Difference between revisions of "Theory of Stochastic Signals/Stochastic System Theory"

From LNTwww
 
(55 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Filterung stochastischer Signale
+
|Untermenü=Filtering of Stochastic Signals
 
|Vorherige Seite= Verallgemeinerung auf N-dimensionale Zufallsgrößen
 
|Vorherige Seite= Verallgemeinerung auf N-dimensionale Zufallsgrößen
 
|Nächste Seite=Digitale Filter
 
|Nächste Seite=Digitale Filter
 
}}
 
}}
==Problemstellung==
 
Wir betrachten wie im Buch ''Lineare zeitinvariante Systeme'' die unten skizzierte Anordnung, wobei das System sowohl durch die Impulsantwort $h(t)$ als auch durch seinen Frequenzgang $H(f)$ eindeutig beschrieben ist. Der Zusammenhang zwischen diesen beiden Beschreibungsgrößen im Zeit- und Frequenzbereich ist durch die Fouriertransformation gegeben.
 
  
 +
== # OVERVIEW OF THE FIFTH MAIN CHAPTER # ==
 +
<br>
 +
This chapter describes the influence of a filter on the&nbsp; &raquo;auto-correlation function&laquo;&nbsp; $\rm (ACF)$&nbsp; and&nbsp; &raquo;the power-spectral density&nbsp; $\rm (PSD)$&laquo;&nbsp; of stochastic signals.
  
[[File:P_ID466__Sto_T_5_1_S1_neu.png | Filtereinfluss auf Spektrum und LDS]]
+
In detail,&nbsp; this chapter covers:
  
 +
*the&nbsp; &raquo;calculation of ACF and PSD&laquo;&nbsp; at the filter output&nbsp; ("Stochastic System Theory"),
 +
*the structure and representation of&nbsp; &raquo;digital filters&laquo;&nbsp; (non-recursive and recursive),
 +
*the&nbsp; &raquo;dimensioning&laquo;&nbsp; of the filter coefficients for a given ACF,
 +
*the meaning of the&nbsp; &raquo;matched filter&laquo;&nbsp; for the SNR maximization of communication systems,
 +
*the properties of the&nbsp; &raquo;Wiener-Kolmogorow filter&laquo;&nbsp; for the signal reconstruction.
  
Legt man an den Eingang das Signal $x(t)$ an und bezeichnet das Ausgangssignal mit $y(t)$, so liefert die klassische Systemtheorie folgende Aussagen:
 
*Das Ausgangssignal $y(t)$ ergibt sich aus der Faltung zwischen dem Eingangssignal $x(t)$ und der Impulsantwort $h(t)$:
 
$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
 
:Diese Gleichung gilt für deterministische und stochastische Signale gleichermaßen.
 
*Bei deterministischen Signalen geht man meist den Umweg über die Spektralfunktionen. Das Eingangsspektrum $X(f)$ ist die Fouriertransformierte von $x(t)$. Die Multiplikation mit dem Frequenzgang $H(f)$ führt zum Spektrum $Y(f)$. Das Signal $y(t)$ lässt sich daraus durch die Fourierrücktransformation gewinnen.
 
*Bei stochastischen Signalen versagt diese Vorgehensweise, da dann die Zeitfunktionen $x(t)$ und $y(t)$ nicht für alle Zeiten von ­$–∞$ bis $+∞$ vorhersagbar sind und somit die dazugehörigen Amplitudenspektren $X(f)$ und $Y(f)$ gar nicht existieren. In diesem Fall muss auf die in Kapitel 4.5 definierten Leistungsdichtespektren übergegangen werden.
 
  
==Amplituden- und Leistungsdichtespektrum (1)==
 
Wir betrachten nun einen ergodischen Zufallsprozess { $x(t)$}, dessen Autokorrelationsfunktion $φ_x(τ)$ als bekannt vorausgesetzt wird. Das Leistungsdichtespektrum $\it Φ_x(f)$ ist dann über die Fouriertransformation ebenfalls eindeutig bestimmt und es sind folgende Aussagen zutreffend:
 
*Das Leistungsdichtespektrum $\it Φ_x(f)$ kann – ebenso wie die Autokorrelationsfunktion $φ_x(τ)$ – für jede einzelne Musterfunktion des stationären und ergodischen Zufallsprozesses { $x(t)$} angegeben werden, auch wenn der spezifische Verlauf von $x(t)$ explizit nicht bekannt ist.
 
*Das Amplitudenspektrum $X(f)$ ist dagegen undefiniert, da bei Kenntnis der Spektralfunktion $X(f)$ auch die gesamte Zeitfunktion $x(t)$ von $–∞$ bis $+∞$ über die Fourierrücktransformation bekannt sein müsste, was eindeutig nicht der Fall sein kann.
 
*Ist entsprechend der nachfolgenden Skizze ein Zeitausschnitt der endlichen Zeitdauer $T_{\rm M}$ bekannt, so kann für diesen natürlich wieder die Fouriertransformation angewandt werden.
 
