Difference between revisions of "Digital Signal Transmission/Error Probability for Baseband Transmission"

From LNTwww
 
(27 intermediate revisions by 3 users not shown)
Line 9: Line 9:
 
<br>
 
<br>
 
[[File:EN_Dig_T_1_2_S1.png|right|frame|For the definition of the bit error probability]]
 
[[File:EN_Dig_T_1_2_S1.png|right|frame|For the definition of the bit error probability]]
The diagram shows a very simple, but generally valid model of a binary transmission system. This can be characterized as follows:
+
The diagram shows a very simple,&nbsp; but generally valid model of a binary transmission system.  
 +
 
 +
This can be characterized as follows:
 
*Source and sink are described by the two binary sequences &nbsp;$〈q_ν〉$&nbsp; and &nbsp;$〈v_ν〉$.&nbsp;  
 
*Source and sink are described by the two binary sequences &nbsp;$〈q_ν〉$&nbsp; and &nbsp;$〈v_ν〉$.&nbsp;  
*The entire transmission system &ndash; consisting of transmitter, transmission channel including interference and receiver &ndash; is regarded as a "Black Box" with binary input and binary output.
+
*The entire transmission system &ndash; consisting of  
*This "digital channel" is characterized solely by the error sequence $〈e_ν〉$. If the $\nu$&ndash;th bit is transmitted without errors &nbsp;$(v_ν = q_ν)$,&nbsp; &nbsp;$e_ν= 0$ is valid, otherwise &nbsp;$(v_ν \ne q_ν)$&nbsp; &nbsp;$e_ν= 1$&nbsp; is set.
+
#the transmitter,&nbsp;
 +
#the transmission channel including noise and  
 +
#the receiver,
 +
 
 +
is regarded as a&nbsp; "Black Box"&nbsp; with binary input and binary output.
 +
*This&nbsp; "digital channel"&nbsp; is characterized solely by the error sequence $〈e_ν〉$.&nbsp;
 +
*If the $\nu$&ndash;th bit is transmitted without errors &nbsp;$(v_ν = q_ν)$,&nbsp; &nbsp;$e_ν= 0$&nbsp; is valid,&nbsp; <br>otherwise &nbsp;$(v_ν \ne q_ν)$&nbsp; &nbsp;$e_ν= 1$&nbsp; is set.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The (average) '''bit error probability''' for a binary system is given as follows:
+
$\text{Definition:}$&nbsp; The&nbsp; (average)&nbsp; '''bit error probability''' for a binary system is given as follows:
  
 
:$$p_{\rm B} = {\rm E}\big[{\rm Pr}(v_{\nu} \ne q_{\nu})\big]= \overline{  {\rm Pr}(v_{\nu} \ne q_{\nu}) } =
 
:$$p_{\rm B} = {\rm E}\big[{\rm Pr}(v_{\nu} \ne q_{\nu})\big]= \overline{  {\rm Pr}(v_{\nu} \ne q_{\nu}) } =
Line 22: Line 30:
 
This statistical quantity is the most important evaluation criterion of any digital system.}}<br>
 
This statistical quantity is the most important evaluation criterion of any digital system.}}<br>
  
*The calculation as expected value &nbsp;$\rm E[\text{...}]$&nbsp; according to the first part of the above equation corresponds to a ensemble averaging over the falsification probability &nbsp;${\rm Pr}(v_{\nu} \ne q_{\nu})$&nbsp; of the &nbsp;$\nu$&ndash;th symbol, while the line in the right part of the equation marks a time averaging.
+
*The calculation as expected value &nbsp;$\rm E[\text{...}]$&nbsp; according to the first part of the above equation corresponds to an ensemble averaging over the falsification probability &nbsp;${\rm Pr}(v_{\nu} \ne q_{\nu})$&nbsp; of the &nbsp;$\nu$&ndash;th symbol,&nbsp; while the line in the right part of the equation marks a time averaging.
  
