Difference between revisions of "Modulation Methods/Phase Modulation (PM)"

From LNTwww
m
 
(55 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=Angle Modulation and Demodulation
 
|Untermenü=Angle Modulation and Demodulation
|Vorherige Seite=Weitere AM–Varianten
+
|Vorherige Seite=Further AM Variants
|Nächste Seite=Frequenzmodulation (FM)
+
|Nächste Seite=Frequency Modulation (FM)
 
}}
 
}}
  
 
== # OVERVIEW OF THE THIRD MAIN CHAPTER # ==
 
== # OVERVIEW OF THE THIRD MAIN CHAPTER # ==
 
<br>
 
<br>
$\Rightarrow \hspace{0.5cm}\text{We are just beginning the English translation of this chapter.}$
+
The third chapter describes&nbsp; &raquo;'''angle modulation'''&laquo; &nbsp; $($short:&nbsp; "$\rm WM$"&nbsp; from German &nbsp; "Winkelmodulation"$)$.&nbsp; 
 +
 
 +
This is a generic term for
 +
*&nbsp; &raquo;phase modulation&laquo;&nbsp; $\rm (PM)$,&nbsp;
 +
 +
*&nbsp; &raquo;frequency modulation&laquo; &nbsp; $\rm (FM)$.&nbsp;
  
The third chapter describes angle modulation &nbsp; $\rm (WM)$ (from the German "Winkelmodulation")&nbsp; – this name is a generic term for phase modulation $\rm (PM)$&nbsp; and frequency modulation &nbsp; $\rm (FM)$&nbsp; – as well their the associated demodulators.
 
  
In detail, it covers:
+
In detail,&nbsp; the chapter covers:
*the similarities and differences between phase and frequency modulation,
+
#The&nbsp; &raquo;similarities and differences&laquo;&nbsp;  between phase and frequency modulation,
*the signal characteristics and spectral functions of angle-modulated signals and the influence of band limiting,
+
#the&nbsp; &raquo;realization of the associated demodulators&laquo;,
*the signal-to-noise power ratio of FM, which is more favorable than that of AM.
+
#the&nbsp; &raquo;signal characteristics and spectral functions&laquo;&nbsp; of angle-modulated signals and the influence of band limiting,
 +
#the&nbsp; &raquo;signal-to-noise power ratio&laquo;&nbsp; of FM,&nbsp; which is more favorable than that of AM.
  
  
Line 21: Line 26:
 
==Similarities between phase and frequency modulation==
 
==Similarities between phase and frequency modulation==
 
<br>
 
<br>
It has already been pointed out in the chapter&nbsp; [[Modulation_Methods/General_Model_of_Modulation|General Model of Modulation]]&nbsp; that there are substantial similarities between phase modulation &nbsp; $\rm (PM)$&nbsp; and frequency modulation&nbsp; $\rm (FM)$&nbsp;.&nbsp; Therefore, these two related modulation methods are summarized under the general term "angle modulation".
+
It has already been pointed out in the chapter&nbsp; [[Modulation_Methods/General_Model_of_Modulation|"General Model of Modulation"]]&nbsp; that there are substantial similarities between phase modulation &nbsp; $\rm (PM)$&nbsp; and frequency modulation&nbsp; $\rm (FM)$.&nbsp; Therefore,&nbsp; these two related modulation methods are summarized under the general term "angle modulation".
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\rm Definition\text{:}$&nbsp; An&nbsp; '''angle modulation'''&nbsp; – abbreviated as &nbsp; $\rm WM$&nbsp; – is present whenever the modulated signal can be represented as follows:  
+
$\rm Definition\text{:}$&nbsp; An&nbsp; &raquo;'''angle modulation'''&laquo;&nbsp; – abbreviated as &nbsp; $\rm WM$&nbsp; – is present whenever the modulated signal can be represented as follows:  
 
:$$s(t) = A_{\rm T} \cdot \cos\big[\psi(t)\big] =  A_{\rm T} \cdot \cos\hspace{-0.1cm}\big[ω_{\rm T} · t + ϕ(t)\big]
 
:$$s(t) = A_{\rm T} \cdot \cos\big[\psi(t)\big] =  A_{\rm T} \cdot \cos\hspace{-0.1cm}\big[ω_{\rm T} · t + ϕ(t)\big]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Here, as in amplitude modulation &nbsp;$A_{\rm T}$&nbsp; denotes the amplitude of the carrier signal &nbsp;$z(t)$.&nbsp;  
+
*Here,&nbsp;  as in amplitude modulation, &nbsp;$A_{\rm T}$&nbsp; denotes the amplitude of the carrier signal &nbsp;$z(t)$.&nbsp;  
*However, all the information about the source signal &nbsp;$q(t)$&nbsp; is now captured by the &nbsp; ''angular function''&nbsp; $ψ(t)$.}}
+
*However,&nbsp;  all the information about the source signal &nbsp;$q(t)$&nbsp; is now captured by the &nbsp; "angular function"&nbsp; $ψ(t)$.}}
 
   
 
   
  
 
[[File:EN_Mod_T_3_1_S1a.png|right|frame| Equivalent low-pass signal in angle modulation]]
 
[[File:EN_Mod_T_3_1_S1a.png|right|frame| Equivalent low-pass signal in angle modulation]]
  
Based on the plot of the equivalent low-pass signal &nbsp;$s_{\rm TP}(t)$&nbsp; ( subscript from the German "Tiefpass"  low-pass) on the complex plane&nbsp; (we will refer to such a plot as as a "locus curve")&nbsp;, the following charactistics of angle modulation can be seen:  
+
Based on the plot of the equivalent low-pass signal &nbsp;$s_{\rm TP}(t)$&nbsp; (subscript from the German&nbsp;  "Tiefpass"&nbsp;  ⇒ &nbsp; low-pass)&nbsp;  on the complex plane&nbsp; (we will refer to such a plot as a&nbsp;  "locus curve"),&nbsp; the following characteristics of angle modulation can be seen:  
*The locus curve is an &nbsp; ''arc''&nbsp; with radius &nbsp;$A_{\rm T}$.&nbsp; It follows that the envelope of an angle-modulated signal is always constant:  
+
*The locus curve is an &nbsp; "arc"&nbsp; with radius &nbsp;$A_{\rm T}$.&nbsp; It follows that the envelope of an angle-modulated signal is always constant:  
 
:$$a(t) = |s_{\rm TP}(t)|= A_{\rm T}= {\rm const.}$$
 
:$$a(t) = |s_{\rm TP}(t)|= A_{\rm T}= {\rm const.}$$
*Das äquivalente Tiefpass–Signal ist bei Winkelmodulation immer komplex und durch eine zeitabhängige&nbsp; ''Phasenfunktion'' &nbsp;$ϕ(t)$&nbsp; (in Radian) festgelegt, welche die Nulldurchgänge von &nbsp;$s(t)$&nbsp; bestimmt:  
+
*The equivalent low-pass signal in angle modulation is always complex and determined by a time-dependent &nbsp; "phase function" &nbsp;$ϕ(t)$&nbsp; (in radians),&nbsp;  which determines the zero crossings of &nbsp;$s(t)$:  
 
:$$s_{\rm TP}(t)= A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm}.$$
 
:$$s_{\rm TP}(t)= A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm}.$$
*Bei symmetrischem Quellensignal &nbsp;$q(t)$&nbsp; kann &nbsp;$ϕ(t)$&nbsp; alle Werte zwischen &nbsp;$±ϕ_{\rm max}$&nbsp; annehmen, wobei &nbsp;$ϕ_{\rm max}$&nbsp; den&nbsp; '''Phasenhub'''&nbsp; angibt.&nbsp; Je größer der Phasenhub ist, desto intensiver ist die Modulation.  
+
*For a symmetric source signal,&nbsp; &nbsp;$ϕ(t)$&nbsp; can take on all values between &nbsp;$±ϕ_{\rm max}$,&nbsp; where &nbsp;$ϕ_{\rm max}$&nbsp; indicates the &nbsp; &raquo;'''phase deviation'''&laquo;.&nbsp; The larger the phase deviation,&nbsp; the more intense the modulation.  
*Bei einer harmonischen Schwingung ist der Phasenhub &nbsp;$ϕ_{\rm max}$&nbsp; gleich dem&nbsp; '''Modulationsindex''' &nbsp;$η$.&nbsp; Die Verwendung von &nbsp;$η$&nbsp; zeigt im Folgenden also gleichzeitig an, dass &nbsp;$q(t)$&nbsp; nur eine einzige Frequenz beinhaltet.  
+
*For a harmonic oscillation,&nbsp; the phase deviation &nbsp;$ϕ_{\rm max}$&nbsp; is equal to the &nbsp; &raquo;'''modulation index'''&laquo; &nbsp;$η$.&nbsp; Thus,&nbsp; the use of &nbsp;$η$&nbsp; in what follows also indicates that &nbsp;$q(t)$&nbsp; only contains a single frequency.  
*Der Zusammenhang zwischen Quellensignal &nbsp;$q(t)$&nbsp; und Winkelfunktion &nbsp;$ψ(t) = \cos\hspace{-0.1cm}\big[ω_{\rm T} · t + ϕ(t)\big]$&nbsp; bzw. der daraus ableitbaren Phasenfunktion &nbsp;$ϕ(t)$&nbsp; unterscheidet sich bei der Phasen– und der Frequenzmodulation grundsätzlich, worauf im Kapitel &nbsp;[[Modulation_Methods/Frequenzmodulation_(FM)|Frequenzmodulation]]&nbsp; noch ausführlich eingegangen wird.  
+
*The relationship between the source signal &nbsp;$q(t)$&nbsp; and the angular function &nbsp;$ψ(t) = \cos\hspace{-0.1cm}\big[ω_{\rm T} · t + ϕ(t)\big]$&nbsp;, &nbsp;just like the phase function &nbsp;$ϕ(t)$&nbsp; that can be derived from it,&nbsp;  differs fundamentally in phase and frequency modulation,&nbsp; which will be discussed in detail in the chapter &nbsp;[[Modulation_Methods/Frequency_Modulation_(FM)|"Frequency Modulation"]]&nbsp;.  
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp; Die folgende Grafik zeigt jeweils
+
$\text{Example 1:}$&nbsp; The following graph shows
*rechts das Sendesignal &nbsp;$s(t)$ &nbsp; ⇒  &nbsp; blaue Signalverläufe im Vergleich zum Trägersignal &nbsp;$z(t)$  &nbsp; ⇒  &nbsp; rote Schwingungen, sowie
+
*on the right,&nbsp; the transmitted signal &nbsp;$s(t)$ ⇒  &nbsp; blue waveforms, compared to the carrier signal &nbsp;$z(t)$  &nbsp; ⇒  &nbsp; red waveforms,  
*links das äquivalente Tiefpass–Signal &nbsp;$s_{\rm TP}(t)$&nbsp; in der komplexen Ebene.  
+
*on the left,&nbsp; the equivalent low-pass signal  &nbsp;$s_{\rm TP}(t)$&nbsp; in the complex plane.
 
+
[[File:EN Mod T 3 1 S1b v3.png|right|frame|Physical signal and equivalent low-pass signal for angle and amplitude modulation]]
  
Die (linke) Darstellung in der komplexen Ebene bezeichnen wir auch als die „Ortskurve”  &nbsp; ⇒  &nbsp; grüne Kurvenverläufe.
 
  
[[File:EN_Mod_T_3_1_S1b.png|right|frame|Physikalisches Signal und äquivalentes Tiefpass–Signal bei Winkel- und Amplitudenmodulation]]
+
We also refer to the&nbsp; (left)&nbsp; plot in the complex plane as the&nbsp; "locus curve" &nbsp; ⇒  &nbsp; green waveforms.
  
Die obere Skizze gilt für die Winkelmodulation&nbsp; $\rm WM$:  
+
The upper graph applies in the case of angle modulation &nbsp; $\rm (WM)$:  
*Das äquivalente TP–Signal&nbsp; $s_{\rm TP}(t) = A_{\rm T} · {\rm e}^{ \hspace{0.05cm}{\rm j}\hspace{0.05cm}· \hspace{0.05cm}ϕ(t)}$&nbsp; beschreibt einen Kreisbogen &nbsp; &rArr; &nbsp;  konstante Einhüllende&nbsp; $a(t) = A_{\rm T}$.  
+
*The equivalent low-pass signal&nbsp; $s_{\rm TP}(t) = A_{\rm T} · {\rm e}^{ \hspace{0.05cm}{\rm j}\hspace{0.05cm}· \hspace{0.05cm}ϕ(t)}$&nbsp; describes an arc &nbsp; &rArr; &nbsp;  constant envelope &nbsp; $a(t) = A_{\rm T}$.  
*Die Information über das Quellensignal &nbsp;$q(t)$&nbsp; steckt hier also ausschließlich in der Lage der Nulldurchgänge von &nbsp;$s(t)$.  
+
*Thus,&nbsp; the information about the source signal &nbsp;$q(t)$&nbsp; is exclusively found in the zero crossings of &nbsp;$s(t)$.  
*Gilt momentan &nbsp;$ϕ(t) < 0$, so treten die Nulldurchgänge von &nbsp;$s(t)$&nbsp; später als diejenigen von &nbsp;$z(t)$&nbsp; auf.
+
*Should &nbsp;$ϕ(t) < 0$&nbsp; hold,&nbsp; then the zero crossings of &nbsp;$s(t)$&nbsp; occur later than those of &nbsp;$z(t)$.&nbsp; Otherwise when &nbsp;$ϕ(t) > 0$,&nbsp; the zero crossings of &nbsp;$s(t)$&nbsp; come before &nbsp;$z(t)$.  
*Andernfalls bei &nbsp;$ϕ(t) > 0$&nbsp; – sind die Nulldurchgänge von &nbsp;$s(t)$&nbsp; gegenüber &nbsp;$z(t)$&nbsp; vorlaufend.  
 