:[[File:P_ID467__Sto_T_5_1_S2_neu.png | Zur AKF- und LDS-Berechnung eines Zufallssignals]]
 
*Zwischen dem Leistungsdichtespektrum $\it Φ_x(f)$ des unendlich ausgedehnten Zufallssignals $x(t)$ und dem Amplitudenspektrum $X_{\rm T}(f)$ des begrenzten Zeitausschnittes $x_{\rm T}(t)$ besteht dabei der folgende Zusammenhang:
 
$${\it \Phi_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M}}\cdot |X_{\rm T}(f)|^2.$$
 
  
  
Die Herleitung dieser wichtigen Beziehung folgt im nächsten Abschnitt. Sollten Sie sich für diesen mathematischen Beweis nicht interessieren, so können Sie gerne zum nachfolgenden Abschnitt Leistungsdichtespektrum des Filterausgangssignals springen.
 
  
==Amplituden- und Leistungsdichtespektrum (2)==
+
==System model and problem definition==
Es folgt der Beweis der auf der letzten Seite angegebenen Beziehung
+
<br>
$${{\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
+
As in the book&nbsp; [[Linear_and_Time_Invariant_Systems|"Linear and Time Invariant Systems"]],&nbsp; we consider the setup sketched on the right, where the system characterized both 
\frac{1}{ T_{\rm M}}\cdot |X_{\rm T}(f)|^2.$$
+
*by the impulse response&nbsp; $h(t)$
 +
*as well as by its frequency response&nbsp; $H(f)$  
  
  
{{Box}}
+
is described unambiguously.&nbsp; The relationship between these descriptive quantities in the time and frequency domain is given by the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#Properties_of_aperiodic_signals|$\text{Fourier transformation}$]].&nbsp;
'''Beweis:'''
+
[[File:EN_Sto_T_5_1_S1.png |right| 300px|frame|Filter influence on&nbsp; "spectrum"&nbsp; and&nbsp; <br>"power-spectral density"]]
In Kapitel 4.4 wurde die Autokorrelationsfunktion (AKF) eines ergodischen Prozesses mit der Musterfunktion $x(t)$ angegeben:  
+
 
$${{\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
+
<br>If we apply the signal&nbsp; $x(t)$&nbsp; to the input and denote the output signal by&nbsp; $y(t)$,&nbsp; the classical system theory provides the following statements:
\frac{1}{ T_{\rm M}}\cdot\int^{+T_{\rm M}/2}_{-T_{\rm
+
*The output signal&nbsp; $y(t)$&nbsp; results from the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|$\text{convolution}$]]&nbsp; between the input signal&nbsp; $x(t)$&nbsp; and the impulse response&nbsp; $h(t)$.&nbsp; The following equation is equally valid for deterministic and stochastic signals:
 +
:$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
 +
 
 +
*For deterministic signals,&nbsp; one usually takes a roundabout route using the spectral functions.&nbsp; The spectrum&nbsp; $X(f)$&nbsp; is the Fourier transform of&nbsp; $x(t)$.&nbsp; The multiplication with the frequency response&nbsp; $H(f)$&nbsp; leads to the output spectrum&nbsp; $Y(f)$.&nbsp; From this,&nbsp; the signal&nbsp; $y(t)$&nbsp; can be obtained by the Fourier inverse transformation.
 +
*In the case of stochastic signals this procedure fails,&nbsp; because then the time functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; are not predictable for all times&nbsp; from ­$–∞$&nbsp; to&nbsp; $+∞$&nbsp; and thus,&nbsp; the corresponding amplitude spectra&nbsp; $X(f)$&nbsp; and&nbsp; $Y(f)$&nbsp; do not exist at all.&nbsp; In this case,&nbsp; we have to switch to the&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|$\text{power-spectral density}$]]&nbsp; defined in the last chapter.
 +
 
 +
==Amplitude spectrum and power-spectral density==
 +
<br>
 +
We consider an ergodic random process&nbsp;  $\{x(t)\}$,&nbsp; whose auto-correlation function&nbsp; $φ_x(τ)$&nbsp; is assumed to be known.&nbsp; The power-spectral density&nbsp; ${\it Φ}_x(f)$&nbsp; is then also uniquely determined via the Fourier transform and the following statements hold:
 +
:[[File:P_ID467__Sto_T_5_1_S2_neu.png|right| |frame| For the ACF and PSD calculation of a random signal]]
 +
<br>
 +
#The&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|$\text{power-spectral density}$]]&nbsp; ${\it Φ}_x(f)$&nbsp; can be given – as well as the auto-correlation function&nbsp; $φ_x(τ)$ – for each individual pattern function of the stationary and ergodic random process&nbsp; $\{x(t)\}$,&nbsp; even if the specific course of&nbsp; $x(t)$&nbsp; is explicitly unknown.<br><br>
 +
#The&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|$\text{amplitude spectrum}$]]&nbsp; $X(f)$,&nbsp; on the other hand,&nbsp; is undefined because if the spectral function&nbsp; $X(f)$&nbsp; is known, the entire time function&nbsp; $x(t)$&nbsp; from&nbsp; $–∞$&nbsp; to&nbsp; $+∞$&nbsp; would also have to be known via the Fourier inverse transform,&nbsp; which clearly cannot be the case for a stochastic signal.<br><br>
 +
#If a time section of finite time duration&nbsp; $T_{\rm M}$&nbsp; is known according to the sketch on the right,&nbsp; the Fourier transform can of course be applied to it again.
 +
<br clear=all>
 +
{{BlaueBox|TEXT= 
 +
$\text{Theorem:}$&nbsp; The following relationship exists between the power-spectral density&nbsp; ${\it Φ}_x(f)$&nbsp; of the infinite time random signal&nbsp; $x(t)$&nbsp; and the amplitude spectrum&nbsp; $X_{\rm T}(f)$&nbsp; of the finite time section&nbsp; $x_{\rm T}(t)$:&nbsp;
 +
:$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 +
\frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert ^2.$$}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Proof:}$&nbsp; Previously,&nbsp; the&nbsp;
 +
[[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)|$\text{auto-correlation function}$]]&nbsp; of an ergodic process with the random signal&nbsp; $x(t)$&nbsp; was given as follows:  
 +
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 +
\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm
 