*Both types of calculation lead &ndash; under the justified assumption of ergodic processes &ndash; to the same result, as shown in the fourth main chapter  "Random Variables with Statistical Dependence" of the book &nbsp;[[Stochastische Signaltheorie]].&nbsp;
+
*Both types of calculation lead&nbsp; &ndash; under the justified assumption of ergodic processes &ndash;&nbsp; to the same result,&nbsp; as shown in the fourth main chapter&nbsp;   "Random Variables with Statistical Dependence"&nbsp; of the book &nbsp;[[Theory_of_Stochastic_Signals|"Theory of Stochastic Signals"]].&nbsp;
  
*Also from the error sequence &nbsp;$〈e_ν〉$&nbsp; the bit error probability can be determined as an expected value, taking into account that the error quantity &nbsp;$e_ν$&nbsp; can only take the values &nbsp;$0$&nbsp; and &nbsp;$1$:&nbsp;
+
*The bit error probability can be determined as an expected value also from the error sequence &nbsp;$〈e_ν〉$,&nbsp; taking into account that the error quantity &nbsp;$e_ν$&nbsp; can only take the values &nbsp;$0$&nbsp; and &nbsp;$1$:&nbsp;
 
:$$\it p_{\rm B} =  \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]= {\rm E}\big[{\it e_{\nu}}\big]\hspace{0.05cm}.$$
 
:$$\it p_{\rm B} =  \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]= {\rm E}\big[{\it e_{\nu}}\big]\hspace{0.05cm}.$$
*The above definition of the bit error probability applies whether or not there are statistical bindings within the error sequence &nbsp;$〈e_ν〉$.&nbsp; Depending on this, one has to use different digital channel models in a system simulation. The complexity of the &nbsp;$p_{\rm B}$ calculation depends on this.
+
 
 +
*The above definition of the bit error probability applies whether or not there are statistical bindings within the error sequence &nbsp;$〈e_ν〉$.&nbsp; Depending on this,&nbsp;  one has to use different digital channel models in a system simulation.&nbsp; The complexity of the bit error probability calculation depends on this.
 
<br>
 
<br>
In the fifth main chapter it will be shown that the so-called &nbsp;[[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)|BSC model]]&nbsp; (<i>Binary Symmetrical Channel</i>) provides statistically independent errors, while for the description of bundle error channels one has to resort to the models of &nbsp;[[Digital_Signal_Transmission/Bündelfehlerkanäle#Kanalmodell_nach_Gilbert.E2.80.93Elliott|Gilbert&ndash;Elliott]]&nbsp; [Gil60]<ref>Gilbert, E. N.: ''Capacity of Burst–Noise Channel,'' In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266.</ref> and of &nbsp;[[Digital_Signal_Transmission/Bündelfehlerkanäle#Kanalmodell_nach_McCullough|McCullough]]&nbsp; [McC68]<ref>McCullough, R.H.: ''The Binary Regenerative Channel,'' In: Bell Syst. Techn. J. (47), 1968.</ref>.
+
In the fifth main chapter it will be shown that the so-called &nbsp;[[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)|"BSC model"]]&nbsp; ("Binary Symmetrical Channel")&nbsp; provides statistically independent errors,&nbsp; while for the description of bundle error channels one has to resort to the models of &nbsp;[[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_Gilbert-Elliott|"Gilbert&ndash;Elliott"]]&nbsp; [Gil60]<ref>Gilbert, E. N.:&nbsp; Capacity of Burst–Noise Channel,&nbsp; In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266.</ref> and of &nbsp;[[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_McCullough|"McCullough"]]&nbsp; [McC68]<ref>McCullough, R.H.:&nbsp; The Binary Regenerative Channel,&nbsp; In: Bell Syst. Techn. J. (47), 1968.</ref>.
  
  
 
== Definition of the bit error rate==
 
== Definition of the bit error rate==
 
<br>
 
<br>
The bit error probability &nbsp;$p_{\rm B}$,&nbsp; for example, is well suited for the design and optimization of digital systems. It is an &nbsp;''a priori parameter'', which allows a prediction about the error behavior of a message system without having to realize it already.<br>
+
The&nbsp; "bit error probability"&nbsp; is well suited for the design and optimization of digital systems.&nbsp; It is an &nbsp;"a&ndash;priori parameter",&nbsp; which allows a prediction about the error behavior of a transmission system without having to realize it already.<br>
  