  
  
Die untere Skizze gilt für die&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|Zweiseitenband–Amplitudenmodulation]]&nbsp; $\rm (ZSB-AM)$&nbsp; wie im Kapitel 2 beschrieben, gekennzeichnet durch
+
The lower graph corresponds to &nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|$\text{Double-Sideband Amplitude Modulation}$]]&nbsp; $\rm (DSB-AM)$&nbsp; as described in Chapter 2,&nbsp; characterized by
*die zeitabhängige Hüllkurve &nbsp;$a(t)$&nbsp; gemäß dem Quellensignal &nbsp;$q(t)$,  
+
*the time-dependent envelope &nbsp;$a(t)$&nbsp; according to the signal &nbsp;$q(t)$,  
*äquidistante Nulldurchgänge von &nbsp;$s(t)$&nbsp; gemäß dem Träger &nbsp;$z(t)$, und
+
*equidistant zero crossings of &nbsp;$s(t)$&nbsp; according to the carrier &nbsp;$z(t)$,&nbsp; and
*eine horizontale Gerade als Ortskurve &nbsp;$s_{\rm TP}(t)$. }}
+
*a horizontal straight line as the locus curve &nbsp;$s_{\rm TP}(t)$. }}
  
  
Das vorliegende dritte Kapitel wurde nach folgenden Gesichtspunkten gegliedert:  
+
The present third chapter has been structured according to the following considerations:  
#&nbsp; Ein jedes FM–System kann durch einfache Modifikationen in ein entsprechendes PM–System übergeführt werden und umgekehrt.  
+
# Any&nbsp; $\rm FM$&nbsp; system can be converted into a corresponding&nbsp; $\rm PM$&nbsp; system by simple modifications and vice versa.  
#&nbsp; Größere Bedeutung bei Analogsystemen hat die FM aufgrund des günstigeren Rauschverhaltens.&nbsp; Deshalb werden Realisierungsaspekte für Modulator/Demodulator erst im Kapitel&nbsp; [[Modulation_Methods/Frequenzmodulation_(FM)|Frequenzmodulation]]&nbsp; (FM) behandelt.  
+
# $\rm FM$&nbsp;is more important for analog systems due to its more favorable noise behaviour.&nbsp; For this reason,&nbsp;  considerations concerning the realization of the modulator/demodulator will only be dealt with in the chapter&nbsp; [[Modulation_Methods/Frequency_Modulation_(FM)|"Frequency Modulation"]].
#&nbsp; Die Phasenmodulation (PM) ist gegenüber der FM leichter zu verstehen.&nbsp; Deshalb werden zunächst in diesem ersten Kapitel die grundlegenden Eigenschaften eines Winkelmodulationssystems am Beispiel der PM dargelegt.  
+
# Phase modulation&nbsp; is easier to understand compared to&nbsp; $\rm FM$.&nbsp; Therefore,&nbsp; the basic properties of an angle modulation system are first presented in this chapter using&nbsp; $\rm PM$&nbsp; as an example.  
  
==Signalverläufe bei Phasenmodulation==
+
==Signal characteristics of phase modulation==
 
<br>
 
<br>
Ohne Einschränkung der Allgemeingültigkeit wird im Folgenden vorausgesetzt:  
+
Without limiting generality,&nbsp; the following assumes:
*ein cosinusförmiges Trägersignal &nbsp;$z(t) = A_{\rm T} · \cos(ω_{\rm T} · t)$, das heißt die Trägerphase ist stets  &nbsp;$ϕ_{\rm T} = 0$,  
+
*a cosine carrier signal &nbsp;$z(t) = A_{\rm T} · \cos(ω_{\rm T} · t)$,&nbsp; that is,&nbsp; the carrier phase is always &nbsp;$ϕ_{\rm T} = 0$,  
*ein spitzenwertbegrenztes Quellensignal in den Grenzen &nbsp;$\ –q_{\rm max} ≤ q(t) ≤ +q_{\rm max}$.  
+
*a peak-limited source signal between the limits &nbsp;$\ –q_{\rm max} ≤ q(t) ≤ +q_{\rm max}$.  
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\rm Definition\text{:}$&nbsp; Ist die Phasenfunktion &nbsp;$ϕ(t)$&nbsp; proportional dem anliegenden Quellensignal &nbsp;$q(t)$, so spricht man von einer&nbsp; '''Phasenmodulation'''&nbsp; $\rm (PM)$, und es gilt:  
+
$\rm Definition\text{:}$&nbsp; If the phase function&nbsp;$ϕ(t)$&nbsp; is proportional to the applied source signal &nbsp;$q(t)$,&nbsp; we are dealing with&nbsp; &raquo;'''phase modulation'''&laquo;&nbsp; $\rm (PM)$,&nbsp; and it holds that:  
 
:$$\phi(t)= K_{\rm PM} \cdot q(t)\hspace{0.05cm}\hspace{0.3cm}\Rightarrow
 
:$$\phi(t)= K_{\rm PM} \cdot q(t)\hspace{0.05cm}\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}\psi(t)= \omega_{\rm T} \cdot t +
 
\hspace{0.3cm}\psi(t)= \omega_{\rm T} \cdot t +
 
\phi(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s(t) = A_{\rm T}
 
\phi(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s(t) = A_{\rm T}
 
\cdot \cos \big[\psi(t)\big]\hspace{0.05cm}.$$
 
\cdot \cos \big[\psi(t)\big]\hspace{0.05cm}.$$
Hierbei bezeichnet &nbsp;$K_{\rm PM}$&nbsp; die dimensionsbehaftete Modulatorkonstante.&nbsp; Beschreibt &nbsp;$q(t)$&nbsp; einen Spannungsverlauf, so besitzt diese Konstante die Einheit &nbsp;$\rm 1/V$. }}
+
Here,&nbsp;$K_{\rm PM}$&nbsp; denotes the modulator constant with appropriate dimensions.&nbsp; If &nbsp;$q(t)$&nbsp; describes a voltage waveform,&nbsp; this constant has the unit &nbsp;$\rm 1/V$. }}
  
  
Die Phasenmodulaton ist um so intensiver,  
+
The phase modulation is all the more intensive,  
*je größer die Modulatorkonstante &nbsp;$K_{\rm PM}$&nbsp; ist,
+
*the larger the modulator constant &nbsp;$K_{\rm PM}$,&nbsp; or
*je größer der Maximalwert &nbsp;$q_{\rm max}$&nbsp; des Quellensignals ist.  
+
*the larger the maximum value &nbsp;$q_{\rm max}$&nbsp; of the source signal.  
  
  
Quantitativ erfasst wird dieser Sachverhalt durch den&nbsp; '''Phasenhub'''  
+
{{BlaueBox|TEXT=
 +
$\rm Definitions\text{:}$&nbsp;  
 +
 
 +
'''(1)''' &nbsp; Quantitatively,&nbsp; this fact is captured by the&nbsp; &raquo;'''phase deviation'''&laquo;
 
:$$ \phi_{\rm max} = K_{\rm PM} \cdot q_{\rm max}\hspace{0.05cm}.$$
 
:$$ \phi_{\rm max} = K_{\rm PM} \cdot q_{\rm max}\hspace{0.05cm}.$$
Bei einer harmonischen Schwingung wird der "Phasenhub" auch als&nbsp; '''Modulationsindex'''&nbsp; bezeichnet und es gilt mit der Amplitude &nbsp;$A_{\rm N}$&nbsp; des Quellensignals:  
+
'''(2)''' &nbsp; For a harmonic oscillation,&nbsp; the&nbsp; "phase deviation"&nbsp; is also called&nbsp; &raquo;'''modulation index'''&laquo;.&nbsp; The following holds for  the amplitude&nbsp; $A_{\rm N}$&nbsp; of the source signal:  
:$$\eta = \eta_{\rm PM} = K_{\rm PM} \cdot A_{\rm N}\hspace{0.05cm}.$$
+
:$$\eta = \eta_{\rm PM} = K_{\rm PM} \cdot A_{\rm N}\hspace{0.05cm}.$$}}
  
Zu dieser Gleichung ist Folgendes anzumerken:  
+
 
*Der Modulationsindex &nbsp;$η$&nbsp; ist vergleichbar mit dem Modulationsgrad &nbsp;$m$&nbsp; bei ZSB–AM mit Träger.  
+
The following should be noted about this equation:  
*In der Ortskurve  beschreiben &nbsp;$ϕ_{\rm max}$&nbsp; bzw. &nbsp;$η$&nbsp; den halben Winkel des Kreisbogens in „Radian”.  
+
*The modulation index &nbsp;$η$&nbsp; is comparable to the modulation depth &nbsp;$m$&nbsp; in DSB–AM with carrier.  
*Bei anderem Quellensignal mit gleichem &nbsp;$η$&nbsp; – zum Beispiel:&nbsp; andere Phase &nbsp;$ϕ_{\rm N}$&nbsp; – ändert sich die Ortskurve nicht, lediglich die zeitliche Bewegung auf der Ortskurve.  
+
*In the locus curve,&nbsp; the parameters &nbsp;$ϕ_{\rm max}$&nbsp; or &nbsp;$η$&nbsp; describe the half angle of the circular arc in radians.  
*Der Modulationsindex wird auch zur Beschreibung der Frequenzmodulation herangezogen, doch ist er dann etwas anders zu berechnen.
+
*For other source signals with the same &nbsp;$η$&nbsp; $($e.g.:&nbsp; with different phase &nbsp;$ϕ_{\rm N})$ &nbsp; the locus curve itself does not change, only the temporal movement along the curve does.  
* Wir unterscheiden deshalb zwischen &nbsp;$η_{\rm PM}$&nbsp; und &nbsp;$η_{\rm FM}$.  
+
*The modulation index is also used in describing frequency modulation,&nbsp; though in that case it is to be calculated somewhat differently.
 +
* We therefore distinguish between  &nbsp;$η_{\rm PM}$&nbsp; and &nbsp;$η_{\rm FM}$.  
  
  
[[File: P_ID1070__Mod_T_3_1_S2a_neu.png|right|frame|Signalverläufe bei Phasenmodulation mit&nbsp; $η = 1$&nbsp; bzw.&nbsp; $η = 3$]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\rm Beispiel \ 2\text{:}$&nbsp; Die Grafik zeigt oben das sinusförmige Quellensignal &nbsp;$q(t)$&nbsp; mit der Frequenz &nbsp;$f_{\rm N} = 2 \ \rm kHz$&nbsp; und der Amplitude &nbsp;$A_{\rm N}$&nbsp; sowie darunter gezeichnet zwei phasenmodulierte Signale.&nbsp; Diese unterscheiden sich durch den Parameter &nbsp;$η = 1$&nbsp; bzw. &nbsp;$η = 3$:
+
$\rm Example \ 2\text{:}$ &nbsp; The graph shows a sinusoidal source signal &nbsp;$q(t)$&nbsp; with frequency &nbsp;$f_{\rm N} = 2 \ \rm kHz$&nbsp; and amplitude &nbsp;$A_{\rm N}$,&nbsp; and two phase modulated signals drawn below.&nbsp;  
 +
*These differ by the parameters  &nbsp;$η = 1$&nbsp; and &nbsp;$η = 3$, resp.:
 +
[[File: P_ID1070__Mod_T_3_1_S2a_neu.png|right|frame|Signal characteristics for phase modulation with&nbsp; $η = 1$&nbsp; resp.&nbsp; $η = 3$]]
 
:$$s_\eta(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t +
 
:$$s_\eta(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t +
 
\eta \cdot \sin (\omega_{\rm N} \cdot t) \big]\hspace{0.05cm}.$$
 
\eta \cdot \sin (\omega_{\rm N} \cdot t) \big]\hspace{0.05cm}.$$
Grau gepunktet ist das cosinusförmige Trägersignal &nbsp;$z(t)$&nbsp; eingezeichnet, wobei jeweils  &nbsp;$f_{\rm T} = 20  \ \rm kHz$&nbsp; zugrunde liegt.
+
*Dotted in gray is the cosine carrier signal &nbsp;$z(t)$,&nbsp; in each case based on &nbsp;$f_{\rm T} = 20  \ \rm kHz$&nbsp;.
  