M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
 
M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
Es ist hier zulässig, die zeitlich unbegrenzte Funktion $x(t)$ durch die auf den Zeitbereich $–T_{\rm M}/2$ bis $+T_{\rm M}/2$ begrenzte Funktion $x_{\rm T}(t)$ zu ersetzen. $x_{rm T}(t)$ korrespondiert mit der Spektralfunktion $X_{\rm T}(f)$, und man erhält durch Anwendung des Fourierintegrals und des Verschiebungssatzes:  
+
*It is permissible to replace the function&nbsp; $x(t)$,&nbsp; which is unbounded in time, by the function&nbsp; $x_{\rm T}(t)$,&nbsp; which is bounded on the time range&nbsp; $-T_{\rm M}/2$&nbsp; to&nbsp; $+T_{\rm M}/2$.&nbsp; &nbsp; $x_{\rm T}(t)$&nbsp; corresponds to the spectrum&nbsp; $X_{\rm T}(f)$,&nbsp; and by applying the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|$\text{first Fourier integral}$]]&nbsp; and the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|$\text{shifting theorem}$]]:  
$${{\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
+
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
\frac{1}{ T_{\rm M}}\cdot \int^{+T_{\rm M}/2}_{-T_{\rm
+
\frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm
 
M}/2}x_{\rm T}(t)\cdot \int^{+\infty}_{-\infty}X_{\rm
 
M}/2}x_{\rm T}(t)\cdot \int^{+\infty}_{-\infty}X_{\rm
T}(f)\cdot {\rm e}^{{\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm}
+
T}(f)\cdot {\rm e}^{ {\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm}
 
\rm d \it f \hspace{0.1cm} \rm d \it t.$$
 
\rm d \it f \hspace{0.1cm} \rm d \it t.$$
Nach Aufspalten des Exponenten und Vertauschen von Zeit- und Frequenzintegral ergibt sich:
+
*After splitting the exponent and swapping the time and frequency integrals,&nbsp; we get:
$${{\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
+
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
\frac{1}{ T_{\rm M}}\cdot  \int^{+\infty}_{-\infty}X_{\rm
+
\frac{1}{ T_{\rm M} }\cdot  \int^{+\infty}_{-\infty}X_{\rm
 
T}(f)\cdot \left[ \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm
 
T}(f)\cdot \left[ \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm
T}(t)\cdot  {\rm e}^{{\rm j}2 \pi f  t  } \hspace{0.1cm} \rm d \it
+
T}(t)\cdot  {\rm e}^{ {\rm j}2 \pi f  t  } \hspace{0.1cm} \rm d \it
t \right] \cdot {\rm e}^{{\rm j}2 \pi f  \tau} \hspace{0.1cm} \rm d \it f.$$
+
t \right] \cdot {\rm e}^{ {\rm j}2 \pi f  \tau} \hspace{0.1cm} \rm d \it f.$$
Das innere Integral beschreibt das konjugiert–komplexe Spektrum $X_{\rm T}^{\star}(f)$. Daraus folgt weiter:  
+
*The inner integral describes the conjugate-complex spectrum&nbsp; ${X_{\rm T} }^{\star}(f)$.&nbsp; It further follows that:  
$${{\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
+
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
\frac{1}{ T_{\rm M}}\cdot  \int^{+\infty}_{-\infty}|X_{\rm
+
\frac{1}{ T_{\rm M} }\cdot  \int^{+\infty}_{-\infty}\vert X_{\rm
T}(f)|^2 \cdot {\rm e}^{{\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d
+
T}(f)\vert^2 \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d
 
\it f.$$
 
\it f.$$
Ein Vergleich mit dem bei Ergodizität stets gültigen Theorem von Wiener und Chintchine,  
+
*A comparison with the theorem from&nbsp; [https://en.wikipedia.org/wiki/Norbert_Wiener $\text{Wiener}$]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Aleksandr_Khinchin $\text{Chintchin}$]&nbsp; which is always valid in ergodicity,
$${{\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f)
+
:$${ {\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f)
\cdot {\rm e}^{{\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
+
\cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
zeigt die Gültigkeit der Beziehung:  
+
:shows the validity of the above relation:
$${{\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
+
:$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
\frac{1}{ T_{\rm M}}\cdot |X_{\rm T}(f)|^2.$$
+
\frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert^2.$$
 +
<div align="right">'''q.e.d.'''</div>}}
  
q.e.d.
+
==Power-spectral density of the filter output signal==
{{end}}
+
<br>
 +
Combining the statements made in the last two sections,&nbsp; we arrive at the following important result:
  