In contrast, to measure the quality of a realized system or in a system simulation, one must switch to the bit error rate, which is determined by comparing the source symbol sequence &nbsp;$〈q_ν〉$&nbsp; and sink symbol sequence  &nbsp;$〈v_ν〉$.&nbsp; This is thus an &nbsp;''a posteriori parameter'' of the system.
+
In contrast,&nbsp; to measure the quality of a realized system or in a system simulation,&nbsp; one must switch to the&nbsp; "bit error rate",&nbsp; which is determined by comparing the source symbol sequence &nbsp;$〈q_ν〉$&nbsp; and the sink symbol sequence  &nbsp;$〈v_ν〉$.&nbsp; This is thus an &nbsp;"a&ndash;posteriori parameter"&nbsp; of the system.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The  '''bit error rate''' (BER) is the ratio of the number &nbsp;$n_{\rm B}(N)$&nbsp;  of bit errors &nbsp;$(v_ν \ne q_ν)$&nbsp;  and the number &nbsp;$N$&nbsp; of transmitted symbols:
+
$\text{Definition:}$&nbsp; The  '''bit error rate'''&nbsp; $\rm (BER)$&nbsp; is the ratio of the number &nbsp;$n_{\rm B}(N)$&nbsp;  of bit errors &nbsp;$(v_ν \ne q_ν)$&nbsp;  and the number &nbsp;$N$&nbsp; of transmitted symbols:
 
:$$h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N}  \hspace{0.05cm}.$$
 
:$$h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N}  \hspace{0.05cm}.$$
In terms of probability theory, the bit error rate is a &nbsp;[[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable#Bernoulli.27s_law_of_large_numbers|relative frequency]]; therefore, it is also called ''bit error frequency''.}}<br>
+
In terms of probability theory,&nbsp; the bit error rate is a &nbsp;[[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable#Bernoulli.27s_law_of_large_numbers|"relative frequency"]]; &nbsp;therefore,&nbsp; it is also called&nbsp; "bit error frequency".}}<br>
  
*The notation &nbsp;$h_{\rm B}(N)$&nbsp; is intended to make clear that the bit error rate determined by measurement or simulation depends significantly on the parameter &nbsp;$N$ &ndash; i.e. the total number of transmitted or simulated symbols.  
+
*The notation &nbsp;$h_{\rm B}(N)$&nbsp; is intended to make clear that the bit error rate determined by measurement or simulation depends significantly on the parameter &nbsp;$N$ &nbsp; &rArr; &nbsp; the total number of transmitted or simulated symbols.  
*According to the elementary laws of probability theory, only in the limiting case &nbsp;$N \to \infty$&nbsp; the a posteriori parameter &nbsp;$h_{\rm B}(N)$&nbsp; coincides exactly with the a priori parameter &nbsp;$p_{\rm B}$.&nbsp; <br><br>
+
*According to the elementary laws of probability theory,&nbsp; only in the limiting case &nbsp;$N \to \infty$&nbsp; the a&ndash;posteriori parameter &nbsp;$h_{\rm B}(N)$&nbsp; coincides exactly with the a&ndash;priori parameter &nbsp;$p_{\rm B}$.&nbsp; <br><br>
The connection between probability and relative frequency is clarified in the learning video [[Bernoullisches_Gesetz_der_großen_Zahlen_(Lernvideo)|Bernoullisches Gesetz der großen Zahlen]].
+
The connection between&nbsp; "probability"&nbsp; and&nbsp; "relative frequency"&nbsp; is clarified in the&nbsp; (German language)&nbsp; learning video<br> &nbsp; &nbsp; &nbsp; [[Bernoullisches_Gesetz_der_großen_Zahlen_(Lernvideo)|"Bernoullisches Gesetz der großen Zahlen"]] &nbsp; &rArr; &nbsp; "Bernoulli's law of large numbers".
 
<br><br>
 
<br><br>
  
 
== Bit error probability and bit error rate in the BSC model==
 
== Bit error probability and bit error rate in the BSC model==
 
<br>
 
<br>
The following derivations are based on the BSC model (''Binary Symmetric Channel''&nbsp;), which is described in detail in &nbsp;[[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)#Fehlerkorrelationsfunktion_des_BSC.E2.80.93Modells| chapter 5.2]].&nbsp;  
+
The following derivations are based on the BSC model&nbsp; ("Binary Symmetric Channel"),&nbsp; which is described in detail in &nbsp;[[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)#Fehlerkorrelationsfunktion_des_BSC.E2.80.93Modells|"chapter 5.2"]].&nbsp;  
 
*Each bit is distorted with probability &nbsp;$p = {\rm Pr}(v_{\nu} \ne q_{\nu}) = {\rm Pr}(e_{\nu} = 1)$,&nbsp; independent of the error probabilities of the neighboring symbols.
 
