Difference between revisions of "Theory of Stochastic Signals/Stochastic System Theory"

From LNTwww
m (Text replacement - "[[Signaldarstellung/" to "[[Signal_Representation/")
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Filterung stochastischer Signale
+
|Untermenü=Filtering of Stochastic Signals
 
|Vorherige Seite= Verallgemeinerung auf N-dimensionale Zufallsgrößen
 
|Vorherige Seite= Verallgemeinerung auf N-dimensionale Zufallsgrößen
 
|Nächste Seite=Digitale Filter
 
|Nächste Seite=Digitale Filter
 
}}
 
}}
  
== # ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE FIFTH MAIN CHAPTER # ==
 
<br>
 
<br>
Dieses Kapitel beschreibt den Einfluss eines Filters auf die Autokorrelationsfunktion (AKF) und das Leistungsdichtespektrum (LDS) stochastischer Signale.  
+
This chapter describes the influence of a filter on the&nbsp; &raquo;auto-correlation function&laquo;&nbsp; $\rm (ACF)$&nbsp; and&nbsp; &raquo;the power-spectral density&nbsp; $\rm (PSD)$&laquo;&nbsp; of stochastic signals.
  
Im Einzelnen werden behandelt:
+
In detail,&nbsp; this chapter covers:
  
*die Berechnung von AKF und LDS am Filterausgang (''Stochastische Systemtheorie''&nbsp;),
+
*the&nbsp; &raquo;calculation of ACF and PSD&laquo;&nbsp; at the filter output&nbsp; ("Stochastic System Theory"),
*die Struktur und die Darstellung ''Digitaler Filter''&nbsp; (nichrekursiv und rekursiv),
+
*the structure and representation of&nbsp; &raquo;digital filters&laquo;&nbsp; (non-recursive and recursive),
*die ''Dimensionierung''&nbsp; der Filterkoeffizienten für eine vorgegebene AKF,
+
*the&nbsp; &raquo;dimensioning&laquo;&nbsp; of the filter coefficients for a given ACF,
*die Bedeutung des ''Matched-Filters''&nbsp; für Nachrichtensysteme (SNR-Maximierung),
+
*the meaning of the&nbsp; &raquo;matched filter&laquo;&nbsp; for the SNR maximization of communication systems,
*die Eigenschaften des ''Wiener-Kolmogorow-Filters''&nbsp; zur Signalrekonstruktion.
+
*the properties of the&nbsp; &raquo;Wiener-Kolmogorow filter&laquo;&nbsp; for the signal reconstruction.
  
  
Weitere Informationen zum Thema &bdquo;Filterung stochastischer Signale&rdquo; sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
 
  
*Kapitel 10: &nbsp; Filterung stochastischer Signale (Programm fil)
 
*Kapitel 11: &nbsp; Optimale Filter (Programm ofi)
 
  
  
des Praktikums „Simulationsmethoden in der Nachrichtentechnik”.&nbsp; Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
+
==System model and problem definition==
 +
<br>
 +
As in the book&nbsp; [[Linear_and_Time_Invariant_Systems|"Linear and Time Invariant Systems"]],&nbsp; we consider the setup sketched on the right, where the system characterized both 
 +
*by the impulse response&nbsp; $h(t)$
 +
*as well as by its frequency response&nbsp; $H(f)$
  
*dem Lehrsoftwarepaket&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp;  &rArr; &nbsp; Link verweist auf die ZIP-Version des Programms, und
 
*der&nbsp;  [http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_B.pdf Praktikumsanleitung - Teil B]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version mit Kapitel 10:&nbsp; Seite 229-248 und Kapitel 11:&nbsp; Seite 249-270.
 
  
 +
is described unambiguously.&nbsp; The relationship between these descriptive quantities in the time and frequency domain is given by the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#Properties_of_aperiodic_signals|$\text{Fourier transformation}$]].&nbsp;
 +
[[File:EN_Sto_T_5_1_S1.png |right| 300px|frame|Filter influence on&nbsp; "spectrum"&nbsp; and&nbsp; <br>"power-spectral density"]]
  
==Problemstellung==
+
<br>If we apply the signal&nbsp; $x(t)$&nbsp; to the input and denote the output signal by&nbsp; $y(t)$,&nbsp; the classical system theory provides the following statements:
<br>
+
*The output signal&nbsp; $y(t)$&nbsp; results from the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|$\text{convolution}$]]&nbsp; between the input signal&nbsp; $x(t)$&nbsp; and the impulse response&nbsp; $h(t)$.&nbsp; The following equation is equally valid for deterministic and stochastic signals:
[[File:Sto_T_5_1_S1_version2.png |right| 300px|frame|Filtereinfluss auf Spektrum und Leistungsdichtespektrum (LDS)]]
 
Wir betrachten wie im Buch&nbsp; [[Lineare zeitinvariante Systeme]]&nbsp; die rechts skizzierte Anordnung, wobei das System
 
*sowohl durch die Impulsantwort&nbsp; $h(t)$  
 
*als auch durch seinen Frequenzgang&nbsp; $H(f)$
 
 
 
 
 
eindeutig beschrieben ist.&nbsp; Der Zusammenhang zwischen diesen Beschreibungsgrößen im Zeit&ndash; und Frequenzbereich ist durch die&nbsp; [[Signal_Representation/Fouriertransformation_und_-rücktransformation#Eigenschaften_aperiodischer_Signale|Fouriertransformation]]&nbsp; gegeben.
 