==Leistungsdichtespektrum des Filterausgangssignals==
+
{{BlaueBox|TEXT=
Kombiniert man die auf den beiden letzten Seiten gemachten Aussagen, so kommt man zu folgendem wichtigen Ergebnis:  
+
$\text{Theorem:}$&nbsp; The power-spectral density&nbsp; $\rm (PSD)$&nbsp; at the output of a linear time-invariant system with frequency response&nbsp; $H(f)$&nbsp; is obtained as the product 
$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot |H(f)|^2.$$
+
*of the&nbsp; "input power-spectral density"&nbsp; ${\it Φ}_x(f)$&nbsp;
 +
*and the&nbsp; "power transfer function"&nbsp; $\vert H(f)\vert ^2$.
 +
:$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$}}
  
  
{{Box}}
+
{{BlaueBox|TEXT= 
'''Beweis:''' Ausgegangen wird von den drei bereits vorher hergeleiteten Beziehungen:  
+
$\text{Proof:}$&nbsp; Starting from the three relations already derived before:
$${{\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
+
:$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
\frac{1}{ T_{\rm M}}\hspace{-0.05cm}\cdot\hspace{-0.05cm} |X_{\rm T}(f)|^2, \hspace{0.15cm}
+
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2,$$
{{\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
+
:$$ { {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
\frac{1}{ T_{\rm M}}\hspace{-0.05cm}\cdot\hspace{-0.05cm} |Y_{\rm T}(f)|^2, \hspace{0.15cm}
+
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, $$
Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$
+
:$$Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$
Setzt man diese Gleichungen ineinander ein, so erhält man die obige Gleichung.
 
{{end}}
 
  
 +
Substituting these equations into each other,&nbsp; we get the above result.
 +
<div align="right">'''q.e.d.'''</div>}}
  
In Worten: Das Leistungsdichtespektrum (LDS) am Ausgang eines linearen zeitinvarianten Systems mit dem Frequenzgang $H(f)$ ergibt sich als das Produkt
 
*von dem Eingangs–LDS ${\it Φ}_x(f)$
 
*und der Leistungsübertragungsfunktion $|H(f)|^2$.
 
  
 +
The following example illustrates the relationship with white noise.
  
 
+
{{GraueBox|TEXT= 
{{Beispiel}}
+
$\text{Example 1:}$&nbsp;
Am Eingang eines Gauß-Tiefpasses mit dem Frequenzgang
+
At the input of a Gaussian low-pass filter with the frequency response
$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
+
:$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
liegt weißes Rauschen $x(t)$ mit der (zweiseitigen) Rauschleistungsdichte $N_0/2$ an. Dann gilt für das LDS des Ausgangssignals:  
+
[[File:P_ID468__Sto_T_5_1_S3_neu.png |right|frame| Filter influence in the frequency domain]]
$${{\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta
+
white noise&nbsp; $x(t)$&nbsp; with noise power density&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$&nbsp; is present &nbsp; &rArr; &nbsp; two-sided representation.&nbsp; Then, the following holds for the power-spectral density of the output signal:
 +
:$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta
 
f)^2}.$$
 
f)^2}.$$
Die Grafik zeigt die Signale und Leistungsdichtespektren am Ein- und Ausgang des Filters.  
+
The diagram shows the signals and power-spectral densities at the filter input and output.  
  
 +
Notes:
 +
#The signal&nbsp; $x(t)$&nbsp; – strictly speaking – cannot be plotted at all,&nbsp; since it has an infinite power &nbsp; &rArr; &nbsp; integral over&nbsp; ${\it Φ}_x(f)$&nbsp; from&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$.
 +
#The output signal&nbsp; $y(t)$&nbsp; has a lower frequency than&nbsp; $x(t)$&nbsp; and a finite power corresponding to the integral over&nbsp; ${\it Φ}_y(f)$.
 +
#In one-sided representation,&nbsp; (only) for&nbsp; $f>0$&nbsp; would hold:&nbsp; ${ {\it \Phi}_x(f)} =N_0$.&nbsp; The statements&nbsp; (1)&nbsp; and&nbsp; (2)&nbsp; would also apply here in the same way.}}
  
[[File:P_ID468__Sto_T_5_1_S3_neu.png | Filtereinfluss im Frequenzbereich]]
+
==The auto-correlation function of the filter output signal==
 +
<br>
 +
The calculated power-spectral density&nbsp; $\rm (PSD)$&nbsp; can also be written as follows:  
 +
:$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f).$$
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Theorem:}$&nbsp;  The corresponding auto-correlation function&nbsp; $\rm (ACF)$&nbsp; is then obtained according to the&nbsp; [[Signal_Representation/Fourier_Transform_Laws|$\text{Fourier transform laws}$]]&nbsp; and by applying the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_time_domain|$\text{convolution theorem}$]]:
 +
:$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(-
 +
\tau).$$}}
  
Das Eingangssignal $x(t)$ kann – streng genommen – gar nicht gezeichnet werden, da es eine unendlich große Leistung besitzt; siehe hierzu das Lernvideo AWGN-Kanal – Teil 2. Das Ausgangssignal $y(t)$ ist niederfrequenter als $x(t)$ und besitzt eine endliche Leistung entsprechend dem Integral über ${\it Φ}_y(f)$.
+
{{end}}  
+
In the transition from the spectral to the time domain, note:
 +
* The Fourier retransforms are to be inserted in each case, namely
 +
:$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}.$$
 +
*Moreover,&nbsp; each multiplication becomes a convolution operation.
  
