of all bits$)$  is equivalent to  $\varepsilon = 0$  $($"error-free transmission"$)$.
  • Error-free decoding is achieved here by swapping the zeros and ones, i.e. by a so-called  "mapping".
  • Similarly  $\varepsilon = 0.9$  is equivalent to  $\varepsilon = 0.1$. 


Channel capacity of the AWGN model


We now consider the  $\text{AWGN channel}$  ("Additive White Gaussian Noise").

AWGN channel model

Here,  for the output signal  $y = x + n$,  where  $n$  describes a  $\text{Gaussian distributed random variable}$  and it applies to their expected values  ("moments"):

  1.  ${\rm E}[n] = 0,$
  2.  ${\rm E}[n^2] = P_n.$


Thus,  regardless of the input signal  $x$  $($analog or digital$)$,  there is always a continuous-valued output signal  $y$,  and in the  $\text{equation for mutual information}$  is to be used: 

$$M_y \to\infty.$$

The calculation of the AWGN channel capacity is given here only in keywords.  The exact derivation can be found in the fourth main chapter  "Discrete Value Information Theory"  of the textbook  $\text{Information Theory}$.

  • The input quantity  $x$  optimized with respect to maximum mutual information will certainly be continuous-valued,  that is,  for the AWGN channel in addition to   $M_y \to\infty$   also holds   $M_x \to\infty$.
\[C = \max_{f_x(x)} \hspace{0.1cm} I(x; y)\hspace{0.05cm},\hspace{0.3cm}{\rm where \hspace{0.15cm} must \hspace{0.15cm} apply} \text{:}\hspace{0.15cm} {\rm E} \left [ x^2 \right ] \le P_x \hspace{0.05cm}.\]
  • The optimization also yields a Gaussian distribution for the input PDF   ⇒   $x$,  $n$  and  $y$  are Gaussian distributed according to the probability density functions  $f_x(x)$,   $f_n(n)$   and   $f_y(y)$.  We designate the corresponding powers  $P_x$,  $P_n$  and  $P_y$.
  • After longer calculation one gets for the channel capacity using the  "binary logarithm"  $\log_2(\cdot)$  –  again with the pseudo-unit  "bit/channel use":
\[C = {\rm log_2 } \hspace{0.15cm} \sqrt{\frac{P_y}{P_n }} = {\rm log_2 } \hspace{0.15cm} \sqrt{\frac{P_x + P_n}{P_n }} = {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + \frac{P_x}{P_n } \right )\hspace{0.05cm}.\]
  • If  $x$  describes a  discrete-time signal with symbol rate  $1/T_{\rm S}$,  it must be bandlimited to   $B = 1/(2T_{\rm S})$,   and the same bandwidth  $B$  must be applied to the noise signal  $n$  ⇒   "noise bandwidth":
\[P_X = \frac{E_{\rm S}}{T_{\rm S} } \hspace{0.05cm}, \hspace{0.4cm} P_N = \frac{N_0}{2T_{\rm S} }\hspace{0.05cm}. \]
  • Thus, the AWGN channel capacity can also be expressed by the  »transmitted energy per symbol«  $(E_{\rm S})$  and the  »noise power density«  $(N_0)$:
\[C = {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + {2 E_{\rm S}}/{N_0 } \right )\hspace{0.05cm}, \hspace{1.9cm} \text {unit:}\hspace{0.3cm} \frac{\rm bit}{\rm channel\:use}\hspace{0.05cm}.\]
  • The following equation gives the channel capacity per unit time  $($denoted by $^{\star})$:
\[C^{\star} = \frac{C}{T_{\rm S} } = B \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 + {2 E_{\rm S}}/{N_0 } \right )\hspace{0.05cm}, \hspace{0.8cm} \text {unit:} \hspace{0.3cm} \frac{\rm bit}{\rm time\:unit}\hspace{0.05cm}.\]