<br clear=all>
 
Legt man an den Eingang das Signal&nbsp; $x(t)$&nbsp; an und bezeichnet das Ausgangssignal mit&nbsp; $y(t)$, so liefert die klassische Systemtheorie folgende Aussagen:  
 
*Das Ausgangssignal&nbsp; $y(t)$&nbsp; ergibt sich aus der&nbsp; [[Signal_Representation/Faltungssatz_und_Faltungsoperation|Faltung]]&nbsp; zwischen dem Eingangssignal&nbsp; $x(t)$&nbsp; und der Impulsantwort&nbsp; $h(t)$.&nbsp; Die folgende Gleichung gilt für deterministische und stochastische Signale gleichermaßen:
 
 
:$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
 
:$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
  
*Bei deterministischen Signalen geht man meist den Umweg über die Spektralfunktionen.&nbsp; Das Spektrum&nbsp; $X(f)$&nbsp; ist die Fouriertransformierte von&nbsp; $x(t)$.&nbsp; Die Multiplikation mit dem Frequenzgang&nbsp; $H(f)$&nbsp; führt zum Ausgangsspektrum&nbsp; $Y(f)$.&nbsp; Daraus lässt sich das Signal&nbsp; $y(t)$&nbsp; durch Fourierrücktransformation gewinnen.  
+
*For deterministic signals,&nbsp; one usually takes a roundabout route using the spectral functions.&nbsp; The spectrum&nbsp; $X(f)$&nbsp; is the Fourier transform of&nbsp; $x(t)$.&nbsp; The multiplication with the frequency response&nbsp; $H(f)$&nbsp; leads to the output spectrum&nbsp; $Y(f)$.&nbsp; From this,&nbsp; the signal&nbsp; $y(t)$&nbsp; can be obtained by the Fourier inverse transformation.
*Bei stochastischen Signalen versagt diese Vorgehensweise, da dann die Zeitfunktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; nicht für alle Zeiten&nbsp; von ­$–∞$&nbsp; bis&nbsp; $+∞$&nbsp; vorhersagbar sind und somit die dazugehörigen Amplitudenspektren&nbsp; $X(f)$&nbsp; und&nbsp; $Y(f)$&nbsp; gar nicht existieren.  
+
*In the case of stochastic signals this procedure fails,&nbsp; because then the time functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; are not predictable for all times&nbsp; from ­$–∞$&nbsp; to&nbsp; $+∞$&nbsp; and thus,&nbsp; the corresponding amplitude spectra&nbsp; $X(f)$&nbsp; and&nbsp; $Y(f)$&nbsp; do not exist at all.&nbsp; In this case,&nbsp; we have to switch to the&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|$\text{power-spectral density}$]]&nbsp; defined in the last chapter.
*In diesem Fall muss auf die im letzten Kapitel definierten&nbsp; [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektren]]&nbsp; übergegangen werden.
 
  
==Amplituden- und Leistungsdichtespektrum==
+
==Amplitude spectrum and power-spectral density==
 +
<br>
 +
We consider an ergodic random process&nbsp;  $\{x(t)\}$,&nbsp; whose auto-correlation function&nbsp; $φ_x(τ)$&nbsp; is assumed to be known.&nbsp; The power-spectral density&nbsp; ${\it Φ}_x(f)$&nbsp; is then also uniquely determined via the Fourier transform and the following statements hold:
 +
:[[File:P_ID467__Sto_T_5_1_S2_neu.png|right| |frame| For the ACF and PSD calculation of a random signal]]
 
<br>
 
<br>
Wir betrachten einen ergodischen Zufallsprozess&nbsp; $\{x(t)\}$, dessen Autokorrelationsfunktion&nbsp; $φ_x(τ)$&nbsp; als bekannt vorausgesetzt wird.&nbsp; Das Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$&nbsp; ist dann über die Fouriertransformation ebenfalls eindeutig bestimmt und es gelten die  folgenden Aussagen:
+
#The&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|$\text{power-spectral density}$]]&nbsp; ${\it Φ}_x(f)$&nbsp; can be given as well as the auto-correlation function&nbsp; $φ_x(τ)$ – for each individual pattern function of the stationary and ergodic random process&nbsp; $\{x(t)\}$,&nbsp; even if the specific course of&nbsp; $x(t)$&nbsp; is explicitly unknown.<br><br>
:[[File:P_ID467__Sto_T_5_1_S2_neu.png|right| |frame| Zur AKF&ndash; und LDS&ndash;Berechnung eines Zufallssignals]]
+
#The&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|$\text{amplitude spectrum}$]]&nbsp; $X(f)$,&nbsp; on the other hand,&nbsp; is undefined because if the spectral function&nbsp; $X(f)$&nbsp; is known, the entire time function&nbsp; $x(t)$&nbsp; from&nbsp; $–∞$&nbsp; to&nbsp; $+∞$&nbsp; would also have to be known via the Fourier inverse transform,&nbsp; which clearly cannot be the case for a stochastic signal.<br><br>
*Das Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$&nbsp; kann ebenso wie die Autokorrelationsfunktion&nbsp; $φ_x(τ)$ – für jede einzelne Musterfunktion des stationären und ergodischen Zufallsprozesses&nbsp; $\{x(t)\}$&nbsp; angegeben werden, auch wenn der spezifische Verlauf von&nbsp; $x(t)$&nbsp; explizit nicht bekannt ist.  
+
#If a time section of finite time duration&nbsp; $T_{\rm M}$&nbsp; is known according to the sketch on the right,&nbsp; the Fourier transform can of course be applied to it again.
*Das&nbsp; [[Signal_Representation/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Amplitudenspektrum]]&nbsp; $X(f)$&nbsp; ist dagegen undefiniert, da bei Kenntnis der Spektralfunktion&nbsp; $X(f)$&nbsp; auch die gesamte Zeitfunktion&nbsp; $x(t)$&nbsp; von&nbsp; $–∞$&nbsp; bis&nbsp; $+∞$&nbsp; über die Fourierrücktransformation bekannt sein müsste, was bei einem stochastischen Signal eindeutig nicht der Fall sein kann.
 
*Ist entsprechend der nebenstehenden Skizze ein Zeitausschnitt der endlichen Zeitdauer&nbsp; $T_{\rm M}$&nbsp; bekannt, so kann für diesen natürlich wieder die Fouriertransformation angewendet werden.
 