==Autokorrelationsfunktion des Filterausgangssignals==
 
Das berechnete Leistungsdichtespektrum (LDS) kann auch wie folgt geschrieben werden:
 
$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f)$$
 
Für die zugehörige Autokorrelationsfunktion (AKF) erhält man dann entsprechend den Gesetzen der Fouriertransformation und durch Anwendung des Faltungssatzes:
 
$${{\it \varphi}_y(\tau)} = {{\it \varphi}_x(\tau)} \ast h(\tau)\ast h(-
 
\tau).$$
 
Beim Übergang vom Spektral– in den Zeitbereich sind jeweils die Fourierrücktransformierten, nämlich
 
$${{\it \varphi}_y(\tau)} \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.2cm}{{\it \varphi}_x(\tau)} \circ\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.2cm}{h(\tau)} \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.2cm}{h(-\tau)} \circ\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}$$
 
einzusetzen. Zudem wird aus jeder Multiplikation eine Faltungsoperation.
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;
 +
We consider again the same scenario as&nbsp; in&nbsp; [[Theory_of_Stochastic_Signals/Stochastic_System_Theory#Power-spectral_density_of_the_filter_output_signal| $\text{Example 1}$]],&nbsp; but this time in the time domain.&nbsp; It holds:
 +
[[File:P_ID591__Sto_T_5_1_S4_neu.png |right|frame| Filter influence in the time domain]]
 +
*Two-sided white noise power density:&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$,
 +
*Gaussian filter: &nbsp; $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
h(t) = \Delta f \cdot {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(\Delta f \hspace{0.03cm}\cdot \hspace{0.03cm}t)^2}.$
  
{{Beispiel}}
 
Wir betrachten nochmals das Beispiel des letzten Abschnitts, aber diesmal im Zeitbereich.
 
  
 +
One can see from this diagram:
 +
#The ACF of the input signal is now a Dirac delta function with weight&nbsp; $N_0/2$.
 +
#By convolution twice with the&nbsp;  (here also Gaussian)&nbsp;  impulse response&nbsp; $h(t)$&nbsp; or&nbsp; $h(–t)$&nbsp; one obtains the ACF&nbsp; $φ_y(τ)$&nbsp; of the output signal.
 +
#Thus,&nbsp;  the ACF&nbsp; $φ_y(τ)$&nbsp; of the output signal is also Gaussian.
 +
#The ACF value at&nbsp; $τ = 0$&nbsp; is identical to the area of the power-spectral density&nbsp; ${\it Φ}_y(f)$&nbsp; and characterizes the signal power (variance)&nbsp; $σ_y^2$.
 +
#In contrast, the area at&nbsp; $φ_y(τ)$&nbsp; gives the PSD value:&nbsp; ${\it Φ}_y(f = \rm 0)=N_0/2$. }}
  
[[File:P_ID591__Sto_T_5_1_S4_neu.png | Filtereinfluss im Zeitbereich]]
+
==Cross-correlation function between input and output signal==
 +
<br>
 +
[[File:EN_Sto_T_5_1_S5.png |frame| Calculating the cross-correlation function |right]]
 +
We again consider a filter with the frequency response&nbsp; $H(f)$&nbsp; and the impulse response&nbsp; $h(t)$.&nbsp; Further applies:
 +
 +
#The stochastic input signal&nbsp; $x(t)$&nbsp; is a sample function of the ergodic random process&nbsp;  $\{x(t)\}$.<br><br>
 +
#The corresponding auto-correlation function&nbsp; $\rm  (ACF)$&nbsp;  at the filter input is thus&nbsp; $φ_x(τ)$,&nbsp; while the power-spectral density&nbsp; $\rm  (PSD)$&nbsp;  is denoted by&nbsp;  ${\it Φ}_x(f)$.&nbsp;<br><br>
 +
#The corresponding descriptors of the ergodic random process&nbsp;  $\{y(t)\}$&nbsp; at the filter output are
 +
 +
::*the random output signal&nbsp; $y(t)$,
 +
::*the auto-correlation function&nbsp; $φ_y(τ)$&nbsp;
 +
::*and the conductance power-spectral density&nbsp;  ${\it Φ}_y(f)$.
 +
<br clear=all>
 +
{{BlaueBox|TEXT= 
 +
$\text{Theorem:}$&nbsp;  For the&nbsp; &raquo;'''cross-correlation function'''&laquo;&nbsp; $\rm (CCF)$&nbsp; between the input&nbsp; and the output signal holds:
 +
:$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$
 +
Here,&nbsp;  $h(τ)$&nbsp; denotes the impulse response of the filter&nbsp; $($with the time variable&nbsp; $τ$&nbsp; instead of&nbsp; $t)$&nbsp; and&nbsp; ${ {\it \varphi}_{x}(\tau)}$&nbsp; denotes the ACF of the input signal.}}
  
  
Man erkennt aus dieser Darstellung:  
+
{{BlaueBox|TEXT= 
*Die AKF des Eingangssignals ist nun eine Diracfunktion mit dem Gewicht $N_0/2$.
+
$\text{Proof:}$&nbsp;  In general,&nbsp; for the cross-correlation function between two signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$:
*Durch zweimalige Faltung mit der (hier ebenfalls gaußförmigen) Impulsantwort $h(t)$ bzw. $h(–t)$ erhält man die AKF $φ_y(τ)$ des Ausgangssignals. Diese ist wiederum gaußförmig.  
+
:$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
*Der AKF–Wert bei $τ =$ 0 ist identisch mit der Fläche des Leistungsdichtespektrums ${\it Φ}_y(f)$ und kennzeichnet die Signalleistung (Varianz) $σ_y^2$.
+
*With the generally valid relation&nbsp; $y(t) = h(t) \ast x(t)$&nbsp; and the formal integration variable&nbsp; $θ$,&nbsp; we can also write for this:
*Dagegen ergibt die Fläche unter $φ_y(τ)$ den LDS-Wert ${\it Φ}_y(f = \rm 0)$, also $N_0/2$.  
+
:$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
 