Der Modulationsindex &nbsp;$η = 1$&nbsp; und damit das Sendesignal &nbsp;$s_1(t)$&nbsp; ergibt sich zum Beispiel
+
*For example,&nbsp; the modulation index &nbsp;$η = 1$&nbsp;, thus the transmitted signal &nbsp;$s_1(t)$&nbsp; is given by
*mit &nbsp;$A_{\rm N} = 1 \ \rm V $&nbsp; und &nbsp;$K_{\rm PM} = \rm 1/V$, aber auch
+
:*$A_{\rm N} = 1 \, \rm V $&nbsp; and &nbsp;$K_{\rm PM} = \rm 1/V$,  
*mit den Parameterwerten &nbsp;$A_{\rm N} = 2 \ \rm  V$&nbsp; und &nbsp;$K_{\rm PM} = \rm 0.5/V$.  
+
:*but also by parameter values &nbsp;$A_{\rm N} = 2 \ \rm  V$&nbsp; and &nbsp;$K_{\rm PM} = \rm 0.5/V$.  
<br clear=all>
 
Man erkennt aus diesen Kurvenverläufen:
 
*Die Nulldurchgänge des Sendesignals &nbsp;$s_1(t)$&nbsp; und des Trägersignals &nbsp;$z(t)$&nbsp; stimmen genau dann überein, wenn &nbsp;$q(t) ≈ 0$&nbsp; ist.
 
*Bei &nbsp;$q(t) = +\hspace{-0.05cm}A_{\rm N}$&nbsp; kommen die Nulldurchgänge von &nbsp;$s_1(t)$&nbsp; um &nbsp;$1/(2π) ≈ 0.159$&nbsp; einer Trägerperiode &nbsp;$T_0$&nbsp; früher &nbsp;(„vorlaufend”), bei &nbsp;$q(t) =  -\hspace{-0.05cm}A_{\rm N}$&nbsp; um den gleichen Bruchteil später&nbsp; („nachlaufend”).
 
*Erhöht man den Modulationsindex  auf &nbsp;$η = 3$ &nbsp;&ndash;&nbsp; entweder durch Verdreifachung von &nbsp;$A_{\rm N}$&nbsp; oder von &nbsp;$K_{\rm PM}$, so ergibt sich qualitativ das gleiche Resultat, aber eine intensivere Phasenmodulation.
 
*Die Nulldurchgänge von &nbsp;$s_3(t)$&nbsp; sind nun gegenüber denen des Taktsignals um maximal &nbsp;$\rm ±3/(2π) ≈ ±0.5$&nbsp; einer Trägerperiode verschoben, also bis zu &nbsp;$±T_0/2$. }}
 
  
  
==Äquivalentes TP–Signal bei Phasenmodulation==
+
From the curves,&nbsp; one can see:
 +
#The zero crossings of the transmitted signal &nbsp;$s_1(t)$&nbsp; and the carrier signal &nbsp;$z(t)$&nbsp; coincide exactly when &nbsp;$q(t) ≈ 0$.
 +
#When &nbsp;$q(t) = +\hspace{-0.05cm}A_{\rm N}$,&nbsp; the zero crossings come &nbsp;$1/(2π) ≈ 0.159$&nbsp; of a carrier period &nbsp;$T_0$&nbsp; earlier &nbsp;("leading").
 +
#When &nbsp;$q(t) = -\hspace{-0.05cm}A_{\rm N}$,&nbsp; the zero crossings come the same period fraction later ("lagging").
 +
#Increasing the index  to &nbsp;$η = 3$&nbsp; $($by tripling &nbsp;$A_{\rm N}$&nbsp; or&nbsp; $K_{\rm PM})$, we get qualitatively the same result, but with a more intense PM.
 +
#The zero crossings of &nbsp;$s_3(t)$&nbsp; are now shifted relative to those of the carrier by a maximum of  &nbsp;$\rm ±3/(2π) ≈ ±0.5$&nbsp; of a period, i.e., up to&nbsp;$±T_0/2$. }}
 +
 
 +
 
 +
==Equivalent low-pass signal in phase modulation==
 
<br>
 
<br>
Als Vorbereitung zur Herleitung des Spektrums &nbsp;$S(f)$&nbsp; eines phasenmodulierten Signals &nbsp;$s(t)$&nbsp; wird zunächst das äquivalente Tiefpass–Signal &nbsp;$s_{\rm TP}(t)$&nbsp; analysiert.&nbsp; Dabei gehen wir von folgenden Voraussetzungen aus:  
+
In preparation for deriving the spectrum&nbsp;$S(f)$&nbsp; of a phase modulated signal &nbsp;$s(t)$,&nbsp; we first analyse the equivalent low-pass signal &nbsp;$s_{\rm TP}(t)$.&nbsp; In the folowing,&nbsp; we assume:  
*ein sinusförmiges Quellensignal mit Amplitude &nbsp;$A_{\rm N}$&nbsp; und Frequenz &nbsp;$f_{\rm N}$,  
+
*a sine-shaped source signal&nbsp; $q(t)$&nbsp; with amplitude &nbsp;$A_{\rm N}$&nbsp; and frequency&nbsp;$f_{\rm N}$,  
*ein cosinusförmiges Trägersignal mit Amplitude &nbsp;$A_{\rm T}$&nbsp; und Frequenz &nbsp;$f_{\rm T}$,  
+
*a cosine-shaped carrier signal&nbsp; $z(t)$&nbsp; with amplitude &nbsp;$A_{\rm T}$&nbsp; and frequency &nbsp;$f_{\rm T}$,  
*eine Phasenmodulation mit dem Modulationsindex &nbsp;$η = K_{\rm PM} · A_{\rm N}$.  
+
*phase modulation with modulation index &nbsp;$η = K_{\rm PM} · A_{\rm N}$.  
  
  
Damit lauten das phasenmodulierte Signal sowie das dazugehörige äquivalente Tiefpass–Signal:
+
Thus,&nbsp; the phase modulated signal and the corresponding equivalent low-pass signal are:
 
:$$s(t) = A_{\rm T} \cdot \cos \big[\omega_{\rm T} \cdot t + \eta
 
:$$s(t) = A_{\rm T} \cdot \cos \big[\omega_{\rm T} \cdot t + \eta
 
\cdot \sin (\omega_{\rm N} \cdot t) \big]\hspace{0.05cm},$$
 
\cdot \sin (\omega_{\rm N} \cdot t) \big]\hspace{0.05cm},$$
Line 138: Line 148:
 
\hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) }\hspace{0.05cm}.$$
 
\hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) }\hspace{0.05cm}.$$
  
Dieses Signal ist periodisch und kann somit durch eine&nbsp; [[Signal_Representation/Fourier_Series#Komplexe_Fourierreihe|komplexe Fourierreihe]]&nbsp; dargestellt werden.&nbsp; Damit erhält man allgemein:
+
This signal is periodic and can be represented by a &nbsp; [[Signal_Representation/Fourier_Series#Complex_Fourier_series|$\text{complex Fourier series}$]].&nbsp; Thus,&nbsp; in general one obtains:
 
:$$s_{\rm TP}(t) = \sum_{n = - \infty}^{+\infty}D_{n} \cdot {\rm
 
:$$s_{\rm TP}(t) = \sum_{n = - \infty}^{+\infty}D_{n} \cdot {\rm
 
e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot
 
e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot
Line 144: Line 154:
 
\hspace{0.05cm}\cdot \hspace{0.05cm} t} \hspace{0.05cm}.$$
 
\hspace{0.05cm}\cdot \hspace{0.05cm} t} \hspace{0.05cm}.$$
  
In dem hier betrachteten Sonderfall&nbsp; (sinusförmiges Quellensignal, cosinusförmiger Träger)&nbsp; sind die im Allgemeinen komplexen Fourierkoeffizienten &nbsp;$D_n$&nbsp; alle reell und mit den&nbsp; ''Besselfunktionen'' &nbsp;${\rm J}_n(η)$&nbsp; erster Art und&nbsp; $n$–ter Ordnung wie folgt gegeben:  
+
In the special case considered here &nbsp; (sinusoidal source signal,&nbsp; cosinusoidal carrier)&nbsp; the typically complex Fourier coefficients &nbsp;$D_n$&nbsp; are all real and given by &nbsp; $n$–th order&nbsp; &raquo;'''Bessel functions'''&laquo;&nbsp;  of the first kind &nbsp;${\rm J}_n(η)$&nbsp; as follows:  
 
:$$D_{n} = A_{\rm T}\cdot {\rm J}_n (\eta) \hspace{0.05cm}. \hspace{1cm} $$
 
:$$D_{n} = A_{\rm T}\cdot {\rm J}_n (\eta) \hspace{0.05cm}. \hspace{1cm} $$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Wichtiges Zwischenergebnis:}$&nbsp; &nbsp;
+
$\text{Important intermediate result:}$&nbsp; &nbsp;
Nun soll mathematisch nachgewiesen werden, dass das äquivalente Tiefpass–Signal bei Phasenmodulation tatsächlich in die folgende Funktionsreihe umgewandelt werden kann:  
+
Now it should be mathematically proven that in the case of phase modulation,&nbsp; the equivalent low-pass signal can indeed be converted into the following function series:  
 
:$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot
 
:$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot
 
\hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$}}
 
\hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$}}
Line 155: Line 165:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Beweis:}$&nbsp; Wir setzen vereinfachend &nbsp;$A_{\rm T} = 1$. Damit lautet das gegebene äquivalente Tiefpass–Signal: &nbsp; &nbsp;
+
$\text{Proof:}$&nbsp; For simplicity,&nbsp; we set &nbsp;$A_{\rm T} = 1$.&nbsp; Thus,&nbsp; the given equivalent low-pass signal is: &nbsp; &nbsp;
 
:$$s_{\rm TP}(t) =  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) }\hspace{0.05cm}.$$
 
:$$s_{\rm TP}(t) =  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) }\hspace{0.05cm}.$$
  
'''(1)'''&nbsp;  Mit &nbsp;$x = {\rm j} · η · \sin(γ)$&nbsp; und &nbsp;$γ = ω_{\rm N} · t$&nbsp; lautet die Potenzreihenentwicklung dieser Gleichung:  
+
'''(1)'''&nbsp;  When &nbsp;$x = {\rm j} · η · \sin(γ)$&nbsp; and &nbsp;$γ = ω_{\rm N} · t$,&nbsp; the power series expansion of this equation is:  
 
:$$s_{\rm TP}(t)  = {\rm e}^{x } = 1 + x + \frac{1}{2!} \cdot x^2 + \frac{1}{3!} \cdot x^3 + \text{...} = 1 + {\rm j} \cdot \eta \cdot \sin (\gamma)+ \frac{1}{2!} \cdot {\rm j}^2 \cdot \eta^2 \cdot \sin^2 (\gamma)+ \frac{1}{3!} \cdot {\rm j}^3 \cdot \eta^3 \cdot \sin^3 (\gamma) + \text{...}$$
 
:$$s_{\rm TP}(t)  = {\rm e}^{x } = 1 + x + \frac{1}{2!} \cdot x^2 + \frac{1}{3!} \cdot x^3 + \text{...} = 1 + {\rm j} \cdot \eta \cdot \sin (\gamma)+ \frac{1}{2!} \cdot {\rm j}^2 \cdot \eta^2 \cdot \sin^2 (\gamma)+ \frac{1}{3!} \cdot {\rm j}^3 \cdot \eta^3 \cdot \sin^3 (\gamma) + \text{...}$$
  
'''(2)'''&nbsp;  Die einzelnen trigonometrischen Ausdrücke können wie folgt umgeformt werden:  
+
'''(2)'''&nbsp;  The individual trigonometric expressions can be rewritten as follows:  
 
:$$ \frac{1}{2!} \cdot {\rm j}^2 \cdot \eta^2 \cdot \sin^2 (\gamma)  = \frac{- \eta^2}{2 \cdot 2!} \cdot \big[ 1 - \cos (2\gamma)\big],\hspace{1.0cm} \frac{1}{3!} \cdot {\rm j}^3 \cdot \eta^3 \cdot \sin^3 (\gamma)  = \frac{- {\rm j} \cdot \eta^3}{4 \cdot 3!} \cdot \big[ 3 \cdot \sin (\gamma)- \sin (3\gamma)\big],$$
 
:$$ \frac{1}{2!} \cdot {\rm j}^2 \cdot \eta^2 \cdot \sin^2 (\gamma)  = \frac{- \eta^2}{2 \cdot 2!} \cdot \big[ 1 - \cos (2\gamma)\big],\hspace{1.0cm} \frac{1}{3!} \cdot {\rm j}^3 \cdot \eta^3 \cdot \sin^3 (\gamma)  = \frac{- {\rm j} \cdot \eta^3}{4 \cdot 3!} \cdot \big[ 3 \cdot \sin (\gamma)- \sin (3\gamma)\big],$$
 
:$$ \frac{1}{4!} \cdot {\rm j}^4 \cdot \eta^4 \cdot \sin^4 (\gamma)  = \frac{\eta^4}{8 \cdot 4!} \cdot \left[ 3+ 4 \cdot \cos (2\gamma)+ \cos (4\gamma)\right], \text{...} $$
 
:$$ \frac{1}{4!} \cdot {\rm j}^4 \cdot \eta^4 \cdot \sin^4 (\gamma)  = \frac{\eta^4}{8 \cdot 4!} \cdot \left[ 3+ 4 \cdot \cos (2\gamma)+ \cos (4\gamma)\right], \text{...} $$
  
'''(3)'''&nbsp;  Durch Umordnen erhält man mit &nbsp;${\rm J}_n(η)$, den Besselfunktionen erster Art und $n$–ter Ordnung:
+
'''(3)'''&nbsp;  By rearranging using &nbsp;${\rm J}_n(η)$,&nbsp; we obtain the first kind of&nbsp; $n$–th order Bessel functions:
 