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp; Zwischen dem Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$&nbsp; des zeitlich unendlich ausgedehnten Zufallssignals&nbsp; $x(t)$&nbsp; und dem Amplitudenspektrum&nbsp; $X_{\rm T}(f)$&nbsp; des begrenzten Zeitausschnittes&nbsp; $x_{\rm T}(t)$&nbsp; besteht der folgende Zusammenhang:
+
$\text{Theorem:}$&nbsp; The following relationship exists between the power-spectral density&nbsp; ${\it Φ}_x(f)$&nbsp; of the infinite time random signal&nbsp; $x(t)$&nbsp; and the amplitude spectrum&nbsp; $X_{\rm T}(f)$&nbsp; of the finite time section&nbsp; $x_{\rm T}(t)$:&nbsp;  
 
:$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
:$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert ^2.$$}}
 
\frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert ^2.$$}}
Line 64: Line 55:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Beweis:}$&nbsp; Vorne wurde die&nbsp;  
+
$\text{Proof:}$&nbsp; Previously,&nbsp; the&nbsp;  
[[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Autokorrelationsfunktion_bei_ergodischen_Prozessen|Autokorrelationsfunktion]]&nbsp; eines ergodischen Prozesses mit der Musterfunktion&nbsp; $x(t)$&nbsp; wie folgt angegeben:  
+
[[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)|$\text{auto-correlation function}$]]&nbsp; of an ergodic process with the random signal&nbsp; $x(t)$&nbsp; was given as follows:  
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm
 
\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm
 
M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
 
M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
*Es ist zulässig, die zeitlich unbegrenzte Funktion&nbsp; $x(t)$&nbsp; durch die auf den Zeitbereich&nbsp; $-T_{\rm M}/2$&nbsp; bis&nbsp; $+T_{\rm M}/2$&nbsp; begrenzte Funktion&nbsp; $x_{\rm T}(t)$&nbsp; zu ersetzen.&nbsp; $x_{\rm T}(t)$&nbsp; korrespondiert mit dem Spektrum&nbsp; $X_{\rm T}(f)$, und man erhält durch Anwendung des&nbsp; [[Signal_Representation/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegrals]]&nbsp; und des&nbsp; [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]:  
+
*It is permissible to replace the function&nbsp; $x(t)$,&nbsp; which is unbounded in time, by the function&nbsp; $x_{\rm T}(t)$,&nbsp; which is bounded on the time range&nbsp; $-T_{\rm M}/2$&nbsp; to&nbsp; $+T_{\rm M}/2$.&nbsp; &nbsp; $x_{\rm T}(t)$&nbsp; corresponds to the spectrum&nbsp; $X_{\rm T}(f)$,&nbsp; and by applying the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|$\text{first Fourier integral}$]]&nbsp; and the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|$\text{shifting theorem}$]]:  
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm
 
\frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm
Line 75: Line 66:
 
T}(f)\cdot {\rm e}^{ {\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm}
 
T}(f)\cdot {\rm e}^{ {\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm}
 
\rm d \it f \hspace{0.1cm} \rm d \it t.$$
 
\rm d \it f \hspace{0.1cm} \rm d \it t.$$
*Nach Aufspalten des Exponenten und Vertauschen von Zeit- und Frequenzintegral ergibt sich:
+
*After splitting the exponent and swapping the time and frequency integrals,&nbsp; we get:
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M} }\cdot  \int^{+\infty}_{-\infty}X_{\rm
 
\frac{1}{ T_{\rm M} }\cdot  \int^{+\infty}_{-\infty}X_{\rm
Line 81: Line 72:
 
T}(t)\cdot  {\rm e}^{ {\rm j}2 \pi f  t  } \hspace{0.1cm} \rm d \it
 
T}(t)\cdot  {\rm e}^{ {\rm j}2 \pi f  t  } \hspace{0.1cm} \rm d \it
 
t \right] \cdot {\rm e}^{ {\rm j}2 \pi f  \tau} \hspace{0.1cm} \rm d \it f.$$
 
t \right] \cdot {\rm e}^{ {\rm j}2 \pi f  \tau} \hspace{0.1cm} \rm d \it f.$$
*Das innere Integral beschreibt das konjugiert–komplexe Spektrum&nbsp; $X_{\rm T}^{\star}(f)$.&nbsp; Daraus folgt weiter:  
+
*The inner integral describes the conjugate-complex spectrum&nbsp; ${X_{\rm T} }^{\star}(f)$.&nbsp; It further follows that:  
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M} }\cdot  \int^{+\infty}_{-\infty}\vert X_{\rm
 
\frac{1}{ T_{\rm M} }\cdot  \int^{+\infty}_{-\infty}\vert X_{\rm
 
T}(f)\vert^2 \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d
 
T}(f)\vert^2 \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d
 
\it f.$$
 
\it f.$$
*Ein Vergleich mit dem bei Ergodizität stets gültigen Theorem von&nbsp; [https://de.wikipedia.org/wiki/Norbert_Wiener Wiener]&nbsp; und&nbsp; [https://de.wikipedia.org/wiki/Alexander_Jakowlewitsch_Chintschin Chintchin],  
+
*A comparison with the theorem from&nbsp; [https://en.wikipedia.org/wiki/Norbert_Wiener $\text{Wiener}$]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Aleksandr_Khinchin $\text{Chintchin}$]&nbsp; which is always valid in ergodicity,
 
:$${ {\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f)
 
:$${ {\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f)
 
\cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
 
\cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
:zeigt die Gültigkeit der oben genannten Beziehung:  
+
:shows the validity of the above relation:
 
:$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
:$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert^2.$$
 
\frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert^2.$$
 
<div align="right">'''q.e.d.'''</div>}}
 
<div align="right">'''q.e.d.'''</div>}}
  
==Leistungsdichtespektrum des Filterausgangssignals==
+
==Power-spectral density of the filter output signal==
 
<br>
 
<br>
Kombiniert man die in den beiden letzten Abschnitten gemachten Aussagen, so kommt man zu folgendem wichtigen Ergebnis:  
+
Combining the statements made in the last two sections,&nbsp; we arrive at the following important result:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp; Das Leistungsdichtespektrum (LDS) am Ausgang eines linearen zeitinvarianten Systems mit dem Frequenzgang&nbsp; $H(f)$&nbsp; ergibt sich als das Produkt aus dem Eingangs–LDS&nbsp; ${\it Φ}_x(f)$&nbsp; und der &bdquo;Leistungsübertragungsfunktion&rdquo;&nbsp; $\vert H(f)\vert ^2$.  
+
$\text{Theorem:}$&nbsp; The power-spectral density&nbsp; $\rm (PSD)$&nbsp; at the output of a linear time-invariant system with frequency response&nbsp; $H(f)$&nbsp; is obtained as the product 
 +
*of the&nbsp; "input power-spectral density"&nbsp; ${\it Φ}_x(f)$&nbsp;  
 +
*and the&nbsp; "power transfer function"&nbsp; $\vert H(f)\vert ^2$.  
 
:$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$}}
 
:$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Beweis:}$&nbsp; Ausgegangen wird von den drei bereits vorher hergeleiteten Beziehungen:  
+
$\text{Proof:}$&nbsp; Starting from the three relations already derived before:
 
:$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
 
:$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2, \hspace{0.5cm}
+
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2,$$
{ {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
+
:$$ { {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, \hspace{0.5cm}
+
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, $$
Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$
+
:$$Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$
Setzt man diese Gleichungen ineinander ein, so erhält man das obige Ergebnis.  
+
 
 +
Substituting these equations into each other,&nbsp; we get the above result.
 
<div align="right">'''q.e.d.'''</div>}}
 
<div align="right">'''q.e.d.'''</div>}}
  
  
Das folgende Beispiel verdeutlicht den Zusammenhang bei Weißem Rauschen.
+
The following example illustrates the relationship with white noise.
  
[[File:P_ID468__Sto_T_5_1_S3_neu.png |right|frame| Filtereinfluss im Frequenzbereich]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;  
+
$\text{Example 1:}$&nbsp;  
Am Eingang eines Gauß-Tiefpasses mit dem Frequenzgang
+
At the input of a Gaussian low-pass filter with the frequency response
 
:$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
 
:$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
liegt weißes Rauschen&nbsp; $x(t)$&nbsp; mit der Rauschleistungsdichte&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$&nbsp; an &nbsp; &rArr; &nbsp; zweiseitige Darstellung.&nbsp; Dann gilt für das Leistungsdichtespektrum des Ausgangssignals:  
+
[[File:P_ID468__Sto_T_5_1_S3_neu.png |right|frame| Filter influence in the frequency domain]]
 +
white noise&nbsp; $x(t)$&nbsp; with noise power density&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$&nbsp; is present &nbsp; &rArr; &nbsp; two-sided representation.&nbsp; Then, the following holds for the power-spectral density of the output signal:
 
:$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta
 
:$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta
 
f)^2}.$$
 
f)^2}.$$
Die Grafik zeigt die Signale und Leistungsdichtespektren am Filtereingang und &ndash;ausgang.  
+
The diagram shows the signals and power-spectral densities at the filter input and output.  
  
''Anmerkungen:''
+
Notes:
#&nbsp; Das Signal&nbsp; $x(t)$&nbsp; kann streng genommen gar nicht gezeichnet werden, da es eine unendlich große Leistung besitzt &nbsp; &rArr; &nbsp; Integral über&nbsp; ${\it Φ}_x(f)$&nbsp; von&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$.  
+
#The signal&nbsp; $x(t)$&nbsp; – strictly speaking cannot be plotted at all,&nbsp; since it has an infinite power &nbsp; &rArr; &nbsp; integral over&nbsp; ${\it Φ}_x(f)$&nbsp; from&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$.  
#&nbsp; Das Ausgangssignal&nbsp; $y(t)$&nbsp; ist niederfrequenter als&nbsp; $x(t)$&nbsp; und besitzt eine endliche Leistung entsprechend dem Integral über&nbsp; ${\it Φ}_y(f)$.
+
#The output signal&nbsp; $y(t)$&nbsp; has a lower frequency than&nbsp; $x(t)$&nbsp; and a finite power corresponding to the integral over&nbsp; ${\it Φ}_y(f)$.
#&nbsp; Bei einseitiger Darstellung würde (nur) für&nbsp; $f>0$ gelten:&nbsp; ${ {\it \Phi}_x(f)} =N_0$.&nbsp; Die Aussagen&nbsp; (1)&nbsp; und&nbsp; (2)&nbsp; würden auch hier in gleicher Weise gelten.}}  
+
#In one-sided representation,&nbsp; (only) for&nbsp; $f>0$&nbsp; would hold:&nbsp; ${ {\it \Phi}_x(f)} =N_0$.&nbsp; The statements&nbsp; (1)&nbsp; and&nbsp; (2)&nbsp; would also apply here in the same way.}}  
  
==Autokorrelationsfunktion des Filterausgangssignals==
+
==The auto-correlation function of the filter output signal==
 
<br>
 
<br>
Das berechnete Leistungsdichtespektrum (LDS) kann auch wie folgt geschrieben werden:  
+
The calculated power-spectral density&nbsp; $\rm (PSD)$&nbsp; can also be written as follows:  
:$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f)$$
+
:$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f).$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp;  Für die zugehörige Autokorrelationsfunktion (AKF) erhält man dann entsprechend den&nbsp; [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; und durch Anwendung des&nbsp; [[Signal_Representation/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungssatzes]]:  
+
$\text{Theorem:}$&nbsp;  The corresponding auto-correlation function&nbsp; $\rm (ACF)$&nbsp; is then obtained according to the&nbsp; [[Signal_Representation/Fourier_Transform_Laws|$\text{Fourier transform laws}$]]&nbsp; and by applying the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_time_domain|$\text{convolution theorem}$]]:  
 