*Each bit is distorted with probability &nbsp;$p = {\rm Pr}(v_{\nu} \ne q_{\nu}) = {\rm Pr}(e_{\nu} = 1)$,&nbsp; independent of the error probabilities of the neighboring symbols.
*Thus, the (average) bit error probability &nbsp;$p_{\rm B}$&nbsp; is also equal to &nbsp;$p$.
+
*Thus,&nbsp; the&nbsp; (average)&nbsp; bit error probability &nbsp;$p_{\rm B}$&nbsp; is also equal to &nbsp;$p$.
<br>
+
 
  
 
Now we estimate how accurately in the BSC model the bit error probability &nbsp;$p_{\rm B} = p$&nbsp; is approximated by the bit error rate &nbsp;$h_{\rm B}(N)$:&nbsp;
 
Now we estimate how accurately in the BSC model the bit error probability &nbsp;$p_{\rm B} = p$&nbsp; is approximated by the bit error rate &nbsp;$h_{\rm B}(N)$:&nbsp;
Line 60: Line 69:
 
*The number of bit errors in the transmission of &nbsp;$N$&nbsp; symbols is a discrete random quantity:
 
*The number of bit errors in the transmission of &nbsp;$N$&nbsp; symbols is a discrete random quantity:
 
:$$n_{\rm B}(N) = \sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu} \hspace{0.2cm} \in \hspace{0.2cm} \{0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm} , N \}\hspace{0.05cm}.$$
 
:$$n_{\rm B}(N) = \sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu} \hspace{0.2cm} \in \hspace{0.2cm} \{0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm} , N \}\hspace{0.05cm}.$$
*In the case of statistically independent errors (BSC model), &nbsp;$n_{\rm B}(N)$&nbsp; is [[Theory_of_Stochastic_Signals/Binomial_Distribution#General_description_of_the_binomial_distribution|binomially distributed]]. Consequently, the mean and dispersion of this random variable are:
+
*In the case of statistically independent errors&nbsp; (BSC model),&nbsp; $n_{\rm B}(N)$&nbsp; is [[Theory_of_Stochastic_Signals/Binomial_Distribution#General_description_of_the_binomial_distribution|"binomially distributed"]].&nbsp; Consequently,&nbsp; mean and standard deviation of this random variable are:
 
:$$m_{n{\rm B}}=N \cdot p_{\rm B},\hspace{0.2cm}\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}\hspace{0.05cm}.$$
 
:$$m_{n{\rm B}}=N \cdot p_{\rm B},\hspace{0.2cm}\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}\hspace{0.05cm}.$$
*Therefore, for mean and dispersion of bit error rate &nbsp;$h_{\rm B}(N)= n_{\rm B}(N)/N$&nbsp; holds:
+
*Therefore,&nbsp; for mean and standard deviation of the bit error rate &nbsp;$h_{\rm B}(N)= n_{\rm B}(N)/N$&nbsp; holds:
 
<math>m_{h{\rm B}}= \frac{m_{n{\rm B}}}{N} = p_{\rm B}\hspace{0.05cm},\hspace{0.2cm}\sigma_{h{\rm B}}= \frac{\sigma_{n{\rm B}}}{N}=
 
<math>m_{h{\rm B}}= \frac{m_{n{\rm B}}}{N} = p_{\rm B}\hspace{0.05cm},\hspace{0.2cm}\sigma_{h{\rm B}}= \frac{\sigma_{n{\rm B}}}{N}=
 
   \sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}{N}}\hspace{0.05cm}.</math>
 
   \sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}{N}}\hspace{0.05cm}.</math>
*However, according to &nbsp;[https://en.wikipedia.org/wiki/Abraham_de_Moivre Moivre]&nbsp; and &nbsp;[https://en.wikipedia.org/wiki/Pierre-Simon_Laplace Laplace]&nbsp; the binomial distribution can be approximated by a Gaussian distribution:
+
*However,&nbsp; according to &nbsp;[https://en.wikipedia.org/wiki/Abraham_de_Moivre "Moivre"]&nbsp; and &nbsp;[https://en.wikipedia.org/wiki/Pierre-Simon_Laplace "Laplace"]: &nbsp; The binomial distribution can be approximated by a Gaussian distribution:
 
:$$f_{h{\rm B}}({h_{\rm B}}) \approx \frac{1}{\sqrt{2\pi}\cdot\sigma_{h{\rm B}}}\cdot {\rm e}^{-(h_{\rm B}-p_{\rm B})^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{h{\rm B}}^2)}.$$
 