:$$s_{\rm TP}(t) = 1 \cdot {\rm J}_0 (\eta)  + 2 \cdot {\rm j}\cdot {\rm J}_1 (\eta)\cdot \sin (\gamma) \hspace{0.2cm} + 2 \cdot {\rm J}_2 (\eta)\cdot \cos (2\gamma) + 2 \cdot {\rm j}\cdot {\rm J}_3 (\eta)\cdot \sin (3\gamma)+ 2 \cdot {\rm J}_4 (\eta)\cdot \cos (4\gamma)  + \text{...} $$
 
:$$s_{\rm TP}(t) = 1 \cdot {\rm J}_0 (\eta)  + 2 \cdot {\rm j}\cdot {\rm J}_1 (\eta)\cdot \sin (\gamma) \hspace{0.2cm} + 2 \cdot {\rm J}_2 (\eta)\cdot \cos (2\gamma) + 2 \cdot {\rm j}\cdot {\rm J}_3 (\eta)\cdot \sin (3\gamma)+ 2 \cdot {\rm J}_4 (\eta)\cdot \cos (4\gamma)  + \text{...} $$
  
'''(4)'''&nbsp;  Mit dem Satz von Euler kann hierfür auch geschrieben werden:  
+
'''(4)'''&nbsp;  Using Euler's theorem,&nbsp; this can be written as:  
 
:$$s_{\rm TP}(t) = {\rm J}_0 (\eta) + \big[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \gamma} - {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \gamma} \big]\cdot {\rm J}_1 (\eta) \hspace{0.27cm} +\left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\gamma} + {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\gamma} \right]\cdot {\rm J}_2 (\eta)+ \left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 3\gamma} - {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 3\gamma} \right]\cdot {\rm J}_3 (\eta)+ \left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 4\gamma} + {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 4\gamma} \right]\cdot {\rm J}_4 (\eta)+\text{...}$$
 
:$$s_{\rm TP}(t) = {\rm J}_0 (\eta) + \big[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \gamma} - {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \gamma} \big]\cdot {\rm J}_1 (\eta) \hspace{0.27cm} +\left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\gamma} + {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\gamma} \right]\cdot {\rm J}_2 (\eta)+ \left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 3\gamma} - {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 3\gamma} \right]\cdot {\rm J}_3 (\eta)+ \left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 4\gamma} + {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 4\gamma} \right]\cdot {\rm J}_4 (\eta)+\text{...}$$
  
'''(5)'''&nbsp;  Die Besselfunktionen zeigen folgende Symmetrieeigenschaften:  
+
'''(5)'''&nbsp;  The Bessel functions exhibit the following symmetrical properties:  
 
:$${\rm J}_{-n} (\eta) = ( - 1)^n \cdot {\rm J}_{n}  (\eta)\hspace{0.3cm}
 
:$${\rm J}_{-n} (\eta) = ( - 1)^n \cdot {\rm J}_{n}  (\eta)\hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm} {\rm J}_{ - 1} (\eta) = - {\rm J}_{1}
 
  \Rightarrow \hspace{0.3cm} {\rm J}_{ - 1} (\eta) = - {\rm J}_{1}
Line 178: Line 188:
 
(\eta),\hspace{0.3cm}{\rm J}_{ - 4} (\eta) = {\rm J}_{4} (\eta).$$
 
(\eta),\hspace{0.3cm}{\rm J}_{ - 4} (\eta) = {\rm J}_{4} (\eta).$$
  
'''(6)'''&nbsp;  Berücksichtigt man diesen Sachverhalt und den bisher weggelassenen Faktor &nbsp;$A_{\rm T}$, so erhält man das gewünschte Ergebnis:
+
'''(6)'''&nbsp;  Considering this fact and the factor &nbsp;$A_{\rm T}$ omitted so far,&nbsp; we get the desired result:
 
:$$s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$
 
:$$s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$
  
Line 184: Line 194:
  
  
[[File: P_ID2329__Mod_T_3_1_A1_70neu.png|right|frame|Zur Berechnung der Besselfunktionen]]
+
[[File: P_ID2329__Mod_T_3_1_A1_70neu.png|right|frame|Calculating the Bessel functions]]
Diese bereits 1844 von&nbsp; [https://de.wikipedia.org/wiki/Friedrich_Wilhelm_Bessel Friedrich Wilhelm Bessel]&nbsp; eingeführten mathematischen Funktionen sind wie folgt definiert (erste Gleichung) und können gemäß der zweiten Gleichung durch eine Reihe angenähert werden:
+
These mathematical functions,&nbsp; introduced as early as 1844 by&nbsp; [https://en.wikipedia.org/wiki/Friedrich_Bessel$\text{Friedrich Wilhelm Bessel}$]&nbsp; are defined as 
  
 
:$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha\hspace{0.05cm},$$
 
:$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha\hspace{0.05cm},$$
 +
and can be approximated by a series according to the next equation:
 
:$${\rm J}_n (\eta) =  \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2
 
:$${\rm J}_n (\eta) =  \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2
 
\hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
 
\hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
  
Nebenstehende Grafik zeigt die jeweils ersten drei Summanden &nbsp;$(k = 0,\ 1,\ 2)$&nbsp; der Reihen &nbsp;${\rm J}_0(η)$, ... , &nbsp;${\rm J}_3(η).$&nbsp; Der rot umrandete Term gültig für &nbsp;$n = 3$&nbsp; und &nbsp;$k = 2$&nbsp; – lautet beispielsweise in ausgeschriebener Form:  
+
The adjacent graph shows the first three summands&nbsp;$(k = 0,\ 1,\ 2)$&nbsp; of each of the series &nbsp;${\rm J}_0(η)$, ... , &nbsp;${\rm J}_3(η).$&nbsp;  
 +
 
 +
*For example,&nbsp; the term outlined in red valid for &nbsp;$n = 3$&nbsp; and &nbsp;$k = 2$&nbsp; – is written as:  
 
:$$\frac{(-1)^2 \cdot (\eta/2)^{3 \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}2}}{2\hspace{0.05cm}! \cdot (3+2)\hspace{0.05cm}!} = \frac{1}{240}\cdot (\frac{\eta}{2})^7 \hspace{0.05cm}.$$
 
:$$\frac{(-1)^2 \cdot (\eta/2)^{3 \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}2}}{2\hspace{0.05cm}! \cdot (3+2)\hspace{0.05cm}!} = \frac{1}{240}\cdot (\frac{\eta}{2})^7 \hspace{0.05cm}.$$
*Die Besselfunktionen &nbsp;$J_n(η)$&nbsp; findet man aber auch in Formelsammlungen oder mit dem von uns bereitgestellten Berechnungsmodul &nbsp;[[Applets:Besselfunktionen_erster_Art|Besselfunktionen erster Art]].   
+
*The Bessel functions &nbsp;${\rm J}_n(η)$&nbsp; can also be found in collections of formulae or with our applet&nbsp; [[Applets:Bessel_functions_of_the_first_kind|"Bessel functions of the first kind"]].   
*Sind die Funktionswerte für &nbsp;$n = 0$&nbsp; und &nbsp;$n = 1$&nbsp; bekannt, so können daraus die Besselfunktionen für &nbsp;$n ≥ 2$&nbsp; iterativ ermittelt werden:  
+
*If the function values for&nbsp;$n = 0$&nbsp; and &nbsp;$n = 1$&nbsp; are known,&nbsp; the Bessel functions for &nbsp;$n ≥ 2$&nbsp;can be iteratively determined from them:  
 
:$${\rm J}_n (\eta) ={2 \cdot (n-1)}/{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$
 
:$${\rm J}_n (\eta) ={2 \cdot (n-1)}/{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$
  
  
==Interpretation des Besselspektrums==
+
==Interpretation of the Bessel spectrum==
 
<br>
 
<br>
Die Grafik zeigt die Besselfunktionen &nbsp;${\rm J}_0(η)$, ... , &nbsp;${\rm J}_7(η)$&nbsp; abhängig vom Modulationsindex &nbsp;$η$&nbsp; im Bereich &nbsp;$0 ≤ η ≤ 10$.  
+
The graph shows the Bessel functions &nbsp;${\rm J}_0(η)$, ... , &nbsp;${\rm J}_7(η)$&nbsp; depending on the modulation index &nbsp;$η$&nbsp; in the range &nbsp; $0 ≤ η ≤ 10$.
 +
 
 +
[[File:Mod_T_3_1_S3a_version2.png|right|frame|&nbsp; $n$–th order Bessel functions of the first kind]]
 +
 
 +
One can also find these in formula collections such as&nbsp;  [BS01]<ref>Bronstein, I.N.; Semendjajew, K.A.:&nbsp; Taschenbuch der Mathematik.&nbsp; 5. Auflage. Frankfurt: Harry Deutsch, 2001.</ref>&nbsp; in tabular form.
 +
*That the functions are of the first kind is expressed by the&nbsp; "$\rm J$",&nbsp; and
 +
*the order is given by the index $n$.  
  
[[File:Mod_T_3_1_S3a_version2.png|right|frame|Besselfunktionen erster Art und&nbsp; $n$–ter Ordnung]]
 
  
Man findet diese auch in Formelsammlungen wie [BS01]<ref>Bronstein, I.N.; Semendjajew, K.A.: ''Taschenbuch der Mathematik.'' 5. Auflage. Frankfurt: Harry Deutsch, 2001.</ref> in tabellarischer Form.  
+
Using this graph,&nbsp; the equivalent low-pass signal is given by
*Die erste Art wird durch das $\rm J$ ausgedrückt,
+
:$$s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$
*die Ordnung durch den Index $n$.
 
  
<br><br><br><br><br><br><br><br><br><br><br><br>
+
The following properties can be derived:  
Anhand dieser Grafik können für das äquivalente Tiefpass-Signal
 
:$$s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}$$
 
  
folgende Eigenschaften abgeleitet werden:  
+
*The equivalent low-pass signal is composed of
<br clear=all>
+
:*a pointer at rest &nbsp;$(n = 0)$&nbsp;  
*Das äquivalente Tiefpass–Signal setzt sich aus einem ruhenden Zeiger &nbsp;$(n = 0)$&nbsp; sowie unendlich vielen im Uhrzeigersinn  &nbsp;$(n < 0)$&nbsp;  bzw. entgegen dem Uhrzeigersinn &nbsp;$(n > 0)$&nbsp; drehenden Zeigern zusammen.
+
:*and infinitely many clockwise &nbsp;$(n < 0)$&nbsp;   
 +
:*or counterclockwise &nbsp;$(n > 0)$&nbsp;rotating pointers.
 
   
 
   
*Die Zeigerlängen hängen über die Besselfunktionen &nbsp;${\rm J}_n(η)$&nbsp; vom Modulationsindex &nbsp;$η$&nbsp; ab.&nbsp; Je kleiner &nbsp;$η$&nbsp; ist, um so mehr Zeiger können allerdings für die Konstruktion von &nbsp;$s_{\rm TP}(t)$&nbsp; vernachlässigt werden.
+
*The pointer lengths depend on the modulation index&nbsp;$η$&nbsp; via the Bessel functions&nbsp;${\rm J}_n(η)$.&nbsp;
 
+
*Für den Modulationsindex &nbsp;$η = 1$&nbsp; gilt beispielsweise folgende Näherung:
+
*The smaller the modulation index&nbsp;$η$,&nbsp; the more pointers can be ignored for the construction of&nbsp;$s_{\rm TP}(t)$.&nbsp; For example,&nbsp; with a modulation index of &nbsp;$η = 1$,&nbsp; the following approximation holds:
 
:$$s_{\rm TP}(t) = {\rm J}_0 (1) + {\rm J}_1 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}+ {\rm J}_2 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}+ {\rm J}_3 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}3 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}- {\rm J}_1 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}+ {\rm J}_2 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}2 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}- {\rm J}_3 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}3 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}\hspace{0.05cm}.$$
 
:$$s_{\rm TP}(t) = {\rm J}_0 (1) + {\rm J}_1 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}+ {\rm J}_2 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}+ {\rm J}_3 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}3 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}- {\rm J}_1 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}+ {\rm J}_2 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}2 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}- {\rm J}_3 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}3 \hspace{0.05cm}\omega_{\rm N}  \hspace{0.05cm} t}\hspace{0.05cm}.$$
  
*Hierbei ist die Symmetriebeziehung &nbsp;${\rm J}_{–n}(η) = (–1)^n · {\rm J}_n(η)$&nbsp; berücksichtigt. Es gilt also:  
+
*Here,&nbsp; the symmetrical relationship &nbsp;${\rm J}_{–n}(η) = (–1)^n · {\rm J}_n(η)$&nbsp; is taken into account.&nbsp; Thus:  
 
:$${\rm J}_{-1}(\eta) = - {\rm J}_{1}(\eta), \hspace{0.3cm}{\rm J}_{-2}(\eta) =  {\rm J}_{2}(\eta), \hspace{0.3cm}{\rm J}_{-3}(\eta) = - {\rm J}_{3}(\eta).$$
 
:$${\rm J}_{-1}(\eta) = - {\rm J}_{1}(\eta), \hspace{0.3cm}{\rm J}_{-2}(\eta) =  {\rm J}_{2}(\eta), \hspace{0.3cm}{\rm J}_{-3}(\eta) = - {\rm J}_{3}(\eta).$$
*Weiter erkennt man aus obiger Gleichung, dass sich &nbsp;$s_{\rm TP}(t)$&nbsp; mit &nbsp;$η = 3$&nbsp; aus deutlich mehr Zeigern  zusammensetzt, nämlich denen mit den Indizes &nbsp;${\rm J}_{–6}(\eta)$, ... , &nbsp;${\rm J}_{+6}(\eta)$.  
+
*Further,&nbsp; it can be seen from the above equation that  with&nbsp;$η = 3$,&nbsp; the equivalent low-pass signal  &nbsp;$s_{\rm TP}(t)$&nbsp; is composed of significantly more pointers,&nbsp; namely those with indices&nbsp; ${\rm J}_{–6}(\eta)$, ... , &nbsp;${\rm J}_{+6}(\eta)$.  
  