:$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(-
 
:$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(-
 
\tau).$$}}
 
\tau).$$}}
  
 
   
 
   
Beim Übergang vom Spektral– in den Zeitbereich ist zu beachten:
+
In the transition from the spectral to the time domain, note:
* Einzusetzen sind jeweils die Fourierrücktransformierten, nämlich
+
* The Fourier retransforms are to be inserted in each case, namely
:$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}$$
+
:$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}.$$
*Zudem wird aus jeder Multiplikation eine Faltungsoperation.  
+
*Moreover,&nbsp; each multiplication becomes a convolution operation.
  
  
[[File:P_ID591__Sto_T_5_1_S4_neu.png |right|frame| Filtereinfluss im Zeitbereich]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Wir betrachten nochmals das gleiche Szenario wie&nbsp; im $\text{Beispiel 1}$, aber diesmal im Zeitbereich:
+
We consider again the same scenario as&nbsp; in&nbsp; [[Theory_of_Stochastic_Signals/Stochastic_System_Theory#Power-spectral_density_of_the_filter_output_signal| $\text{Example 1}$]],&nbsp; but this time in the time domain.&nbsp; It holds:
*weißes Rauschen&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$,
+
[[File:P_ID591__Sto_T_5_1_S4_neu.png |right|frame| Filter influence in the time domain]]
 
+
*Two-sided white noise power density:&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$,
*gaußförmiges Filter: &nbsp; $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
*Gaussian filter: &nbsp; $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  h(t) = \Delta f \cdot {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(\Delta f \hspace{0.03cm}\cdot \hspace{0.03cm}t)^2}.$
 
  h(t) = \Delta f \cdot {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(\Delta f \hspace{0.03cm}\cdot \hspace{0.03cm}t)^2}.$
  
  
Man erkennt aus dieser Darstellung:  
+
One can see from this diagram:
#&nbsp; Die AKF des Eingangssignals ist nun eine Diracfunktion mit dem Gewicht&nbsp; $N_0/2$.  
+
#The ACF of the input signal is now a Dirac delta function with weight&nbsp; $N_0/2$.  
#&nbsp; Durch zweimalige Faltung mit der (hier ebenfalls gaußförmigen) Impulsantwort&nbsp; $h(t)$&nbsp; bzw.&nbsp; $h(–t)$&nbsp; erhält man die AKF&nbsp; $φ_y(τ)$&nbsp; des Ausgangssignals.  
+
#By convolution twice with the&nbsp; (here also Gaussian)&nbsp;  impulse response&nbsp; $h(t)$&nbsp; or&nbsp; $h(–t)$&nbsp; one obtains the ACF&nbsp; $φ_y(τ)$&nbsp; of the output signal.
#&nbsp; Auch die AKF&nbsp; $φ_y(τ)$&nbsp; des Ausgangssignals ist also gaußförmig.  
+
#Thus,&nbsp; the ACF&nbsp; $φ_y(τ)$&nbsp; of the output signal is also Gaussian.
#&nbsp; Der AKF–Wert bei&nbsp; $τ = 0$&nbsp; ist identisch mit der Fläche des Leistungsdichtespektrums&nbsp; ${\it Φ}_y(f)$&nbsp; und kennzeichnet die Signalleistung (Varianz)&nbsp; $σ_y^2$.  
+
#The ACF value at&nbsp; $τ = 0$&nbsp; is identical to the area of the power-spectral density&nbsp; ${\it Φ}_y(f)$&nbsp; and characterizes the signal power (variance)&nbsp; $σ_y^2$.  
#&nbsp; Dagegen ergibt die Fläche unter&nbsp; $φ_y(τ)$&nbsp; den LDS-Wert&nbsp; ${\it Φ}_y(f = \rm 0)$, also&nbsp; $N_0/2$. }}
+
#In contrast, the area at&nbsp; $φ_y(τ)$&nbsp; gives the PSD value:&nbsp; ${\it Φ}_y(f = \rm 0)=N_0/2$. }}
  
==Kreuzkorrelationsfunktion zwischen Eingangs- und Ausgangssignal==
+
==Cross-correlation function between input and output signal==
 