$\text{Example 1:}$ 

  • For  $E_{\rm S}/N_0 = 7.5$   ⇒   $10 \cdot \lg \, E_{\rm S}/N_0 = 8.75 \, \rm dB$  the channel capacity is 
$$C = {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm} (16) = 2 \, \rm bit/channel\:use.$$
  • For a channel with the  (physical)  bandwidth  $B = 4 \, \rm kHz$,  which corresponds to the sampling rate  $f_{\rm A} = 8\, \rm kHz$: 
$$C^\star = 16 \, \rm kbit/s.$$


  • However,  a comparison of different encoding methods at constant  "energy per transmitted symbol"   ⇒   $E_{\rm S}$  is not fair. 
  • Rather,  for this comparison,  the  "energy per source bit"   ⇒   $E_{\rm B}$  should be fixed.  The following relationships apply:
\[E_{\rm S} = R \cdot E_{\rm B} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B} = E_{\rm S} / R \hspace{0.05cm}. \]

$\text{Channel Coding Theorem for the AWGN channel:}$ 

  • Error-free decoding $($at infinitely long blocks   ⇒   $n \to \infty)$  is always possible if the code rate  $R$  is smaller than the channel capacity  $C$:
\[R < C = {1}/{2 } \cdot {\rm log_2 } \hspace{0.05cm}\left ( 1 +2 \cdot R\cdot E_{\rm B}/{N_0 } \right )\hspace{0.05cm}.\]
  • For each code rate  $R$  the required  $E_{\rm B}/N_0$  of the AWGN channel can thus be determined so that error-free decoding is just possible.
  • One obtains for the limiting case  $R = C$:
\[{E_{\rm B} }/{N_0} > \frac{2^{2R}-1}{2R } \hspace{0.05cm}.\]


The graph summarizes the result,  with the ordinate  $R$  plotted on a linear scale and the abscissa  $E_{\rm B}/{N_0 }$  plotted logarithmically.

AWGN channel capacity
  • Error-free coding is not possible outside the blue area.
  • The blue limit curve indicates the AWGN channel capacity  $C$.


From this graph and the above equation,  the following can be deduced:

  1. Channel capacity  $C$  increases with  $10 \cdot \lg \, E_{\rm B}/N_0 $  somewhat less than linearly.  In the graph,  some selected function values are indicated as blue crosses.
  2. If  $10 \cdot \lg \, E_{\rm B}/N_0 < -1.59 \, \rm dB$,  error-free decoding is impossible in principle.  If the code rate  $R = 0.5$,  then  $10 \cdot \lg \, E_{\rm B}/N_0 > 0 \, \rm dB$  must be   ⇒  $E_{\rm B} > N_0$.
  3. For all binary codes holds per se  $0 < R ≤ 1$. Only with non-binary codes  ⇒   rates  $R > 1$  are possible.  For example,  the maximum possible code rate of a quaternary code:  $R = \log_2 \, M_y = \log_2 \, 4 = 2$.
  4. All one-dimensional modulation types – i.e., those methods that use only the in-phase– or only the quadrature component such as  $\text{2–ASK}$$\text{BPSK}$  and  $\text{2–FSK}$  must be in the blue area of the present graphic.
  5. As shown in the chapter  "Maximum code rate for QAM structures",  there is a  "friendlier"  limit curve for two-dimensional modulation types such as the  "Quadrature Amplitude Modulation".

AWGN channel capacity for binary input signals


In this book we restrict ourselves mainly to binary codes,  that is,  to the Galois field  ${\rm GF}(2^n)$.  With this

Conditional PDFs for AWGN channel and binary input
  • firstly,  the code rate is limited to the range  $R ≤ 1$,
  • secondly,  also for  $R ≤ 1$  not the whole blue region is available  (see previous section).