+
*By interchanging the two integrals and subtracting the limit into the integral, we obtain:
 +
:$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}
 +
h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 +
\frac{1}{ T_{\rm M} } \cdot\int^{+T_{\rm M}/2}_{-T_{\rm
 +
M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm}
 +
\hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
 +
*The expression in the square brackets gives the ACF value at the input at time&nbsp; - θ$:
 +
:$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot  \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm}  {\rm d}\theta = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$  
 +
*However,&nbsp; the remaining integral describes the convolution operation in detailed notation.
 +
<div align="right">'''q.e.d.'''</div>}}
  
{{end}}
 
  
==Kreuzkorrelationsfunktion zwischen Eingangs- und Ausgangssignal==
+
{{BlaueBox|TEXT=
[[File:P_ID469__Sto_T_5_1_S5_Ganz_neu.png | Zur KKF-Berechnung | rechts]]
+
$\text{Conclusion:}$&nbsp; In the frequency domain,&nbsp; the corresponding equation is:
Wir betrachten wieder ein Filter mit der Impulsantwort $h(t)$ sowie die stochastischen Signale $x(t)$ und $y(t)$ an seinem Eingang bzw. seinem Ausgang.  
+
:$${ {\it \Phi}_{xy}(f)} =  H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$
  
Dann gilt für die Kreuzkorrelationsfunktion (KKF) zwischen dem Eingangs– und dem Ausgangssignal:
+
This equation shows that the filter frequency response&nbsp; $H(f)$&nbsp; from a measurement with stochastic excitation can be calculated completely&nbsp; &ndash; i.e., both magnitude and phase &ndash;&nbsp; if the following descriptive quantities are determined:
$${{\it \varphi}_{xy}(\tau)} = h(\tau)\ast {{\it \varphi}_x(\tau)}  .$$  
+
*the statistical characteristics at the input, either the ACF&nbsp; $φ_x(τ)$&nbsp; or the &nbsp; PSD ${\it Φ}_x(f)$,
Hierbei bezeichnet $h(τ)$ die Impulsantwort des Filters (mit der Zeitvariablen $τ$ anstelle von $t$) und $φ_x(τ)$ die AKF am Filtereingang.  
+
*as well as the cross-correlation function&nbsp; $φ_{xy}(τ)$&nbsp; or its Fourier transform&nbsp; ${\it Φ}_{xy}(f)$. }}
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_5.1:_Gaussian_ACF_and_Gaussian_Low-Pass|Exercise 5.1: Gaussian ACF and Gaussian Low-Pass]]
  
{{Box}}
+
[[Aufgaben:Exercise_5.1Z:_Cosine_Square_Noise_Limitation|Exercise 5.1Z: Cosine Square Noise Limitation]]
'''Beweis:''' Allgemein gilt für die Kreuzkorrelationsfunktion zwischen zwei Signalen $x(t)$ und $y(t)$:
 
$${{\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M}}\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
 
Mit der allgemeingültigen Beziehung $y(t) = h(t) \ast x(t)$ und der formalen Integrationsvariablen $θ$ lässt sich hierfür auch schreiben:  
 
$${{\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M}}\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
 
Durch Vertauschen der beiden Integrale und Hereinziehen der Grenzwertbildung erhält man:  
 
$${{\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}
 
h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M}} \cdot\int^{+T_{\rm M}/2}_{-T_{\rm
 
M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm}
 
\hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
 
Der Ausdruck in den eckigen Klammern ergibt den AKF-Wert am Eingang zum Zeitpunkt $τ – θ$:
 
$${{\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot  \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm}  {\rm d}\theta = h(\tau)\ast {{\it \varphi}_x(\tau)}  .$$
 
Das verbleibende Integral beschreibt aber die Faltungsoperation in ausführlicher Schreibweise.
 
{{end}}
 
  
 +
[[Aufgaben:Aufgabe_5.2:_Bestimmung_des_Frequenzgangs|Exercise 5.2: Determination of the Frequency Response]]
  
Im Frequenzbereich lautet die entsprechende Gleichung:  
+
[[Aufgaben:Exercise_5.2Z:_Two-Way_Channel|Exercise 5.2Z: Two-Way Channel]]
$${{\it \Phi}_{xy}(f)} =  H(f)\cdot{{\it \Phi}_x(f)} .$$
 
  
Die beiden Gleichungen zeigen, dass der Filterfrequenzgang $H(f)$ aus einer Messung mit stochastischer Anregung vollständig – also sowohl der Betrag als auch die Phase – berechnet werden kann, wenn folgende Beschreibungsgrößen ermittelt werden:
 
*die statistischen Kenngrößen am Eingang, entweder die AKF $φ_x(τ)$ oder das LDS ${\it Φ}_x(f)$,
 
*sowie die Kreuzkorrelationsfunktion $φ_{xy}(τ)$ bzw. deren Fouriertransformierte ${\it Φ}_{xy}(f)$.
 