<br>
 
<br>
[[File:P_ID469__Sto_T_5_1_S5_Ganz_neu.png |frame| Zur Berechnung der Kreuzkorrelationsfunktion |right]]
+
[[File:EN_Sto_T_5_1_S5.png |frame| Calculating the cross-correlation function |right]]
Wir betrachten wieder ein Filter mit dem Frequenzgang&nbsp; $H(f)$&nbsp; und der Impulsantwort&nbsp; $h(t)$.&nbsp; Weiter gilt:  
+
We again consider a filter with the frequency response&nbsp; $H(f)$&nbsp; and the impulse response&nbsp; $h(t)$.&nbsp; Further applies:
*Das stochastische Eingangssignal&nbsp; $x(t)$&nbsp; ist eine Musterfunktion des ergodischen Zufallsprozesses&nbsp;  $\{x(t)\}$.  
+
*Die zugehörige Autokorrelationsfunktion (AKF) am Filtereingang ist somit&nbsp; $φ_x(τ)$, während das Leistungsdichtespektrum (LDS) mit&nbsp;  ${\it Φ}_x(f)$&nbsp; bezeichnet wird.
+
#The stochastic input signal&nbsp; $x(t)$&nbsp; is a sample function of the ergodic random process&nbsp;  $\{x(t)\}$.<br><br>
*Die entsprechenden Beschreibungsgrößen des ergodischen Zufallsprozesses&nbsp;  $\{y(t)\}$&nbsp; am Filterausgang sind die Musterfunktion&nbsp; $y(t)$, die Autokorrelationsfunktion&nbsp; $φ_y(τ)$&nbsp; sowie das Leitsungsdichtespektrum&nbsp;  ${\it Φ}_y(f)$.
+
#The corresponding auto-correlation function&nbsp; $\rm  (ACF)$&nbsp;  at the filter input is thus&nbsp; $φ_x(τ)$,&nbsp; while the power-spectral density&nbsp; $\rm  (PSD)$&nbsp;  is denoted by&nbsp;  ${\it Φ}_x(f)$.&nbsp;<br><br>
 +
#The corresponding descriptors of the ergodic random process&nbsp;  $\{y(t)\}$&nbsp; at the filter output are
 +
 +
::*the random output signal&nbsp; $y(t)$,  
 +
::*the auto-correlation function&nbsp; $φ_y(τ)$&nbsp;  
 +
::*and the conductance power-spectral density&nbsp;  ${\it Φ}_y(f)$.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp;  Für die&nbsp; '''Kreuzkorrelationsfunktion'''&nbsp; (KKF) zwischen dem Eingangs– und dem Ausgangssignal gilt:
+
$\text{Theorem:}$&nbsp;  For the&nbsp; &raquo;'''cross-correlation function'''&laquo;&nbsp; $\rm (CCF)$&nbsp; between the input&nbsp; and the output signal holds:
 
:$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$  
 
:$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$  
Hierbei bezeichnet&nbsp;  $h(τ)$&nbsp; die Impulsantwort des Filters&nbsp; $($mit der Zeitvariablen&nbsp; $τ$&nbsp; anstelle von&nbsp; $t)$&nbsp; und&nbsp; ${ {\it \varphi}_{x}(\tau)}$&nbsp; die AKF des Eingangssignals.}}
+
Here,&nbsp;  $h(τ)$&nbsp; denotes the impulse response of the filter&nbsp; $($with the time variable&nbsp; $τ$&nbsp; instead of&nbsp; $t)$&nbsp; and&nbsp; ${ {\it \varphi}_{x}(\tau)}$&nbsp; denotes the ACF of the input signal.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Beweis:}$&nbsp;  Allgemein gilt für die Kreuzkorrelationsfunktion zwischen zwei Signalen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$:
+
$\text{Proof:}$&nbsp;  In general,&nbsp; for the cross-correlation function between two signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$:
 
:$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
 
:$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
*Mit der allgemeingültigen Beziehung&nbsp; $y(t) = h(t) \ast x(t)$&nbsp; und der formalen Integrationsvariablen&nbsp; $θ$&nbsp; lässt sich hierfür auch schreiben:
+
*With the generally valid relation&nbsp; $y(t) = h(t) \ast x(t)$&nbsp; and the formal integration variable&nbsp; $θ$,&nbsp; we can also write for this:
 
:$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
 
:$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
*Durch Vertauschen der beiden Integrale und Hereinziehen der Grenzwertbildung in das Integral erhält man:  
+
*By interchanging the two integrals and subtracting the limit into the integral, we obtain:
 
:$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}
 
:$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}
 
h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
Line 190: Line 188:
 
M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm}
 
M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm}
 
\hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
 
\hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
*Der Ausdruck in den eckigen Klammern ergibt den AKF-Wert am Eingang zum Zeitpunkt&nbsp; $τ - θ$:
+
*The expression in the square brackets gives the ACF value at the input at time&nbsp; $τ - θ$:
 
:$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot  \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm}  {\rm d}\theta = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$  
 
:$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot  \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm}  {\rm d}\theta = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$  
*Das verbleibende Integral beschreibt aber die Faltungsoperation in ausführlicher Schreibweise.  
+
*However,&nbsp; the remaining integral describes the convolution operation in detailed notation.
 
<div align="right">'''q.e.d.'''</div>}}
 
<div align="right">'''q.e.d.'''</div>}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Im Frequenzbereich lautet die entsprechende Gleichung:  
+
$\text{Conclusion:}$&nbsp; In the frequency domain,&nbsp; the corresponding equation is:
 
:$${ {\it \Phi}_{xy}(f)} =  H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$
 
:$${ {\it \Phi}_{xy}(f)} =  H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$
  
Diese Gleichung zeigt, dass der Filterfrequenzgang&nbsp; $H(f)$&nbsp; aus einer Messung mit stochastischer Anregung vollständig – also sowohl der Betrag als auch die Phase – berechnet werden kann, wenn folgende Beschreibungsgrößen ermittelt werden:  
+
This equation shows that the filter frequency response&nbsp; $H(f)$&nbsp; from a measurement with stochastic excitation can be calculated completely&nbsp; &ndash; i.e., both magnitude and phase &ndash;&nbsp; if the following descriptive quantities are determined:
*die statistischen Kenngrößen am Eingang, entweder die AKF&nbsp; $φ_x(τ)$&nbsp; oder das&nbsp; LDS ${\it Φ}_x(f)$,  
+
*the statistical characteristics at the input, either the ACF&nbsp; $φ_x(τ)$&nbsp; or the &nbsp; PSD ${\it Φ}_x(f)$,  
*sowie die Kreuzkorrelationsfunktion&nbsp; $φ_{xy}(τ)$&nbsp; bzw. deren Fouriertransformierte&nbsp; ${\it Φ}_{xy}(f)$. }}
+
*as well as the cross-correlation function&nbsp; $φ_{xy}(τ)$&nbsp; or its Fourier transform&nbsp; ${\it Φ}_{xy}(f)$. }}
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:5.1 Gaußsche AKF und Gaußtiefpass|Aufgabe 5.1: Gaußsche AKF und Gaußtiefpass]]
+
[[Aufgaben:Exercise_5.1:_Gaussian_ACF_and_Gaussian_Low-Pass|Exercise 5.1: Gaussian ACF and Gaussian Low-Pass]]
  