:$$f_{h{\rm B}}({h_{\rm B}}) \approx \frac{1}{\sqrt{2\pi}\cdot\sigma_{h{\rm B}}}\cdot {\rm e}^{-(h_{\rm B}-p_{\rm B})^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{h{\rm B}}^2)}.$$
*Using the &nbsp;[[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|Gaussian error integral]]&nbsp; ${\rm Q}(x)$,&nbsp; the probability &nbsp;$p_\varepsilon$&nbsp;  can be calculated that the bit error rate &nbsp;$h_{\rm B}(N)$&nbsp; determined by simulation/measurement over &nbsp;$N$&nbsp; symbols differs in amount by less than one value &nbsp;$\varepsilon$&nbsp; from the actual bit error probability &nbsp;$p_{\rm B}$:&nbsp;  
+
*Using the &nbsp;[[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"Gaussian error integral"]]&nbsp; ${\rm Q}(x)$,&nbsp; the probability &nbsp;$p_\varepsilon$&nbsp;  can be calculated that the bit error rate &nbsp;$h_{\rm B}(N)$&nbsp; determined by simulation/measurement over &nbsp;$N$&nbsp; symbols differs in magnitude by less than a value &nbsp;$\varepsilon$&nbsp; from the actual bit error probability &nbsp;$p_{\rm B}$:&nbsp;  
 
:$$p_{\varepsilon}= {\rm Pr} \left( |h_{\rm B}(N) - p_{\rm B}| < \varepsilon \right)
 
:$$p_{\varepsilon}= {\rm Pr} \left( |h_{\rm B}(N) - p_{\rm B}| < \varepsilon \right)
 
   = 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon}{\sigma_{h{\rm B}}} \right)=
 
   = 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon}{\sigma_{h{\rm B}}} \right)=
Line 74: Line 83:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Conclusion:}$&nbsp; This result can be interpreted as follows:
 
$\text{Conclusion:}$&nbsp; This result can be interpreted as follows:
*If one performs an infinite number of test series over &nbsp;$N$&nbsp; symbols each, the mean value &nbsp;$m_{h{\rm B} }$&nbsp; is actually equal to the sought error probability &nbsp;$p_{\rm B}$.  
+
#If one performs an infinite number of test series over &nbsp;$N$&nbsp; symbols each,&nbsp; the mean value &nbsp;$m_{h{\rm B} }$&nbsp; is actually equal to the sought error probability &nbsp;$p_{\rm B}$.  
*With a single test series, on the other hand, one will only obtain an approximation, whereby the respective deviation from the nominal value is Gaussian distributed with several test series.}}
+
#With a single test series,&nbsp; on the other hand,&nbsp; one will only obtain an approximation,&nbsp; whereby the respective deviation from the nominal value is Gaussian distributed with several test series.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp; The bit error probability is &nbsp;$p_{\rm B}= 10^{-3}$&nbsp; and it is known that the bit errors are statistically independent.
+
$\text{Example 1:}$&nbsp; The bit error probability &nbsp;$p_{\rm B}= 10^{-3}$&nbsp; is given and it is known that the bit errors are statistically independent.
*If we now make a large number of test series with &nbsp;$N= 10^{5}$&nbsp; symbols each, the respective results &nbsp;$h_{\rm B}(N)$&nbsp; will vary around the nominal value &nbsp;$10^{-3}$&nbsp; according to a Gaussian distribution.
+
*If we now make a large number of test series with &nbsp;$N= 10^{5}$&nbsp; symbols each,&nbsp; the respective results &nbsp;$h_{\rm B}(N)$&nbsp; will vary around the nominal value &nbsp;$10^{-3}$&nbsp; according to a Gaussian distribution.&nbsp; The standard deviation here is &nbsp;$\sigma_{h{\rm B} }=  \sqrt{ { p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N} }\approx 10^{-4}\hspace{0.05cm}.$
*The root mean square here is &nbsp;$\sigma_{h{\rm B} }=  \sqrt{ { p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N} }\approx 10^{-4}\hspace{0.05cm}.$
+
*Thus,&nbsp; the probability that the relative frequency will have a value between &nbsp;$0.9 \cdot 10^{-3}$&nbsp; and &nbsp;$1.1 \cdot 10^{-3}$&nbsp; &nbsp;  $(\varepsilon=10^{-4})$:
*Thus, the probability that the relative frequency will have a value between &nbsp;$0.9 \cdot 10^{-3}$&nbsp; and &nbsp;$1.1 \cdot 10^{-3}$&nbsp; &nbsp;  $(\varepsilon=10^{-4})$ is equal to
 
 
:$$p_{\varepsilon} = 1 - 2 \cdot  {\rm Q} \left({\varepsilon}/{\sigma_{h{\rm B} } } \right )= 1 - 2 \cdot {\rm Q} (1) \approx 68.4\%.$$  
 