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 10:17, 22 December 2022

# OVERVIEW OF THE FIFTH MAIN CHAPTER #


This chapter describes the influence of a filter on the  »auto-correlation function«  $\rm (ACF)$  and  »the power-spectral density  $\rm (PSD)$«  of stochastic signals.

In detail,  this chapter covers:

  • the  »calculation of ACF and PSD«  at the filter output  ("Stochastic System Theory"),
  • the structure and representation of  »digital filters«  (non-recursive and recursive),
  • the  »dimensioning«  of the filter coefficients for a given ACF,
  • the meaning of the  »matched filter«  for the SNR maximization of communication systems,
  • the properties of the  »Wiener-Kolmogorow filter«  for the signal reconstruction.



System model and problem definition


As in the book  "Linear and Time Invariant Systems",  we consider the setup sketched on the right, where the system characterized both

  • by the impulse response  $h(t)$
  • as well as by its frequency response  $H(f)$


is described unambiguously.  The relationship between these descriptive quantities in the time and frequency domain is given by the  $\text{Fourier transformation}$

Filter influence on  "spectrum"  and 
"power-spectral density"


If we apply the signal  $x(t)$  to the input and denote the output signal by  $y(t)$,  the classical system theory provides the following statements:

  • The output signal  $y(t)$  results from the  $\text{convolution}$  between the input signal  $x(t)$  and the impulse response  $h(t)$.  The following equation is equally valid for deterministic and stochastic signals:
$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
  • For deterministic signals,  one usually takes a roundabout route using the spectral functions.  The spectrum  $X(f)$  is the Fourier transform of  $x(t)$.  The multiplication with the frequency response  $H(f)$  leads to the output spectrum  $Y(f)$.  From this,  the signal  $y(t)$  can be obtained by the Fourier inverse transformation.
  • In the case of stochastic signals this procedure fails,  because then the time functions  $x(t)$  and  $y(t)$  are not predictable for all times  from ­$–∞$  to  $+∞$  and thus,  the corresponding amplitude spectra  $X(f)$  and  $Y(f)$  do not exist at all.  In this case,  we have to switch to the  $\text{power-spectral density}$  defined in the last chapter.

Amplitude spectrum and power-spectral density


We consider an ergodic random process  $\{x(t)\}$,  whose auto-correlation function  $φ_x(τ)$  is assumed to be known.  The power-spectral density  ${\it Φ}_x(f)$  is then also uniquely determined via the Fourier transform and the following statements hold:

For the ACF and PSD calculation of a random signal


  1. The  $\text{power-spectral density}$  ${\it Φ}_x(f)$  can be given – as well as the auto-correlation function  $φ_x(τ)$ – for each individual pattern function of the stationary and ergodic random process  $\{x(t)\}$,  even if the specific course of  $x(t)$  is explicitly unknown.

  2. The  $\text{amplitude spectrum}$  $X(f)$,  on the other hand,  is undefined because if the spectral function  $X(f)$  is known, the entire time function  $x(t)$  from  $–∞$  to  $+∞$  would also have to be known via the Fourier inverse transform,  which clearly cannot be the case for a stochastic signal.

  3. If a time section of finite time duration  $T_{\rm M}$  is known according to the sketch on the right,  the Fourier transform can of course be applied to it again.


$\text{Theorem:}$  The following relationship exists between the power-spectral density  ${\it Φ}_x(f)$  of the infinite time random signal  $x(t)$  and the amplitude spectrum  $X_{\rm T}(f)$  of the finite time section  $x_{\rm T}(t)$: 

$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert ^2.$$


$\text{Proof:}$  Previously,  the  $\text{auto-correlation function}$  of an ergodic process with the random signal  $x(t)$  was given as follows:

$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
  • It is permissible to replace the function  $x(t)$,  which is unbounded in time, by the function  $x_{\rm T}(t)$,  which is bounded on the time range  $-T_{\rm M}/2$  to  $+T_{\rm M}/2$.    $x_{\rm T}(t)$  corresponds to the spectrum  $X_{\rm T}(f)$,  and by applying the  $\text{first Fourier integral}$  and the  $\text{shifting theorem}$:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot {\rm e}^{ {\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm} \rm d \it f \hspace{0.1cm} \rm d \it t.$$
  • After splitting the exponent and swapping the time and frequency integrals,  we get:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot \left[ \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot {\rm e}^{ {\rm j}2 \pi f t } \hspace{0.1cm} \rm d \it t \right] \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
  • The inner integral describes the conjugate-complex spectrum  ${X_{\rm T} }^{\star}(f)$.  It further follows that:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}\vert X_{\rm T}(f)\vert^2 \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
$${ {\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f) \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
shows the validity of the above relation:
$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert^2.$$
q.e.d.

Power-spectral density of the filter output signal


Combining the statements made in the last two sections,  we arrive at the following important result:

$\text{Theorem:}$  The power-spectral density  $\rm (PSD)$  at the output of a linear time-invariant system with frequency response  $H(f)$  is obtained as the product

  • of the  "input power-spectral density"  ${\it Φ}_x(f)$ 
  • and the  "power transfer function"  $\vert H(f)\vert ^2$.
$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$


$\text{Proof:}$  Starting from the three relations already derived before:

$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2,$$
$$ { {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, $$
$$Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$

Substituting these equations into each other,  we get the above result.

q.e.d.