[[Aufgaben:Aufgabe_5.1Z:_cos²_-Rauschbegrenzung|Aufgabe 5.1Z: $\cos^2$-Rauschbegrenzung]]
+
[[Aufgaben:Exercise_5.1Z:_Cosine_Square_Noise_Limitation|Exercise 5.1Z: Cosine Square Noise Limitation]]
  
[[Aufgaben:Aufgabe_5.2:_Bestimmung_des_Frequenzgangs|Aufgabe 5.2: Bestimmung des Frequenzgangs]]
+
[[Aufgaben:Aufgabe_5.2:_Bestimmung_des_Frequenzgangs|Exercise 5.2: Determination of the Frequency Response]]
  
[[Aufgaben:5.2Z Zweiwegekanal|Aufgabe 5.2Z: Zweiwegekanal]]
+
[[Aufgaben:Exercise_5.2Z:_Two-Way_Channel|Exercise 5.2Z: Two-Way Channel]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 10:17, 22 December 2022

# OVERVIEW OF THE FIFTH MAIN CHAPTER #


This chapter describes the influence of a filter on the  »auto-correlation function«  $\rm (ACF)$  and  »the power-spectral density  $\rm (PSD)$«  of stochastic signals.

In detail,  this chapter covers:

  • the  »calculation of ACF and PSD«  at the filter output  ("Stochastic System Theory"),
  • the structure and representation of  »digital filters«  (non-recursive and recursive),
  • the  »dimensioning«  of the filter coefficients for a given ACF,
  • the meaning of the  »matched filter«  for the SNR maximization of communication systems,
  • the properties of the  »Wiener-Kolmogorow filter«  for the signal reconstruction.



System model and problem definition


As in the book  "Linear and Time Invariant Systems",  we consider the setup sketched on the right, where the system characterized both

  • by the impulse response  $h(t)$
  • as well as by its frequency response  $H(f)$


is described unambiguously.  The relationship between these descriptive quantities in the time and frequency domain is given by the  $\text{Fourier transformation}$

Filter influence on  "spectrum"  and 
"power-spectral density"


If we apply the signal  $x(t)$  to the input and denote the output signal by  $y(t)$,  the classical system theory provides the following statements:

  • The output signal  $y(t)$  results from the  $\text{convolution}$  between the input signal  $x(t)$  and the impulse response  $h(t)$.  The following equation is equally valid for deterministic and stochastic signals:
$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
  • For deterministic signals,  one usually takes a roundabout route using the spectral functions.  The spectrum  $X(f)$  is the Fourier transform of  $x(t)$.  The multiplication with the frequency response  $H(f)$  leads to the output spectrum  $Y(f)$.  From this,  the signal  $y(t)$  can be obtained by the Fourier inverse transformation.
  • In the case of stochastic signals this procedure fails,  because then the time functions  $x(t)$  and  $y(t)$  are not predictable for all times  from ­$–∞$  to  $+∞$  and thus,  the corresponding amplitude spectra  $X(f)$  and  $Y(f)$  do not exist at all.  In this case,  we have to switch to the  $\text{power-spectral density}$  defined in the last chapter.

Amplitude spectrum and power-spectral density


We consider an ergodic random process  $\{x(t)\}$,  whose auto-correlation function  $φ_x(τ)$  is assumed to be known.  The power-spectral density  ${\it Φ}_x(f)$  is then also uniquely determined via the Fourier transform and the following statements hold:

For the ACF and PSD calculation of a random signal


  1. The  $\text{power-spectral density}$  ${\it Φ}_x(f)$  can be given – as well as the auto-correlation function  $φ_x(τ)$ – for each individual pattern function of the stationary and ergodic random process  $\{x(t)\}$,  even if the specific course of  $x(t)$  is explicitly unknown.

  2. The  $\text{amplitude spectrum}$  $X(f)$,  on the other hand,  is undefined because if the spectral function  $X(f)$  is known, the entire time function  $x(t)$  from  $–∞$  to  $+∞$  would also have to be known via the Fourier inverse transform,  which clearly cannot be the case for a stochastic signal.

  3. If a time section of finite time duration  $T_{\rm M}$  is known according to the sketch on the right,  the Fourier transform can of course be applied to it again.


$\text{Theorem:}$  The following relationship exists between the power-spectral density  ${\it Φ}_x(f)$  of the infinite time random signal  $x(t)$  and the amplitude spectrum  $X_{\rm T}(f)$  of the finite time section  $x_{\rm T}(t)$: 

$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert ^2.$$


$\text{Proof:}$  Previously,  the  $\text{auto-correlation function}$  of an ergodic process with the random signal  $x(t)$  was given as follows:

$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
  • It is permissible to replace the function  $x(t)$,  which is unbounded in time, by the function  $x_{\rm T}(t)$,  which is bounded on the time range  $-T_{\rm M}/2$  to  $+T_{\rm M}/2$.    $x_{\rm T}(t)$  corresponds to the spectrum  $X_{\rm T}(f)$,  and by applying the  $\text{first Fourier integral}$  and the  $\text{shifting theorem}$:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot {\rm e}^{ {\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm} \rm d \it f \hspace{0.1cm} \rm d \it t.$$
  • After splitting the exponent and swapping the time and frequency integrals,  we get:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot \left[ \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot {\rm e}^{ {\rm j}2 \pi f t } \hspace{0.1cm} \rm d \it t \right] \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
  • The inner integral describes the conjugate-complex spectrum  ${X_{\rm T} }^{\star}(f)$.  It further follows that:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}\vert X_{\rm T}(f)\vert^2 \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
$${ {\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f) \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
shows the validity of the above relation:
$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert^2.$$
q.e.d.