:$$p_{\varepsilon} = 1 - 2 \cdot  {\rm Q} \left({\varepsilon}/{\sigma_{h{\rm B} } } \right )= 1 - 2 \cdot {\rm Q} (1) \approx 68.4\%.$$  
*If this probability (accuracy) is to be increased to &nbsp;$95\%$,&nbsp; &nbsp;$N = 400\hspace{0.05cm}000$&nbsp; symbols would be required.}}
+
*If this probability accuracy is to be increased to &nbsp;$95\%$,&nbsp; &nbsp;$N = 400\hspace{0.05cm}000$&nbsp; symbols would be required.}}
  
  
 
== Error probability with Gaussian noise==
 
== Error probability with Gaussian noise==
 
<br>
 
<br>
According to the &nbsp;[[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Block_diagram_and_prerequisites_for_the_first_main_chapter|prerequisites to this chapter]],&nbsp; we make the following assumptions:
+
According to the &nbsp;[[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Block_diagram_and_prerequisites_for_the_first_main_chapter|"prerequisites to this chapter"]],&nbsp; we make the following assumptions:
*The detection signal at the detection times can be represented as follows: &nbsp; $ d(\nu  T) = d_{\rm S}(\nu  T)+d_{\rm N}(\nu T)\hspace{0.05cm}. $
+
[[File:P_ID1259__Dig_T_1_2_S3_v2.png|right|frame|"Error probability with Gaussian noise"|class=fit]]
*The useful component is described by the probability density function (PDF) &nbsp;$f_{d{\rm S}}(d_{\rm S}) $,&nbsp; where we assume here different occurrence probabilities &nbsp;$p_{\rm L} = {\rm Pr}(d_{\rm S} = -s_0)$&nbsp; and  &nbsp;$p_{\rm H} = {\rm Pr}(d_{\rm S} = +s_0)= 1-p_{\rm L}$.&nbsp;
 
*Let the PDF &nbsp;$f_{d{\rm N}}(d_{\rm N})$&nbsp; of the interference component be Gaussian and possess the rms value &nbsp;$\sigma_d$.
 
  
 +
*The detection signal at the detection times can be represented as follows: &nbsp;
 +
:$$ d(\nu  T) = d_{\rm S}(\nu  T)+d_{\rm N}(\nu T)\hspace{0.05cm}. $$
  
[[File:P_ID1259__Dig_T_1_2_S3_v2.png|center|frame|Error probability with Gaussian noise|class=fit]]
 
  
Assuming that &nbsp;$d_{\rm S}(\nu  T)$&nbsp; and &nbsp;$d_{\rm N}(\nu  T)$&nbsp; are statistically independent of each other &nbsp;("signal independent noise"),  the PDF &nbsp;$f_d(d) $&nbsp; of the detection samples &nbsp;$d(\nu  T)$&nbsp; is obtained as the convolution product  
+
*The signal component is described by the probability density function&nbsp; (PDF) &nbsp;$f_{d{\rm S}}(d_{\rm S}) $,&nbsp; where we assume here different occurrence probabilities &nbsp;
 +
:$$p_{\rm L} = {\rm Pr}(d_{\rm S} = -s_0),\hspace{0.5cm}p_{\rm H} = {\rm Pr}(d_{\rm S} = +s_0)= 1-p_{\rm L}.$$
 +
 
 +
 +
*Let the probability density function &nbsp;$f_{d{\rm N}}(d_{\rm N})$&nbsp; of the noise component be Gaussian and possess the standard deviation &nbsp;$\sigma_d$.
 +
<br clear=all>
 +
Assuming that &nbsp;$d_{\rm S}(\nu  T)$&nbsp; and &nbsp;$d_{\rm N}(\nu  T)$&nbsp; are statistically independent of each other &nbsp;("signal independent noise"),&nbsp; the probability density function &nbsp;$f_d(d) $&nbsp; of the detection samples &nbsp;$d(\nu  T)$&nbsp; is obtained as the convolution product  
 
:$$f_d(d) = f_{d{\rm S}}(d_{\rm S}) \star f_{d{\rm N}}(d_{\rm N})\hspace{0.05cm}.$$
 
:$$f_d(d) = f_{d{\rm S}}(d_{\rm S}) \star f_{d{\rm N}}(d_{\rm N})\hspace{0.05cm}.$$
  
 
The threshold decision with threshold &nbsp;$E = 0$&nbsp; makes a wrong decision whenever
 