The following example illustrates the relationship with white noise.

$\text{Example 1:}$  At the input of a Gaussian low-pass filter with the frequency response

$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
Filter influence in the frequency domain

white noise  $x(t)$  with noise power density  ${ {\it \Phi}_x(f)} =N_0/2$  is present   ⇒   two-sided representation.  Then, the following holds for the power-spectral density of the output signal:

$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}.$$

The diagram shows the signals and power-spectral densities at the filter input and output.

Notes:

  1. The signal  $x(t)$  – strictly speaking – cannot be plotted at all,  since it has an infinite power   ⇒   integral over  ${\it Φ}_x(f)$  from  $-\infty$  to  $+\infty$.
  2. The output signal  $y(t)$  has a lower frequency than  $x(t)$  and a finite power corresponding to the integral over  ${\it Φ}_y(f)$.
  3. In one-sided representation,  (only) for  $f>0$  would hold:  ${ {\it \Phi}_x(f)} =N_0$.  The statements  (1)  and  (2)  would also apply here in the same way.

The auto-correlation function of the filter output signal


The calculated power-spectral density  $\rm (PSD)$  can also be written as follows:

$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f).$$

$\text{Theorem:}$  The corresponding auto-correlation function  $\rm (ACF)$  is then obtained according to the  $\text{Fourier transform laws}$  and by applying the  $\text{convolution theorem}$:

$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(- \tau).$$


In the transition from the spectral to the time domain, note:

  • The Fourier retransforms are to be inserted in each case, namely
$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}.$$
  • Moreover,  each multiplication becomes a convolution operation.


$\text{Example 2:}$  We consider again the same scenario as  in  $\text{Example 1}$,  but this time in the time domain.  It holds:

Filter influence in the time domain
  • Two-sided white noise power density:  ${ {\it \Phi}_x(f)} =N_0/2$,
  • Gaussian filter:   $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} h(t) = \Delta f \cdot {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(\Delta f \hspace{0.03cm}\cdot \hspace{0.03cm}t)^2}.$


One can see from this diagram:

  1. The ACF of the input signal is now a Dirac delta function with weight  $N_0/2$.
  2. By convolution twice with the  (here also Gaussian)  impulse response  $h(t)$  or  $h(–t)$  one obtains the ACF  $φ_y(τ)$  of the output signal.
  3. Thus,  the ACF  $φ_y(τ)$  of the output signal is also Gaussian.
  4. The ACF value at  $τ = 0$  is identical to the area of the power-spectral density  ${\it Φ}_y(f)$  and characterizes the signal power (variance)  $σ_y^2$.
  5. In contrast, the area at  $φ_y(τ)$  gives the PSD value:  ${\it Φ}_y(f = \rm 0)=N_0/2$.

Cross-correlation function between input and output signal


Calculating the cross-correlation function

We again consider a filter with the frequency response  $H(f)$  and the impulse response  $h(t)$.  Further applies:

  1. The stochastic input signal  $x(t)$  is a sample function of the ergodic random process  $\{x(t)\}$.

  2. The corresponding auto-correlation function  $\rm (ACF)$  at the filter input is thus  $φ_x(τ)$,  while the power-spectral density  $\rm (PSD)$  is denoted by  ${\it Φ}_x(f)$. 

  3. The corresponding descriptors of the ergodic random process  $\{y(t)\}$  at the filter output are
  • the random output signal  $y(t)$,
  • the auto-correlation function  $φ_y(τ)$ 
  • and the conductance power-spectral density  ${\it Φ}_y(f)$.


$\text{Theorem:}$  For the  »cross-correlation function«  $\rm (CCF)$  between the input  and the output signal holds:

$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$

Here,  $h(τ)$  denotes the impulse response of the filter  $($with the time variable  $τ$  instead of  $t)$  and  ${ {\it \varphi}_{x}(\tau)}$  denotes the ACF of the input signal.


$\text{Proof:}$  In general,  for the cross-correlation function between two signals  $x(t)$  and  $y(t)$:

$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
  • With the generally valid relation  $y(t) = h(t) \ast x(t)$  and the formal integration variable  $θ$,  we can also write for this:
$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
  • By interchanging the two integrals and subtracting the limit into the integral, we obtain:
$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty} h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} } \cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm} \hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
  • The expression in the square brackets gives the ACF value at the input at time  $τ - θ$:
$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm} {\rm d}\theta = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$
  • However,  the remaining integral describes the convolution operation in detailed notation.
q.e.d.


$\text{Conclusion:}$  In the frequency domain,  the corresponding equation is:

$${ {\it \Phi}_{xy}(f)} = H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$

This equation shows that the filter frequency response  $H(f)$  from a measurement with stochastic excitation can be calculated completely  – i.e., both magnitude and phase –  if the following descriptive quantities are determined:

  • the statistical characteristics at the input, either the ACF  $φ_x(τ)$  or the   PSD ${\it Φ}_x(f)$,
  • as well as the cross-correlation function  $φ_{xy}(τ)$  or its Fourier transform  ${\it Φ}_{xy}(f)$.

Exercises for the chapter


Exercise 5.1: Gaussian ACF and Gaussian Low-Pass

Exercise 5.1Z: Cosine Square Noise Limitation

Exercise 5.2: Determination of the Frequency Response

Exercise 5.2Z: Two-Way Channel