Power-spectral density of the filter output signal


Combining the statements made in the last two sections,  we arrive at the following important result:

$\text{Theorem:}$  The power-spectral density  $\rm (PSD)$  at the output of a linear time-invariant system with frequency response  $H(f)$  is obtained as the product

  • of the  "input power-spectral density"  ${\it Φ}_x(f)$ 
  • and the  "power transfer function"  $\vert H(f)\vert ^2$.
$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$


$\text{Proof:}$  Starting from the three relations already derived before:

$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2,$$
$$ { {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, $$
$$Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$

Substituting these equations into each other,  we get the above result.

q.e.d.


The following example illustrates the relationship with white noise.

$\text{Example 1:}$  At the input of a Gaussian low-pass filter with the frequency response

$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
Filter influence in the frequency domain

white noise  $x(t)$  with noise power density  ${ {\it \Phi}_x(f)} =N_0/2$  is present   ⇒   two-sided representation.  Then, the following holds for the power-spectral density of the output signal:

$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}.$$

The diagram shows the signals and power-spectral densities at the filter input and output.

Notes:

  1. The signal  $x(t)$  – strictly speaking – cannot be plotted at all,  since it has an infinite power   ⇒   integral over  ${\it Φ}_x(f)$  from  $-\infty$  to  $+\infty$.
  2. The output signal  $y(t)$  has a lower frequency than  $x(t)$  and a finite power corresponding to the integral over  ${\it Φ}_y(f)$.
  3. In one-sided representation,  (only) for  $f>0$  would hold:  ${ {\it \Phi}_x(f)} =N_0$.  The statements  (1)  and  (2)  would also apply here in the same way.

The auto-correlation function of the filter output signal


The calculated power-spectral density  $\rm (PSD)$  can also be written as follows:

$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f).$$

$\text{Theorem:}$  The corresponding auto-correlation function  $\rm (ACF)$  is then obtained according to the  $\text{Fourier transform laws}$  and by applying the  $\text{convolution theorem}$:

$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(- \tau).$$


In the transition from the spectral to the time domain, note:

  • The Fourier retransforms are to be inserted in each case, namely
$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}.$$
  • Moreover,  each multiplication becomes a convolution operation.


$\text{Example 2:}$  We consider again the same scenario as  in  $\text{Example 1}$,  but this time in the time domain.  It holds:

Filter influence in the time domain
  • Two-sided white noise power density:  ${ {\it \Phi}_x(f)} =N_0/2$,
  • Gaussian filter:   $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} h(t) = \Delta f \cdot {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(\Delta f \hspace{0.03cm}\cdot \hspace{0.03cm}t)^2}.$


One can see from this diagram:

  1. The ACF of the input signal is now a Dirac delta function with weight  $N_0/2$.
  2. By convolution twice with the  (here also Gaussian)  impulse response  $h(t)$  or  $h(–t)$  one obtains the ACF  $φ_y(τ)$  of the output signal.
  3. Thus,  the ACF  $φ_y(τ)$  of the output signal is also Gaussian.
  4. The ACF value at  $τ = 0$  is identical to the area of the power-spectral density  ${\it Φ}_y(f)$  and characterizes the signal power (variance)  $σ_y^2$.
  5. In contrast, the area at  $φ_y(τ)$  gives the PSD value:  ${\it Φ}_y(f = \rm 0)=N_0/2$.

Cross-correlation function between input and output signal


Calculating the cross-correlation function

We again consider a filter with the frequency response  $H(f)$  and the impulse response  $h(t)$.  Further applies:

  1. The stochastic input signal  $x(t)$  is a sample function of the ergodic random process  $\{x(t)\}$.

  2. The corresponding auto-correlation function  $\rm (ACF)$  at the filter input is thus  $φ_x(τ)$,  while the power-spectral density  $\rm (PSD)$  is denoted by  ${\it Φ}_x(f)$. 

  3. The corresponding descriptors of the ergodic random process  $\{y(t)\}$  at the filter output are
  • the random output signal  $y(t)$,
  • the auto-correlation function  $φ_y(τ)$ 
  • and the conductance power-spectral density  ${\it Φ}_y(f)$.


$\text{Theorem:}$  For the  »cross-correlation function«  $\rm (CCF)$  between the input  and the output signal holds:

$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$

Here,  $h(τ)$  denotes the impulse response of the filter  $($with the time variable  $τ$  instead of  $t)$  and  ${ {\it \varphi}_{x}(\tau)}$  denotes the ACF of the input signal.


$\text{Proof:}$  In general,  for the cross-correlation function between two signals  $x(t)$  and  $y(t)$:

$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
  • With the generally valid relation  $y(t) = h(t) \ast x(t)$  and the formal integration variable  $θ$,  we can also write for this:
$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
  • By interchanging the two integrals and subtracting the limit into the integral, we obtain:
$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty} h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} } \cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm} \hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
  • The expression in the square brackets gives the ACF value at the input at time  $τ - θ$:
$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm} {\rm d}\theta = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$
  • However,  the remaining integral describes the convolution operation in detailed notation.
q.e.d.


$\text{Conclusion:}$  In the frequency domain,  the corresponding equation is:

$${ {\it \Phi}_{xy}(f)} = H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$

This equation shows that the filter frequency response  $H(f)$  from a measurement with stochastic excitation can be calculated completely  – i.e., both magnitude and phase –  if the following descriptive quantities are determined:

  • the statistical characteristics at the input, either the ACF  $φ_x(τ)$  or the   PSD ${\it Φ}_x(f)$,
  • as well as the cross-correlation function  $φ_{xy}(τ)$  or its Fourier transform  ${\it Φ}_{xy}(f)$.

Exercises for the chapter


Exercise 5.1: Gaussian ACF and Gaussian Low-Pass

Exercise 5.1Z: Cosine Square Noise Limitation

Exercise 5.2: Determination of the Frequency Response

Exercise 5.2Z: Two-Way Channel