The threshold decision with threshold &nbsp;$E = 0$&nbsp; makes a wrong decision whenever
*the symbol &nbsp;$\rm L$&nbsp; was sent &nbsp;$(d_{\rm S} = -s_0)$ and &nbsp;$d > 0$&nbsp; (red shaded area), or
+
*the symbol &nbsp;$\rm L$&nbsp; was sent &nbsp;$(d_{\rm S} = -s_0)$&nbsp; and &nbsp;$d > 0$&nbsp; $($red shaded area$)$,&nbsp; '''or'''
*the symbol &nbsp;$\rm H$&nbsp; was sent &nbsp;$(d_{\rm S} = +s_0)$ and &nbsp;$d < 0$&nbsp; (blue shaded area).
+
*the symbol &nbsp;$\rm H$&nbsp; was sent &nbsp;$(d_{\rm S} = +s_0)$&nbsp; and &nbsp;$d < 0$&nbsp; $($blue shaded area$)$.
 
<br>
 
<br>
 
Since the areas of the red and blue Gaussian curves add up to &nbsp;$1$,&nbsp; the sum of the red and blue shaded areas gives the bit error probability &nbsp;$p_{\rm B}$.&nbsp; The two green shaded areas in the upper probability density function &nbsp;$f_{d{\rm N}}(d_{\rm N})$&nbsp; are &ndash; each separately &ndash; also equal to &nbsp;$p_{\rm B}$.
 
Since the areas of the red and blue Gaussian curves add up to &nbsp;$1$,&nbsp; the sum of the red and blue shaded areas gives the bit error probability &nbsp;$p_{\rm B}$.&nbsp; The two green shaded areas in the upper probability density function &nbsp;$f_{d{\rm N}}(d_{\rm N})$&nbsp; are &ndash; each separately &ndash; also equal to &nbsp;$p_{\rm B}$.
  
 
+
The results illustrated by the diagram are now to be derived as formulas.&nbsp; We start from the equation
The results illustrated by the diagram are now to be derived as formulas. We start from the equation
 
 
:$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( v_\nu = \mathbf{H}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{L})+
 
:$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( v_\nu = \mathbf{H}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{L})+
 
   p_{\rm H} \cdot {\rm Pr}(v_\nu = \mathbf{L}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{H})\hspace{0.05cm}.$$
 
   p_{\rm H} \cdot {\rm Pr}(v_\nu = \mathbf{L}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{H})\hspace{0.05cm}.$$
*Here &nbsp;$p_{\rm L} $&nbsp; and &nbsp;$p_{\rm H} $&nbsp; are the source symbol probabilities. The respective second (conditional) probabilities &nbsp;$ {\rm Pr}( v_\nu \hspace{0.05cm}|\hspace{0.05cm} q_\nu)$&nbsp;describe the distortions due to the AWGN channel. From the decision rule of the threshold decision &nbsp;$($with threshold &nbsp;$E = 0)$&nbsp; also results:
+
*Here &nbsp;$p_{\rm L} $&nbsp; and &nbsp;$p_{\rm H} $&nbsp; are the source symbol probabilities. The respective second&nbsp; (conditional)&nbsp; probabilities &nbsp;$ {\rm Pr}( v_\nu \hspace{0.05cm}|\hspace{0.05cm} q_\nu)$&nbsp;describe the interferences due to the AWGN channel. From the decision rule of the threshold decision &nbsp;$($with threshold &nbsp;$E = 0)$&nbsp; also results:
 
:$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+  p_{\rm H} \cdot {\rm Pr}( d(\nu  T)<0) =p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>+s_0)+  p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.$$
 
:$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+  p_{\rm H} \cdot {\rm Pr}( d(\nu  T)<0) =p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>+s_0)+  p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.$$
*The two exceedance probabilities in the above equation are equal due to the symmetry of the Gaussian PDF &nbsp;$f_{d{\rm N}}(d_{\rm N})$.&nbsp; It holds:
+
*The two exceedance probabilities in the above equation are equal due to the symmetry of the Gaussian probability density function &nbsp;$f_{d{\rm N}}(d_{\rm N})$.&nbsp; It holds:
 
:$$p_{\rm B} = (p_{\rm L} + p_{\rm H}) \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0) = {\rm Pr}( d_{\rm N}(\nu T)>s_0)\hspace{0.05cm}.$$
 