  
[[File:EN_Mod_T_3_1_S3c.png |right|frame| Äquivalentes Tiefpass–Signal bei Phasenmodulation]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\rm Beispiel\ 3\text{:}$&nbsp; Die Besselfunktionen liefern für den Modulationsindex &nbsp;$η = 1$&nbsp; folgende Werte:
+
[[File:EN_Mod_T_3_1_S3c.png |right|frame| Example of an equivalent low-pass–signal in phase modulation]]
 +
$\rm Example\ 3\text{:}$&nbsp; The Bessel functions yield the following values for the modulation index&nbsp;$η = 1$:
 
:$${\rm J}_0 = 0.765,\hspace{0.3cm}{\rm J}_1 = - {\rm J}_{ - 1} = 0.440, \hspace{0.3cm}{\rm J}_2 = {\rm J}_{ - 2} = 0.115,\hspace{0.3cm}{\rm J}_3 = - {\rm J}_{ - 3} = 0.020\hspace{0.05cm}.$$
 
:$${\rm J}_0 = 0.765,\hspace{0.3cm}{\rm J}_1 = - {\rm J}_{ - 1} = 0.440, \hspace{0.3cm}{\rm J}_2 = {\rm J}_{ - 2} = 0.115,\hspace{0.3cm}{\rm J}_3 = - {\rm J}_{ - 3} = 0.020\hspace{0.05cm}.$$
  
Die Grafik zeigt die Zusammensetzung der Ortskurve aus den sieben Zeigern.&nbsp; ''Anmerkung:'' &nbsp; <br>&nbsp; &nbsp; ${\rm J}_3$&nbsp; und &nbsp;${\rm J}_{ - 3}$&nbsp; fehlen in der Skizze, aber nicht im Gesamtsignal.
+
The graph shows the composition of the locus curves from the seven pointers.&nbsp;
 
+
#For simplicity,&nbsp; set &nbsp;$A_{\rm T} = 1$.  
Die Frequenz des sinusförmigen Quellensignals ist &nbsp;$f_{\rm N} = 2 \ \rm kHz$, woraus sich die Periodendauer &nbsp;$T_{\rm N} = 1/f_{\rm N} = 500 \ \rm &micro; s$&nbsp; ergibt.&nbsp; Vereinfachend wird &nbsp;$A_{\rm T} = 1$&nbsp; gesetzt.
+
#The frequency of the sinusoidal source signal is&nbsp;$f_{\rm N} = 2 \ \rm kHz$,&nbsp; which gives the period&nbsp;
 
+
::$$T_{\rm N} = 1/f_{\rm N} = 500 \ \rm &micro; s.$$  
Das linke Bild zeigt die Momentaufnahme zur Zeit &nbsp;$t = 0$.  
+
*Wegen &nbsp;${\rm J}_1 =  – {\rm J}_{ – 1}$&nbsp; und &nbsp;${\rm J}_3 =  – {\rm J}_{ – 3}$&nbsp; gilt hierfür:  
+
The left image shows the snapshot at time &nbsp;$t = 0$.  
 +
*Because &nbsp;${\rm J}_1 =  – {\rm J}_{ – 1}$&nbsp; and &nbsp;${\rm J}_3 =  – {\rm J}_{ – 3}$,&nbsp; the following holds:  
 
:$$s_{\rm TP}(t = 0) = {\rm J}_0 + {\rm J}_{2} + {\rm J}_{ - 2} = 0.765 + 2 \cdot 0.115 = 0.995 \hspace{0.05cm}.$$
 
:$$s_{\rm TP}(t = 0) = {\rm J}_0 + {\rm J}_{2} + {\rm J}_{ - 2} = 0.765 + 2 \cdot 0.115 = 0.995 \hspace{0.05cm}.$$
*Aus dem reellen Ergebnis folgt die Phase &nbsp;${\mathbf ϕ}(t = 0) = 0$&nbsp; und der Betrag &nbsp;$a(t = 0) = 1$.  
+
*The phase &nbsp;${\mathbf ϕ}(t = 0) = 0$ &nbsp; and the magnitude &nbsp; $a(t = 0) = 1$&nbsp; follow from the real result.
*Der geringfügig abweichende Wert&nbsp; $0.995$&nbsp; zeigt, dass &nbsp;${\rm J}_4 = {\rm J}_{ – 4}$&nbsp; zwar klein ist &nbsp;$(≈ 0.002)$, aber nicht identisch Null.
+
*The slightly different value&nbsp; $0.995$&nbsp; shows that though&nbsp;${\rm J}_4 = {\rm J}_{ – 4}$&nbsp; is small &nbsp;$(≈ 0.002)$, it is not equal to zero.
 
 
 
 
Das rechte Bild zeigt die Verhältnisse zur Zeit &nbsp;$t = T_{\rm N}/4 = 125\ \rm  &micro; s$:
 
*Die Zeiger mit den Längen &nbsp;${\rm J}_{– 1}$&nbsp; und &nbsp;${\rm J}_1$&nbsp; haben sich im bzw. entgegen dem Uhrzeigersinn um &nbsp;$90^\circ$&nbsp; gedreht und zeigen nun beide in Richtung der imaginären Achse.
 
*Die Zeiger &nbsp;${\rm J}_2$&nbsp; und &nbsp;${\rm J}_{– 2}$&nbsp; drehen doppelt so schnell wie &nbsp;${\rm J}_1$&nbsp; bzw. &nbsp;${\rm J}_{– 1}$&nbsp; und zeigen nun beide in Richtung der negativen reellen Achse.
 
* ${\rm J}_3$&nbsp; und &nbsp;${\rm J}_{– 3}$&nbsp; drehen im Vergleich zu &nbsp;${\rm J}_1$&nbsp; und &nbsp;${\rm J}_{– 1}$&nbsp; mit dreifacher Geschwindigkeit und zeigen jetzt beide nach unten.  
 
  
  
Damit erhält man:  
+
The right image shows the ratios at time &nbsp;$t = T_{\rm N}/4 = 125\ \rm  &micro; s$:
 +
*The pointers with lengths &nbsp;${\rm J}_{– 1}$&nbsp; and &nbsp;${\rm J}_1$&nbsp; have rotated clockwise resp. counterclockwise by &nbsp; $90^\circ$,&nbsp; and now both point in the direction of the imaginary axis.
 +
*The pointers &nbsp;${\rm J}_2$&nbsp; and &nbsp;${\rm J}_{– 2}$&nbsp; rotate twice as fast as&nbsp; ${\rm J}_1$&nbsp; and&nbsp; ${\rm J}_{– 1}$&nbsp; and now both point in the direction of the negative real axis.
 +
* ${\rm J}_3$&nbsp; and &nbsp;${\rm J}_{– 3}$&nbsp; rotate at three times the speed of &nbsp;${\rm J}_1$&nbsp;und&nbsp;${\rm J}_{– 1}$&nbsp; and now both point downward.
 +
*This gives:  
 
:$$s_{\rm TP}(t  =  125\,{\rm &micro; s})  = {\rm J}_0 - 2 \cdot {\rm J}_{2} + {\rm j} \cdot (2 \cdot {\rm J}_{1} - 2 \cdot {\rm J}_{3})= 0.535 + {\rm j} \cdot 0.840 $$
 
:$$s_{\rm TP}(t  =  125\,{\rm &micro; s})  = {\rm J}_0 - 2 \cdot {\rm J}_{2} + {\rm j} \cdot (2 \cdot {\rm J}_{1} - 2 \cdot {\rm J}_{3})= 0.535 + {\rm j} \cdot 0.840 $$
 
:$$ \Rightarrow \hspace{0.3cm} a(t  =  125\,{\rm &micro; s}) = \sqrt{0.535^2 + 0.840^2}= 0.996\hspace{0.05cm},$$
 
:$$ \Rightarrow \hspace{0.3cm} a(t  =  125\,{\rm &micro; s}) = \sqrt{0.535^2 + 0.840^2}= 0.996\hspace{0.05cm},$$
 
:$$ \Rightarrow \hspace{0.3cm}\phi(t  =  125\,{\rm &micro; s}) = \arctan \frac{0.840}{0.535} = 57.5^\circ \approx 1\,{\rm rad}\hspace{0.05cm}.$$
 
:$$ \Rightarrow \hspace{0.3cm}\phi(t  =  125\,{\rm &micro; s}) = \arctan \frac{0.840}{0.535} = 57.5^\circ \approx 1\,{\rm rad}\hspace{0.05cm}.$$
 +
*At all others times,&nbsp; the vector sum of the seven pointers each also yields a point on the arc with angle &nbsp;$ϕ(t)$,&nbsp; where &nbsp;$\vert ϕ(t) \vert ≤ η = 1\ \rm  rad $. }}
  
Auch zu allen anderen Zeiten ergibt die vektorielle Summe der sieben Zeiger jeweils einen Punkt auf dem Kreisbogen mit Winkel &nbsp;$ϕ(t)$, wobei &nbsp;$\vert ϕ(t) \vert ≤ η = 1\ \rm  rad $&nbsp; gilt. }}
+
==Spectral function of a phase-modulated sine signal==
 
 
==Spektralfunktion eines phasenmodulierten Sinussignals==
 
 
<br>
 
<br>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Ohne Beweis:}$&nbsp;
+
$\text{Without proof:}$&nbsp;
*Ausgehend vom eben berechneten äquivalenten Tiefpass–Signal erhält man für das&nbsp; '''analytische Signal''':  
+
*Based on the equivalent low-pass signal just calculated,&nbsp; we obtain for the&nbsp; &raquo;'''analytical signal'''&laquo;:  
 
:$$s_{\rm +}(t) = s_{\rm TP}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot
 
:$$s_{\rm +}(t) = s_{\rm TP}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot
 
\hspace{0.05cm}\omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t}= A_{\rm T} \cdot
 
\hspace{0.05cm}\omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t}= A_{\rm T} \cdot
 
\sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}(\omega_{\rm T}\hspace{0.05cm}+\hspace{0.05cm} n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N}) \hspace{0.05cm}\cdot \hspace{0.05cm} t}$$
 
\sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}(\omega_{\rm T}\hspace{0.05cm}+\hspace{0.05cm} n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N}) \hspace{0.05cm}\cdot \hspace{0.05cm} t}$$
  
*Durch Fouriertransformation ergibt sich für das&nbsp; '''Spektrum des analytischen Signals''':  
+
*By Fourier transform, we get the&nbsp; &raquo;'''spectrum of the analytical signal'''&laquo;:  
 
:$$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$
 
:$$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$
  
*Das&nbsp; '''Spektrum des physikalischen Signals'''&nbsp; erhält man durch Ausweitung auf negative Frequenzen unter Berücksichtigung des Faktors &nbsp;$1/2$:  
+
*The &nbsp; &raquo;'''spectrum of the physical signal'''&laquo;&nbsp; is obtained by expanding to negative frequencies taking into account a factor of &nbsp;$1/2$:  
 
:$$S(f) = \frac{A_{\rm T} }{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f \pm (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$}}
 
:$$S(f) = \frac{A_{\rm T} }{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f \pm (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$}}
  
  
[[File:Mod_T_3_1_S4_version2.png|right|frame|Spektrum des analytischen Signals bei PM (gültig auch für FM)]]
+
[[File:Mod_T_3_1_S4_version2.png|right|frame|Spectrum of the analytical signal for&nbsp; $\rm PM$&nbsp; $($also valid for&nbsp; $\rm FM)$]]
Anhand der Grafik sind folgende Aussagen möglich:  
+
Based on the graph, the following statements can be made:
*Das Spektrum &nbsp;$S_+(f)$&nbsp; eines phasenmodulierten Sinussignals besteht aus unendlich vielen diskreten Linien im Abstand der Nachrichtenfrequenz &nbsp;$f_{\rm N}$.&nbsp; Es ist somit prinzipiell unendlich weit ausgedehnt.  
+
*The spectrum&nbsp;$S_+(f)$&nbsp; of a phase-modulated sinusoidal signal consists of infinitely many discrete lines spaced at the frequency&nbsp;$f_{\rm N}$&nbsp; of the sine signal.&nbsp; In principle,&nbsp; it is infinitely extended.  
*Die Höhen (Gewichte) der Spektrallinien bei &nbsp;$f_{\rm T} + n · f_{\rm N}$&nbsp; (wobei &nbsp;$n$&nbsp; ganzzahlig ist) sind durch den Modulationsindex &nbsp;$η$&nbsp; über die Besselfunktionen &nbsp;${\rm J}_n(η)$&nbsp; festgelegt.  
+
*The heights&nbsp; (weights)&nbsp; of the spectral lines at&nbsp;$f_{\rm T} + n · f_{\rm N}$&nbsp; ($n$&nbsp; is an integer)&nbsp; are determined by the modulation index&nbsp;$η$&nbsp; via the Bessel functions&nbsp;${\rm J}_n(η)$.  
*Die Werte der Besselfunktionen &nbsp;${\rm J}_n(η)$&nbsp; zeigen, dass man in der Praxis durch Bandbegrenzung das Spektrum nur wenig verändert.&nbsp; Der daraus resultierende Fehler wächst aber mit steigendem &nbsp;$η$.
+
*The  &nbsp;${\rm J}_n(η)$&nbsp; values show that in practice the spectrum is barely changed by bandlimiting.&nbsp; However,&nbsp; the resulting error grows as&nbsp; $η$&nbsp; increases.
*Die Spektrallinien sind bei sinusförmigem Quellensignal und cosinusförmigem Träger reell und für gerades &nbsp;$n$&nbsp; symmetrisch um &nbsp;$f_{\rm T}$.&nbsp; Bei ungeradem &nbsp;$n$&nbsp; ist ein Vorzeichenwechsel zu berücksichtigen.  
+
*The spectral lines are real for a sinusoidal source signal and cosinusoidal carrier and symmetric about &nbsp;$f_{\rm T}$ for even values of &nbsp;$n$&nbsp;.&nbsp; When &nbsp;$n$&nbsp; is odd, a sign change must be taken into account.
*Die Phasenmodulation einer Schwingung mit anderer Phase von Quellen– und/oder Trägersignal liefert das gleiche Betragsspektrum und unterscheidet sich nur bezüglich der Phasenfunktion.  
+
*The PM of an oscillation with a different phase of source and/or carrier signal yields the same magnitude spectrum and differs only with respect to the phase function.  
  