  1. the parameters  $M_x = 2$  and  $M_y \to \infty$,
  2. bipolar signaling   ⇒   $x=0$   →   $\tilde{x} = +1$  and  $x=1$   →   $\tilde{x} = -1$,
  3. the transition from conditional probabilities  ${\rm Pr}(\tilde{x}_i)$  to conditional probability density functions,
  4. replace the sum with an integration.

  • The optimization of the source leads to equally probable symbols:
\[{\rm Pr}(\tilde{x} = +1) = {\rm Pr}(\tilde{x} = -1) = 1/2 \hspace{0.05cm}. \]
  • This gives for the maximum of the mutual information,  i.e. for the channel capacity:
\[C \hspace{-0.15cm} = {1}/{2} \cdot \int_{-\infty }^{+ \infty} \left [ f_{y\hspace{0.05cm} |\hspace{0.05cm}\tilde{x} = +1}(y)\cdot {\rm log_2 } \hspace{0.15cm}\frac {f_{y\hspace{0.05cm} |\hspace{0.05cm}\tilde{x} = +1}(y)}{f_y(y)} + f_{y\hspace{0.05cm} |\hspace{0.05cm}\tilde{x} = -1}(y)\cdot {\rm log_2 } \hspace{0.15cm}\frac {f_{y\hspace{0.05cm} |\hspace{0.05cm}\tilde{x} = -1}(y)}{f_y(y)} \right ]\hspace{0.1cm}{\rm d}y \hspace{0.05cm}.\]

The integral cannot be solved in mathematical closed form, but can only be evaluated numerically.

AWGN channel capacity for binary input signals
  1. The green curve shows the result.
  2. The blue curve gives for comparison the channel capacity for Gaussian distributed input signals derived in the last section.


It can be seen:

  • For  $10 \cdot \lg \, E_{\rm B}/N_0 < 0 \, \rm dB$  the two capacitance curves differ only slightly.
  • So,  for binary bipolar input,  compared to the optimum (Gaussian) input,  the characteristic  $10 \cdot \lg \, E_{\rm B}/N_0$  only needs to be increased by about  $0.1 \, \rm dB$  to also allow the code rate  $R = 0.5$.
  • From  $10 \cdot \lg \, E_{\rm B}/N_0 \approx6 \, \rm dB$  the capacity  $C = 1 \, \rm bit/channel\:use$  of the AWGN channel for binary input is almost reached.
  • In between, the limit curve is approximately exponentially increasing.


Common channel codes versus channel capacity


Now it shall be shown to what extent established channel codes approximate the BPSK channel capacity  (green curve).   In the following graph the rate   $R=k/n$   of these codes or the capacity   $C$   (with the additional pseudo–unit "bit/channel use")  is plotted as ordinate.

Rates and required  $E_{\rm B}/{N_0}$  of different channel codes

Further,  it is assumed:

  • the AWGN–channel,  denoted by  $10 \cdot \lg \, E_{\rm B}/N_0$  in dB,  and
  • bit error rate  $\rm BER=10^{-5}$ for all codes marked by crosses.


$\text{Please note:}$ 

  1. The channel capacity curves always apply to  $n \to \infty$  and  $\rm BER \to 0$ .
  2. If one would apply this strict requirement  "error-free"  also to the considered channel codes of finite code length  $n$,  this would always require  $10 \cdot \lg \, E_{\rm B}/N_0 \to \infty$ .
  3. But this is an academic problem of little practical significance.  For  $\rm BER = 10^{-10}$  a qualitatively and also quantitatively similar graph would result.
  4. For convolutional codes,  the third identifier parameter has a different meaning than for block codes.  For example,  $\text{CC (2, 1, 32)}$  indicates the memory  $m = 32$


The following are some  »explanations of the data taken from the lecture [Liv10][1]«:

  1. The points  $\rm A$,  $\rm B$  and  $\rm C$  mark  $\text{Hamming codes}$  of different rate.  They all require for  $\rm BER = 10^{-5}$  more than  $10 \cdot \lg \, E_{\rm B}/N_0 = 8 \, \rm dB$.
  2. $\rm D$  denotes the binary  $\text{Golay code}$  with rate  $1/2$  and  $\rm E$  denotes a  $\text{Reed–Muller code}$.  This very low rate code was used 1971 on the Mariner 9 spacecraft.
  3. Marked by  $\rm F$  is a high rate  $\text{Reed–Solomon codes}$   $(R = 223/255 > 0.9)$  and a required  $10 \cdot \lg \, E_{\rm B}/N_0 < 6 \, \rm dB$.
  4. The markers  $\rm G$  and  $\rm H$  denote exemplary  $\text{convolutional codes}$  medium rate. The code  $\rm G$  was used as early as 1972 on the Pioneer10 mission.
  5. The channel coding of the Voyager–mission in the late 1970s is marked by  $\rm I$.  It is the concatenation of a  $\text{CC (2, 1, 7)}$  with a  $\text{Reed–Solomon code}$.


Much better results can be achieved with  »iterative decoding methods«  (see fourth main chapter),  as the second graph shows.

Rates and required  $E_{\rm B}/N_0$  for iterative coding methods
  • This means:  The individual marker points are much closer to the capacity curve  $C_{\rm BPSK}$  for digital input.
  • The solid blue Gaussian capacity curve is labeled  $C_{\rm Gaussian}$.

Here are some more explanations about this graph:

  1. Red crosses mark so-called  $\text{turbo codes}$  accordingt to  $\text{CCSDS}$  ("Consultative Committee for Space Data Systems")  with each  $k = 6920$  information bits and different code lengths  $n$.
  2. These codes,  invented by  $\text{Claude Berrou}$  around 1990,  can be decoded iteratively.  The  (red)  marks are each less than  $1 \, \rm dB$  from the Shannon bound.
  3. Similar behavior is shown by  $\text{LDPC codes}$  ("Low Density Parity–check Codes")  marked by white rectangles,  which have been used since in 2006 on  $\text{DVB–S(2)}$  ("Digital Video Broadcast over Satellite").
  4. These are well suited for iterative decoding using  "factor–graphs"    and   "exit charts"  due to the sparse occupancy of the parity-check matrix  $\boldsymbol {\rm H}$  (with "ones").  See [Hag02][2]
  5. The black dots mark the CCSDS specified  $\text{LDPC codes}$,  all of which assume a constant number of information bits  $(k = 16384)$. 
  6. In contrast,  for all white rectangles,  the code length  $n = 64800$  is constant,  while the number  $k$  of information bits changes according to the rate  $R = k/n$.
  7. Around the year 2000,  many researchers had the ambition to approach the Shannon bound to within fractions of a  $\rm dB$.  The yellow cross marks such a result from [CFRU01][3]. Used an irregular rate–1/2–LDPC of code length  $n = 2 \cdot10^6$.

$\text{Conclusion:}$  It should be noted that Shannon recognized and proved as early as 1948 that no one-dimensional modulation method can lie to the left of the AWGN limit curve "Gaussian (real)" drawn throughout.

  • For two-dimensional methods such as QAM and multilevel PSK, on the other hand, the "Gaussian (complex)" limit curve applies, which is drawn here as a dashed line and always lies to the left of the solid curve.
  • For more details, see the  $\text{Maximum code rate for QAM structures}$  section of the "Information Theory" book.
  • Also, this limit curve has now been nearly reached with QAM methods and very long channel codes, without ever being exceeded.


Exercises for the chapter


Exercise 1.17: About the Channel Coding Theorem

Exercise 1.17Z: BPSK Channel Capacity

References

  1. Liva, G.: Channel Coding. Lecture manuscript, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010.
  2. Hagenauer, J.: The Turbo Principle in Mobile Communications.  In: Int. Symp. on Information Theory and Its Applications, Oct.2010,  $\text{PDF document}$.
  3. Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.:  On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit. – In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58–60.