  
Setzt sich das Nachrichtensignal aus mehreren Schwingungen zusammen, so ist die Berechnung des Spektrums schwierig, nämlich: 
 
*Faltung der Einzelspektren&nbsp; (siehe nächster Abschnitt und&nbsp; [[Aufgaben:3.3_Summe_zweier_Schwingungen| Aufgabe 3.3]]).
 
  
 +
If the source signal is composed of several oscillations,&nbsp; the spectrum calculation becomes difficult,&nbsp; namely:  <br> &nbsp; &nbsp; &nbsp; &raquo;'''Convolution of the single spectra'''&laquo; &nbsp; $($see next section and&nbsp; [[Aufgaben:Exercise_3.3:_Sum_of_two_Oscillations|"Exercise 3.3")]].
  
  
  
==Phasenmodulation der Summe zweier Sinusschwingungen==
+
 
 +
==Phase modulation of the sum of two sinusoidal oscillations==
 
<br>
 
<br>
Setzt sich das Quellensignal aus der Summe zweier Sinusschwingungen zusammen, so lauten die Signale am Ausgang des Phasenmodulators:
+
If the source signal is composed of the sum of two sinusoidal oscillations,&nbsp; the signals at the output of the phase modulator are:
 
:$$s(t) = A_{\rm T} \cdot \cos \big[\omega_{\rm T} \cdot t + \eta_1 \cdot \sin (\omega_{\rm 1} \cdot t) + \eta_2 \cdot \sin(\omega_{\rm 2} \cdot t)\big]\hspace{0.05cm},$$
 
:$$s(t) = A_{\rm T} \cdot \cos \big[\omega_{\rm T} \cdot t + \eta_1 \cdot \sin (\omega_{\rm 1} \cdot t) + \eta_2 \cdot \sin(\omega_{\rm 2} \cdot t)\big]\hspace{0.05cm},$$
 
:$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot  [\hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 1} \hspace{0.05cm}\cdot
 
:$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot  [\hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 1} \hspace{0.05cm}\cdot
 
\hspace{0.05cm} t) \hspace{0.05cm}+ \hspace{0.05cm}\eta_2 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 2} \hspace{0.05cm}\cdot \hspace{0.05cm}t)]}\hspace{0.05cm}.$$
 
\hspace{0.05cm} t) \hspace{0.05cm}+ \hspace{0.05cm}\eta_2 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 2} \hspace{0.05cm}\cdot \hspace{0.05cm}t)]}\hspace{0.05cm}.$$
  
Zur einfacheren Darstellung setzten wir nun &nbsp;$A_{\rm T} = 1$&nbsp;  und erhalten:  
+
*For ease of representation,&nbsp; we now set &nbsp;$A_{\rm T} = 1$&nbsp;  and get:  
 
:$$s_{\rm TP}(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 1} \hspace{0.05cm}\cdot \hspace{0.05cm} t) } \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_2 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 2} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$
 
:$$s_{\rm TP}(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 1} \hspace{0.05cm}\cdot \hspace{0.05cm} t) } \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_2 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 2} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$
  
Die Spektralfunktionen der beiden Terme lauten:
+
*The spectral functions of the two terms are:
 
:$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot
 
:$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot
 
\hspace{0.08cm}\sin (2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm 1} \hspace{0.01cm}\cdot \hspace{0.05cm} t) } \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} B_1(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta_1) \cdot \delta (f -  n \cdot f_{\rm 1})\hspace{0.05cm},$$
 
\hspace{0.08cm}\sin (2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm 1} \hspace{0.01cm}\cdot \hspace{0.05cm} t) } \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} B_1(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta_1) \cdot \delta (f -  n \cdot f_{\rm 1})\hspace{0.05cm},$$
Line 303: Line 317:
 
\hspace{0.05cm} t) } \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} B_2(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta_2) \cdot \delta (f -  n \cdot f_{\rm 2})\hspace{0.05cm}.$$
 
\hspace{0.05cm} t) } \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} B_2(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta_2) \cdot \delta (f -  n \cdot f_{\rm 2})\hspace{0.05cm}.$$
  
*Die Besselfunktionen &nbsp;$B_1(f)$&nbsp; und &nbsp;$B_2(f)$&nbsp; beschreiben Linienspektren im Frequenzabstand &nbsp;$f_1$&nbsp; und &nbsp;$f_2$, deren Impulsgewichte durch &nbsp;$η_1$&nbsp; und &nbsp;$η_2$&nbsp; bestimmt sind.
+
*The Bessel functions&nbsp;$B_1(f)$&nbsp; and &nbsp;$B_2(f)$&nbsp; describe line spectra spaced in frequency at &nbsp;$f_1$&nbsp; and &nbsp;$f_2$, whose weights are determined by &nbsp;$η_1$&nbsp; and &nbsp;$η_2$.
*Aufgrund der Multiplikation im Zeitbereich ergibt sich für die Spektralfunktion die Faltung:  
+
*Due to multiplication in the time domain,&nbsp; the spectral function is given by the convolution:  
 
:$$S_{\rm TP}(f) = B_1(f) \star B_2(f)= S_{\rm +}(f + f_{\rm T}) \hspace{0.05cm}.$$
 
:$$S_{\rm TP}(f) = B_1(f) \star B_2(f)= S_{\rm +}(f + f_{\rm T}) \hspace{0.05cm}.$$
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\rm Beispiel\ 4\text{:}$&nbsp; Die linke Grafik zeigt die Besselfunktion &nbsp;$B_1(f)$&nbsp; für &nbsp;$η_1 = 0.64$&nbsp; und &nbsp;$f_1 = 1 \ \rm kHz$.&nbsp;  
+
$\rm Example\ 4\text{:}$&nbsp; The left graph shows the Bessel function &nbsp;$B_1(f)$&nbsp; for &nbsp;$η_1 = 0.64$&nbsp; and &nbsp;$f_1 = 1 \ \rm kHz$.&nbsp; The much smaller lines at &nbsp;$f = ±2 \ \rm kHz$&nbsp; with weights &nbsp;$0.05$&nbsp; are left out for clarity.
 +
 +
[[File:P_ID1076__Mod_T_3_1_S5_Ganz_neu.png|right|frame|Equivalent low-pass spectrum as convolution of two Bessel spectra]]
 +
*The function &nbsp;$B_2(f)$&nbsp; is valid for the same modulation index&nbsp;$η_2 = η_1$,&nbsp; but at the signal frequency &nbsp;$f_2 = 4 \ \rm kHz$.
 +
 
 
   
 
   
[[File:P_ID1076__Mod_T_3_1_S5_Ganz_neu.png|right|frame|Äquivalentes Tiefpass-Spektrum als Faltung zweier Besselspektren]]
+
*The low-pass spectrum  &nbsp;$S_{\rm TP}(f) = B_1(f) \star B_2(f)$&nbsp; consists of nine Dirac delta lines and is sketched in the diagram on the right.  
*Auf die deutlich kleineren Linien bei &nbsp;$f = ±2 \ \rm kHz$&nbsp; mit den Gewichten &nbsp;$0.05$&nbsp; ist der Übersichtlichkeit halber verzichtet.
+
 
*Die Funktion &nbsp;$B_2(f)$&nbsp; gilt für den gleichen Modulationsindex &nbsp;$η_2 = η_1$, aber für die Nachrichtenfrequenz &nbsp;$f_2 = 4 \ \rm kHz$.
+
 
*Das Tiefpass-Spektrum &nbsp;$S_{\rm TP}(f) = B_1(f) \star B_2(f)$&nbsp; besteht hier aus neun Diraclinien. Es ist im rechten Diagramm skizziert.  
+
*By shifting the frequency &nbsp; $f_{\rm T}$&nbsp; to the right,&nbsp; we obtain the spectrum &nbsp;$S_+(f)$&nbsp; of the analytical signal &nbsp;$s_+(t)$.&nbsp; Thus:
*Durch Frequenzverschiebung um&nbsp; $f_{\rm T}$&nbsp; nach rechts erhält man das Spektrum &nbsp;$S_+(f)$&nbsp; des analytischen Signals &nbsp;$s_+(t)$.
+
:$$S_+(f = f_{\rm T}) = S_{\rm TP}(f = 0) = 0.81.$$  }}
* Es gilt also&nbsp; $S_+(f = f_{\rm T}) = S_{\rm TP}(f = 0) = 0.81$. }}
 
  
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_3.1:_Ortskurve_bei_Phasenmodulation|Aufgabe 3.1: Ortskurve bei Phasenmodulation]]
+
[[Aufgaben:Exercise_3.1:_Phase_Modulation_Locus_Curve|Exercise 3.1: Phase Modulation Locus Curve]]
  
[[Aufgaben:Aufgabe_3.1Z:_Einfluss_der_Nachrichtenphase_bei_PM|Aufgabe 3.1Z: Einfluss der Nachrichtenphase bei PM]]
+
[[Aufgaben:Exercise_3.1Z:_Influence_of_the_Message_Phase_in_Phase_Modulation|Exercise 3.1Z: Influence of the Message Phase in Phase Modulation]]
  
[[Aufgaben:Aufgabe_3.2:_Spektrum_bei_Winkelmodulation|Aufgabe 3.2: Spektrum bei Winkelmodulation]]
+
[[Aufgaben:Exercise_3.2:_Spectrum_with_Angle_Modulation|Exercise 3.2: Spectrum with Angle Modulation]]
  
[[Aufgaben:Aufgabe_3.2Z:_Besselspektrum|Aufgabe 3.2Z: Besselspektrum]]
+
[[Aufgaben:Exercise_3.2Z:_Bessel_Spectrum|Exercise 3.2Z: Bessel Spectrum]]
  
[[Aufgaben:Aufgabe_3.3:_Summe_zweier_Schwingungen|Aufgabe 3.3: Summe zweier Schwingungen]]
+
[[Aufgaben:Exercise_3.3:_Sum_of_two_Oscillations|Exercise 3.3: Sum of two Oscillations]]
  
[[Aufgaben:Aufgabe_3.3Z:_Kenngrößenbestimmung|Aufgabe 3.3Z: Kenngrößenbestimmung]]
+
[[Aufgaben:Exercise_3.3Z:_Characteristics_Determination|Exercise 3.3Z: Characteristics Determination]]
  
[[Aufgaben:Aufgabe_3.4:_Einfacher_Phasenmodulator|Aufgabe 3.4: Einfacher Phasenmodulator]]
+
[[Aufgaben:Exercise_3.4:_Simple_Phase_Modulator|Exercise 3.4: Simple Phase Modulator]]
  
  
==Quellenverzeichnis==
+
==References==
 
<br>
 
<br>
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 13:43, 18 January 2023

# OVERVIEW OF THE THIRD MAIN CHAPTER #


The third chapter describes  »angle modulation«   $($short:  "$\rm WM$"  from German   "Winkelmodulation"$)$. 

This is a generic term for

  •   »phase modulation«  $\rm (PM)$, 
  •   »frequency modulation«   $\rm (FM)$. 


In detail,  the chapter covers:

  1. The  »similarities and differences«  between phase and frequency modulation,
  2. the  »realization of the associated demodulators«,
  3. the  »signal characteristics and spectral functions«  of angle-modulated signals and the influence of band limiting,
  4. the  »signal-to-noise power ratio«  of FM,  which is more favorable than that of AM.


Similarities between phase and frequency modulation


It has already been pointed out in the chapter  "General Model of Modulation"  that there are substantial similarities between phase modulation   $\rm (PM)$  and frequency modulation  $\rm (FM)$.  Therefore,  these two related modulation methods are summarized under the general term "angle modulation".

$\rm Definition\text{:}$  An  »angle modulation«  – abbreviated as   $\rm WM$  – is present whenever the modulated signal can be represented as follows:

$$s(t) = A_{\rm T} \cdot \cos\big[\psi(t)\big] = A_{\rm T} \cdot \cos\hspace{-0.1cm}\big[ω_{\rm T} · t + ϕ(t)\big] \hspace{0.05cm}.$$
  • Here,  as in amplitude modulation,  $A_{\rm T}$  denotes the amplitude of the carrier signal  $z(t)$. 
  • However,  all the information about the source signal  $q(t)$  is now captured by the   "angular function"  $ψ(t)$.


Equivalent low-pass signal in angle modulation

Based on the plot of the equivalent low-pass signal  $s_{\rm TP}(t)$  (subscript from the German  "Tiefpass"  ⇒   low-pass)  on the complex plane  (we will refer to such a plot as a  "locus curve"),  the following characteristics of angle modulation can be seen:

  • The locus curve is an   "arc"  with radius  $A_{\rm T}$.  It follows that the envelope of an angle-modulated signal is always constant:
$$a(t) = |s_{\rm TP}(t)|= A_{\rm T}= {\rm const.}$$
  • The equivalent low-pass signal in angle modulation is always complex and determined by a time-dependent   "phase function"  $ϕ(t)$  (in radians),  which determines the zero crossings of  $s(t)$:
$$s_{\rm TP}(t)= A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t)}\hspace{0.05cm}.$$
  • For a symmetric source signal,   $ϕ(t)$  can take on all values between  $±ϕ_{\rm max}$,  where  $ϕ_{\rm max}$  indicates the   »phase deviation«.  The larger the phase deviation,  the more intense the modulation.
  • For a harmonic oscillation,  the phase deviation  $ϕ_{\rm max}$  is equal to the   »modulation index«  $η$.  Thus,  the use of  $η$  in what follows also indicates that  $q(t)$  only contains a single frequency.
  • The relationship between the source signal  $q(t)$  and the angular function  $ψ(t) = \cos\hspace{-0.1cm}\big[ω_{\rm T} · t + ϕ(t)\big]$ ,  just like the phase function  $ϕ(t)$  that can be derived from it,  differs fundamentally in phase and frequency modulation,  which will be discussed in detail in the chapter  "Frequency Modulation" .


$\text{Example 1:}$  The following graph shows

  • on the right,  the transmitted signal  $s(t)$ ⇒   blue waveforms, compared to the carrier signal  $z(t)$   ⇒   red waveforms,
  • on the left,  the equivalent low-pass signal  $s_{\rm TP}(t)$  in the complex plane.
Physical signal and equivalent low-pass signal for angle and amplitude modulation


We also refer to the  (left)  plot in the complex plane as the  "locus curve"   ⇒   green waveforms.

The upper graph applies in the case of angle modulation   $\rm (WM)$:

  • The equivalent low-pass signal  $s_{\rm TP}(t) = A_{\rm T} · {\rm e}^{ \hspace{0.05cm}{\rm j}\hspace{0.05cm}· \hspace{0.05cm}ϕ(t)}$  describes an arc   ⇒   constant envelope   $a(t) = A_{\rm T}$.
  • Thus,  the information about the source signal  $q(t)$  is exclusively found in the zero crossings of  $s(t)$.
  • Should  $ϕ(t) < 0$  hold,  then the zero crossings of  $s(t)$  occur later than those of  $z(t)$.  Otherwise – when  $ϕ(t) > 0$,  the zero crossings of  $s(t)$  come before  $z(t)$.


The lower graph corresponds to   $\text{Double-Sideband Amplitude Modulation}$  $\rm (DSB-AM)$  as described in Chapter 2,  characterized by

  • the time-dependent envelope  $a(t)$  according to the signal  $q(t)$,
  • equidistant zero crossings of  $s(t)$  according to the carrier  $z(t)$,  and
  • a horizontal straight line as the locus curve  $s_{\rm TP}(t)$.


The present third chapter has been structured according to the following considerations:

  1. Any  $\rm FM$  system can be converted into a corresponding  $\rm PM$  system by simple modifications and vice versa.
  2. $\rm FM$ is more important for analog systems due to its more favorable noise behaviour.  For this reason,  considerations concerning the realization of the modulator/demodulator will only be dealt with in the chapter  "Frequency Modulation".
  3. Phase modulation  is easier to understand compared to  $\rm FM$.  Therefore,  the basic properties of an angle modulation system are first presented in this chapter using  $\rm PM$  as an example.

Signal characteristics of phase modulation


Without limiting generality,  the following assumes:

  • a cosine carrier signal  $z(t) = A_{\rm T} · \cos(ω_{\rm T} · t)$,  that is,  the carrier phase is always  $ϕ_{\rm T} = 0$,
  • a peak-limited source signal between the limits  $\ –q_{\rm max} ≤ q(t) ≤ +q_{\rm max}$.


$\rm Definition\text{:}$  If the phase function $ϕ(t)$  is proportional to the applied source signal  $q(t)$,  we are dealing with  »phase modulation«  $\rm (PM)$,  and it holds that:

$$\phi(t)= K_{\rm PM} \cdot q(t)\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\psi(t)= \omega_{\rm T} \cdot t + \phi(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s(t) = A_{\rm T} \cdot \cos \big[\psi(t)\big]\hspace{0.05cm}.$$

Here, $K_{\rm PM}$  denotes the modulator constant with appropriate dimensions.  If  $q(t)$  describes a voltage waveform,  this constant has the unit  $\rm 1/V$.


The phase modulation is all the more intensive,

  • the larger the modulator constant  $K_{\rm PM}$,  or
  • the larger the maximum value  $q_{\rm max}$  of the source signal.


$\rm Definitions\text{:}$ 

(1)   Quantitatively,  this fact is captured by the  »phase deviation«

$$ \phi_{\rm max} = K_{\rm PM} \cdot q_{\rm max}\hspace{0.05cm}.$$

(2)   For a harmonic oscillation,  the  "phase deviation"  is also called  »modulation index«.  The following holds for the amplitude  $A_{\rm N}$  of the source signal:

$$\eta = \eta_{\rm PM} = K_{\rm PM} \cdot A_{\rm N}\hspace{0.05cm}.$$


The following should be noted about this equation:

  • The modulation index  $η$  is comparable to the modulation depth  $m$  in DSB–AM with carrier.
  • In the locus curve,  the parameters  $ϕ_{\rm max}$  or  $η$  describe the half angle of the circular arc in radians.
  • For other source signals with the same  $η$  $($e.g.:  with different phase  $ϕ_{\rm N})$   the locus curve itself does not change, only the temporal movement along the curve does.
  • The modulation index is also used in describing frequency modulation,  though in that case it is to be calculated somewhat differently.
  • We therefore distinguish between  $η_{\rm PM}$  and  $η_{\rm FM}$.


$\rm Example \ 2\text{:}$   The graph shows a sinusoidal source signal  $q(t)$  with frequency  $f_{\rm N} = 2 \ \rm kHz$  and amplitude  $A_{\rm N}$,  and two phase modulated signals drawn below. 

  • These differ by the parameters  $η = 1$  and  $η = 3$, resp.:
Signal characteristics for phase modulation with  $η = 1$  resp.  $η = 3$
$$s_\eta(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot \sin (\omega_{\rm N} \cdot t) \big]\hspace{0.05cm}.$$
  • Dotted in gray is the cosine carrier signal  $z(t)$,  in each case based on  $f_{\rm T} = 20 \ \rm kHz$ .
  • For example,  the modulation index  $η = 1$ , thus the transmitted signal  $s_1(t)$  is given by
  • $A_{\rm N} = 1 \, \rm V $  and  $K_{\rm PM} = \rm 1/V$,
  • but also by parameter values  $A_{\rm N} = 2 \ \rm V$  and  $K_{\rm PM} = \rm 0.5/V$.


From the curves,  one can see:

  1. The zero crossings of the transmitted signal  $s_1(t)$  and the carrier signal  $z(t)$  coincide exactly when  $q(t) ≈ 0$.
  2. When  $q(t) = +\hspace{-0.05cm}A_{\rm N}$,  the zero crossings come  $1/(2π) ≈ 0.159$  of a carrier period  $T_0$  earlier  ("leading").
  3. When  $q(t) = -\hspace{-0.05cm}A_{\rm N}$,  the zero crossings come the same period fraction later ("lagging").
  4. Increasing the index to  $η = 3$  $($by tripling  $A_{\rm N}$  or  $K_{\rm PM})$, we get qualitatively the same result, but with a more intense PM.
  5. The zero crossings of  $s_3(t)$  are now shifted relative to those of the carrier by a maximum of  $\rm ±3/(2π) ≈ ±0.5$  of a period, i.e., up to $±T_0/2$.


Equivalent low-pass signal in phase modulation


In preparation for deriving the spectrum $S(f)$  of a phase modulated signal  $s(t)$,  we first analyse the equivalent low-pass signal  $s_{\rm TP}(t)$.  In the folowing,  we assume:

  • a sine-shaped source signal  $q(t)$  with amplitude  $A_{\rm N}$  and frequency $f_{\rm N}$,
  • a cosine-shaped carrier signal  $z(t)$  with amplitude  $A_{\rm T}$  and frequency  $f_{\rm T}$,
  • phase modulation with modulation index  $η = K_{\rm PM} · A_{\rm N}$.


Thus,  the phase modulated signal and the corresponding equivalent low-pass signal are:

$$s(t) = A_{\rm T} \cdot \cos \big[\omega_{\rm T} \cdot t + \eta \cdot \sin (\omega_{\rm N} \cdot t) \big]\hspace{0.05cm},$$
$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) }\hspace{0.05cm}.$$

This signal is periodic and can be represented by a   $\text{complex Fourier series}$.  Thus,  in general one obtains:

$$s_{\rm TP}(t) = \sum_{n = - \infty}^{+\infty}D_{n} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t} \hspace{0.05cm}.$$

In the special case considered here   (sinusoidal source signal,  cosinusoidal carrier)  the typically complex Fourier coefficients  $D_n$  are all real and given by   $n$–th order  »Bessel functions«  of the first kind  ${\rm J}_n(η)$  as follows:

$$D_{n} = A_{\rm T}\cdot {\rm J}_n (\eta) \hspace{0.05cm}. \hspace{1cm} $$

$\text{Important intermediate result:}$    Now it should be mathematically proven that in the case of phase modulation,  the equivalent low-pass signal can indeed be converted into the following function series:

$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$


$\text{Proof:}$  For simplicity,  we set  $A_{\rm T} = 1$.  Thus,  the given equivalent low-pass signal is:    

$$s_{\rm TP}(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin (\omega_{\rm N} \cdot t) }\hspace{0.05cm}.$$

(1)  When  $x = {\rm j} · η · \sin(γ)$  and  $γ = ω_{\rm N} · t$,  the power series expansion of this equation is:

$$s_{\rm TP}(t) = {\rm e}^{x } = 1 + x + \frac{1}{2!} \cdot x^2 + \frac{1}{3!} \cdot x^3 + \text{...} = 1 + {\rm j} \cdot \eta \cdot \sin (\gamma)+ \frac{1}{2!} \cdot {\rm j}^2 \cdot \eta^2 \cdot \sin^2 (\gamma)+ \frac{1}{3!} \cdot {\rm j}^3 \cdot \eta^3 \cdot \sin^3 (\gamma) + \text{...}$$

(2)  The individual trigonometric expressions can be rewritten as follows:

$$ \frac{1}{2!} \cdot {\rm j}^2 \cdot \eta^2 \cdot \sin^2 (\gamma) = \frac{- \eta^2}{2 \cdot 2!} \cdot \big[ 1 - \cos (2\gamma)\big],\hspace{1.0cm} \frac{1}{3!} \cdot {\rm j}^3 \cdot \eta^3 \cdot \sin^3 (\gamma) = \frac{- {\rm j} \cdot \eta^3}{4 \cdot 3!} \cdot \big[ 3 \cdot \sin (\gamma)- \sin (3\gamma)\big],$$
$$ \frac{1}{4!} \cdot {\rm j}^4 \cdot \eta^4 \cdot \sin^4 (\gamma) = \frac{\eta^4}{8 \cdot 4!} \cdot \left[ 3+ 4 \cdot \cos (2\gamma)+ \cos (4\gamma)\right], \text{...} $$

(3)  By rearranging using  ${\rm J}_n(η)$,  we obtain the first kind of  $n$–th order Bessel functions:

$$s_{\rm TP}(t) = 1 \cdot {\rm J}_0 (\eta) + 2 \cdot {\rm j}\cdot {\rm J}_1 (\eta)\cdot \sin (\gamma) \hspace{0.2cm} + 2 \cdot {\rm J}_2 (\eta)\cdot \cos (2\gamma) + 2 \cdot {\rm j}\cdot {\rm J}_3 (\eta)\cdot \sin (3\gamma)+ 2 \cdot {\rm J}_4 (\eta)\cdot \cos (4\gamma) + \text{...} $$

(4)  Using Euler's theorem,  this can be written as:

$$s_{\rm TP}(t) = {\rm J}_0 (\eta) + \big[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \gamma} - {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \gamma} \big]\cdot {\rm J}_1 (\eta) \hspace{0.27cm} +\left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\gamma} + {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\gamma} \right]\cdot {\rm J}_2 (\eta)+ \left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 3\gamma} - {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 3\gamma} \right]\cdot {\rm J}_3 (\eta)+ \left[ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 4\gamma} + {\rm e}^{\hspace{0.05cm}{ - \rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 4\gamma} \right]\cdot {\rm J}_4 (\eta)+\text{...}$$

(5)  The Bessel functions exhibit the following symmetrical properties:

$${\rm J}_{-n} (\eta) = ( - 1)^n \cdot {\rm J}_{n} (\eta)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm J}_{ - 1} (\eta) = - {\rm J}_{1} (\eta),\hspace{0.3cm}{\rm J}_{ - 2} (\eta) = {\rm J}_{2} (\eta),\hspace{0.3cm}{\rm J}_{ - 3} (\eta) = - {\rm J}_{3} (\eta),\hspace{0.3cm}{\rm J}_{ - 4} (\eta) = {\rm J}_{4} (\eta).$$

(6)  Considering this fact and the factor  $A_{\rm T}$ omitted so far,  we get the desired result:

$$s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$
$\text{q.e.d.}$


Calculating the Bessel functions

These mathematical functions,  introduced as early as 1844 by  $\text{Friedrich Wilhelm Bessel}$  are defined as

$${\rm J}_n (\eta) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(\eta \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha)}}\hspace{0.1cm}{\rm d}\alpha\hspace{0.05cm},$$

and can be approximated by a series according to the next equation:

$${\rm J}_n (\eta) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (\eta/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$

The adjacent graph shows the first three summands $(k = 0,\ 1,\ 2)$  of each of the series  ${\rm J}_0(η)$, ... ,  ${\rm J}_3(η).$ 

  • For example,  the term outlined in red – valid for  $n = 3$  and  $k = 2$  – is written as:
$$\frac{(-1)^2 \cdot (\eta/2)^{3 \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}2}}{2\hspace{0.05cm}! \cdot (3+2)\hspace{0.05cm}!} = \frac{1}{240}\cdot (\frac{\eta}{2})^7 \hspace{0.05cm}.$$
  • The Bessel functions  ${\rm J}_n(η)$  can also be found in collections of formulae or with our applet  "Bessel functions of the first kind".
  • If the function values for $n = 0$  and  $n = 1$  are known,  the Bessel functions for  $n ≥ 2$ can be iteratively determined from them:
$${\rm J}_n (\eta) ={2 \cdot (n-1)}/{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$


Interpretation of the Bessel spectrum


The graph shows the Bessel functions  ${\rm J}_0(η)$, ... ,  ${\rm J}_7(η)$  depending on the modulation index  $η$  in the range   $0 ≤ η ≤ 10$.

  $n$–th order Bessel functions of the first kind

One can also find these in formula collections such as  [BS01][1]  in tabular form.

  • That the functions are of the first kind is expressed by the  "$\rm J$",  and
  • the order is given by the index $n$.


Using this graph,  the equivalent low-pass signal is given by

$$s_{\rm TP}(t) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}.$$

The following properties can be derived:

  • The equivalent low-pass signal is composed of
  • a pointer at rest  $(n = 0)$ 
  • and infinitely many clockwise  $(n < 0)$ 
  • or counterclockwise  $(n > 0)$ rotating pointers.
  • The pointer lengths depend on the modulation index $η$  via the Bessel functions ${\rm J}_n(η)$. 
  • The smaller the modulation index $η$,  the more pointers can be ignored for the construction of $s_{\rm TP}(t)$.  For example,  with a modulation index of  $η = 1$,  the following approximation holds:
$$s_{\rm TP}(t) = {\rm J}_0 (1) + {\rm J}_1 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}+ {\rm J}_2 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}2 \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}+ {\rm J}_3 (1)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}3 \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}- {\rm J}_1 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}+ {\rm J}_2 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}2 \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}- {\rm J}_3 (1)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}3 \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm} t}\hspace{0.05cm}.$$
  • Here,  the symmetrical relationship  ${\rm J}_{–n}(η) = (–1)^n · {\rm J}_n(η)$  is taken into account.  Thus:
$${\rm J}_{-1}(\eta) = - {\rm J}_{1}(\eta), \hspace{0.3cm}{\rm J}_{-2}(\eta) = {\rm J}_{2}(\eta), \hspace{0.3cm}{\rm J}_{-3}(\eta) = - {\rm J}_{3}(\eta).$$
  • Further,  it can be seen from the above equation that with $η = 3$,  the equivalent low-pass signal  $s_{\rm TP}(t)$  is composed of significantly more pointers,  namely those with indices  ${\rm J}_{–6}(\eta)$, ... ,  ${\rm J}_{+6}(\eta)$.


Example of an equivalent low-pass–signal in phase modulation

$\rm Example\ 3\text{:}$  The Bessel functions yield the following values for the modulation index $η = 1$:

$${\rm J}_0 = 0.765,\hspace{0.3cm}{\rm J}_1 = - {\rm J}_{ - 1} = 0.440, \hspace{0.3cm}{\rm J}_2 = {\rm J}_{ - 2} = 0.115,\hspace{0.3cm}{\rm J}_3 = - {\rm J}_{ - 3} = 0.020\hspace{0.05cm}.$$

The graph shows the composition of the locus curves from the seven pointers. 

  1. For simplicity,  set  $A_{\rm T} = 1$.
  2. The frequency of the sinusoidal source signal is $f_{\rm N} = 2 \ \rm kHz$,  which gives the period 
$$T_{\rm N} = 1/f_{\rm N} = 500 \ \rm µ s.$$

The left image shows the snapshot at time  $t = 0$.

  • Because  ${\rm J}_1 = – {\rm J}_{ – 1}$  and  ${\rm J}_3 = – {\rm J}_{ – 3}$,  the following holds:
$$s_{\rm TP}(t = 0) = {\rm J}_0 + {\rm J}_{2} + {\rm J}_{ - 2} = 0.765 + 2 \cdot 0.115 = 0.995 \hspace{0.05cm}.$$
  • The phase  ${\mathbf ϕ}(t = 0) = 0$   and the magnitude   $a(t = 0) = 1$  follow from the real result.
  • The slightly different value  $0.995$  shows that though ${\rm J}_4 = {\rm J}_{ – 4}$  is small  $(≈ 0.002)$, it is not equal to zero.


The right image shows the ratios at time  $t = T_{\rm N}/4 = 125\ \rm µ s$:

  • The pointers with lengths  ${\rm J}_{– 1}$  and  ${\rm J}_1$  have rotated clockwise resp. counterclockwise by   $90^\circ$,  and now both point in the direction of the imaginary axis.
  • The pointers  ${\rm J}_2$  and  ${\rm J}_{– 2}$  rotate twice as fast as  ${\rm J}_1$  and  ${\rm J}_{– 1}$  and now both point in the direction of the negative real axis.
  • ${\rm J}_3$  and  ${\rm J}_{– 3}$  rotate at three times the speed of  ${\rm J}_1$ und ${\rm J}_{– 1}$  and now both point downward.
  • This gives:
$$s_{\rm TP}(t = 125\,{\rm µ s}) = {\rm J}_0 - 2 \cdot {\rm J}_{2} + {\rm j} \cdot (2 \cdot {\rm J}_{1} - 2 \cdot {\rm J}_{3})= 0.535 + {\rm j} \cdot 0.840 $$
$$ \Rightarrow \hspace{0.3cm} a(t = 125\,{\rm µ s}) = \sqrt{0.535^2 + 0.840^2}= 0.996\hspace{0.05cm},$$
$$ \Rightarrow \hspace{0.3cm}\phi(t = 125\,{\rm µ s}) = \arctan \frac{0.840}{0.535} = 57.5^\circ \approx 1\,{\rm rad}\hspace{0.05cm}.$$
  • At all others times,  the vector sum of the seven pointers each also yields a point on the arc with angle  $ϕ(t)$,  where  $\vert ϕ(t) \vert ≤ η = 1\ \rm rad $.

Spectral function of a phase-modulated sine signal


$\text{Without proof:}$ 

  • Based on the equivalent low-pass signal just calculated,  we obtain for the  »analytical signal«:
$$s_{\rm +}(t) = s_{\rm TP}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t}= A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}(\omega_{\rm T}\hspace{0.05cm}+\hspace{0.05cm} n\hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N}) \hspace{0.05cm}\cdot \hspace{0.05cm} t}$$
  • By Fourier transform, we get the  »spectrum of the analytical signal«:
$$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$
  • The   »spectrum of the physical signal«  is obtained by expanding to negative frequencies taking into account a factor of  $1/2$:
$$S(f) = \frac{A_{\rm T} }{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f \pm (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$


Spectrum of the analytical signal for  $\rm PM$  $($also valid for  $\rm FM)$

Based on the graph, the following statements can be made:

  • The spectrum $S_+(f)$  of a phase-modulated sinusoidal signal consists of infinitely many discrete lines spaced at the frequency $f_{\rm N}$  of the sine signal.  In principle,  it is infinitely extended.
  • The heights  (weights)  of the spectral lines at $f_{\rm T} + n · f_{\rm N}$  ($n$  is an integer)  are determined by the modulation index $η$  via the Bessel functions ${\rm J}_n(η)$.
  • The  ${\rm J}_n(η)$  values show that in practice the spectrum is barely changed by bandlimiting.  However,  the resulting error grows as  $η$  increases.
  • The spectral lines are real for a sinusoidal source signal and cosinusoidal carrier and symmetric about  $f_{\rm T}$ for even values of  $n$ .  When  $n$  is odd, a sign change must be taken into account.
  • The PM of an oscillation with a different phase of source and/or carrier signal yields the same magnitude spectrum and differs only with respect to the phase function.


If the source signal is composed of several oscillations,  the spectrum calculation becomes difficult,  namely:
      »Convolution of the single spectra«   $($see next section and  "Exercise 3.3").



Phase modulation of the sum of two sinusoidal oscillations


If the source signal is composed of the sum of two sinusoidal oscillations,  the signals at the output of the phase modulator are:

$$s(t) = A_{\rm T} \cdot \cos \big[\omega_{\rm T} \cdot t + \eta_1 \cdot \sin (\omega_{\rm 1} \cdot t) + \eta_2 \cdot \sin(\omega_{\rm 2} \cdot t)\big]\hspace{0.05cm},$$
$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot [\hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 1} \hspace{0.05cm}\cdot \hspace{0.05cm} t) \hspace{0.05cm}+ \hspace{0.05cm}\eta_2 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 2} \hspace{0.05cm}\cdot \hspace{0.05cm}t)]}\hspace{0.05cm}.$$
  • For ease of representation,  we now set  $A_{\rm T} = 1$  and get:
$$s_{\rm TP}(t) = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 1} \hspace{0.05cm}\cdot \hspace{0.05cm} t) } \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_2 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (\omega_{\rm 2} \hspace{0.05cm}\cdot \hspace{0.05cm} t) }\hspace{0.05cm}.$$
  • The spectral functions of the two terms are:
$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_1 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm 1} \hspace{0.01cm}\cdot \hspace{0.05cm} t) } \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} B_1(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta_1) \cdot \delta (f - n \cdot f_{\rm 1})\hspace{0.05cm},$$
$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\eta_2 \hspace{0.05cm}\cdot \hspace{0.08cm}\sin (2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm 2} \hspace{0.01cm}\cdot \hspace{0.05cm} t) } \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} B_2(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta_2) \cdot \delta (f - n \cdot f_{\rm 2})\hspace{0.05cm}.$$
  • The Bessel functions $B_1(f)$  and  $B_2(f)$  describe line spectra spaced in frequency at  $f_1$  and  $f_2$, whose weights are determined by  $η_1$  and  $η_2$.
  • Due to multiplication in the time domain,  the spectral function is given by the convolution:
$$S_{\rm TP}(f) = B_1(f) \star B_2(f)= S_{\rm +}(f + f_{\rm T}) \hspace{0.05cm}.$$

$\rm Example\ 4\text{:}$  The left graph shows the Bessel function  $B_1(f)$  for  $η_1 = 0.64$  and  $f_1 = 1 \ \rm kHz$.  The much smaller lines at  $f = ±2 \ \rm kHz$  with weights  $0.05$  are left out for clarity.

Equivalent low-pass spectrum as convolution of two Bessel spectra
  • The function  $B_2(f)$  is valid for the same modulation index $η_2 = η_1$,  but at the signal frequency  $f_2 = 4 \ \rm kHz$.


  • The low-pass spectrum  $S_{\rm TP}(f) = B_1(f) \star B_2(f)$  consists of nine Dirac delta lines and is sketched in the diagram on the right.


  • By shifting the frequency   $f_{\rm T}$  to the right,  we obtain the spectrum  $S_+(f)$  of the analytical signal  $s_+(t)$.  Thus:
$$S_+(f = f_{\rm T}) = S_{\rm TP}(f = 0) = 0.81.$$


Exercises for the chapter


Exercise 3.1: Phase Modulation Locus Curve

Exercise 3.1Z: Influence of the Message Phase in Phase Modulation

Exercise 3.2: Spectrum with Angle Modulation

Exercise 3.2Z: Bessel Spectrum

Exercise 3.3: Sum of two Oscillations

Exercise 3.3Z: Characteristics Determination

Exercise 3.4: Simple Phase Modulator


References


  1. Bronstein, I.N.; Semendjajew, K.A.:  Taschenbuch der Mathematik.  5. Auflage. Frankfurt: Harry Deutsch, 2001.