:$$p_{\rm B} = (p_{\rm L} + p_{\rm H}) \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0) = {\rm Pr}( d_{\rm N}(\nu T)>s_0)\hspace{0.05cm}.$$
:This means: &nbsp; $p_{\rm B}$&nbsp; does not depend on the symbol probabilities &nbsp;$p_{\rm L} $&nbsp; and &nbsp;$p_{\rm H} = 1- p_{\rm L}$&nbsp; for a binary system with threshold &nbsp;$E = 0$.&nbsp;
+
:This means: &nbsp; For a binary system with threshold &nbsp;$E = 0$,&nbsp; the bit error probability&nbsp; $p_{\rm B}$&nbsp; does not depend on the symbol probabilities &nbsp;$p_{\rm L} $&nbsp; and &nbsp;$p_{\rm H} = 1- p_{\rm L}$.&nbsp;
*The probability that the AWGN noise term &nbsp;$d_{\rm N}$&nbsp; with rms value &nbsp;$\sigma_d$&nbsp; is larger than the NRZ transmitted pulse amplitude &nbsp;$s_0$ is thus given by:
+
*The probability that the AWGN noise term &nbsp;$d_{\rm N}$&nbsp; with standard deviation &nbsp;$\sigma_d$&nbsp; is larger than the amplitude&nbsp; $s_0$&nbsp; of the NRZ transmission pulse  is thus given by:
 
:$$p_{\rm B} = \int_{s_0}^{+\infty}f_{d{\rm N}}(d_{\rm N})\,{\rm d} d_{\rm N} =
 
:$$p_{\rm B} = \int_{s_0}^{+\infty}f_{d{\rm N}}(d_{\rm N})\,{\rm d} d_{\rm N} =
 
   \frac{\rm 1}{\sqrt{2\pi} \cdot \sigma_d}\int_{
 
   \frac{\rm 1}{\sqrt{2\pi} \cdot \sigma_d}\int_{
Line 121: Line 133:
 
N}\hspace{0.05cm}.$$
 
N}\hspace{0.05cm}.$$
 
*Using the complementary Gaussian error integral &nbsp;${\rm Q}(x)$,&nbsp; the result is:
 
*Using the complementary Gaussian error integral &nbsp;${\rm Q}(x)$,&nbsp; the result is:
:$$p_{\rm B} =  {\rm Q} \left( \frac{s_0}{\sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
+
:$$p_{\rm B} =  {\rm Q} \left( \frac{s_0}{\sigma_d}\right)\hspace{0.4cm}{\rm with}\hspace{0.4cm}\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
*Often &ndash; especially in the English-language literature &ndash; the comparable complementary ''error function'' &nbsp;${\rm erfc}(x)$&nbsp; is used instead of &nbsp;${\rm Q}(x)$.&nbsp; With this applies:
+
*Often&nbsp; &ndash; especially in the English-language literature &ndash;&nbsp; the comparable&nbsp; "complementary error function" &nbsp;${\rm erfc}(x)$&nbsp; is used instead of &nbsp;${\rm Q}(x)$.&nbsp; With this applies:
:$$p_{\rm B} =  {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2}\cdot \sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
+
:$$p_{\rm B} =  {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2}\cdot \sigma_d}\right)\hspace{0.4cm}{\rm with}\hspace{0.4cm}
 
  {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it
 
  {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$
 +
*Both functions can be found in formula collections in tabular form.&nbsp;  However,&nbsp; you can also use our HTML 5/JavaScript  applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]]&nbsp; to calculate the function values of &nbsp;${\rm Q}(x)$&nbsp; and &nbsp;$1/2 \cdot {\rm erfc}(x)$.&nbsp;
  
Both functions can be found in formula collections in tabular form.  However, you can also use our interactive applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]]&nbsp; to calculate the function values of &nbsp;${\rm Q}(x)$&nbsp; and &nbsp;$1/2 \cdot {\rm erfc}(x)$.&nbsp;
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 2:}$&nbsp; For the following, we assume that tables are available listing the argument of the Gaussian error functions at &nbsp;$0.1$&nbsp; intervals. With &nbsp;$s_0/\sigma_d = 4$,&nbsp; we obtain for the bit error probability according to the Q&ndash;function:
+
$\text{Example 2:}$&nbsp; For the following,&nbsp; we assume that tables are available listing the argument of the Gaussian error functions at &nbsp;$0.1$&nbsp; intervals.
 +
 +
With &nbsp;$s_0/\sigma_d = 4$,&nbsp; we obtain for the bit error probability according to the Q&ndash;function:
 
:$$p_{\rm B} = {\rm Q} (4) = 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$
 
:$$p_{\rm B} = {\rm Q} (4) = 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$
 
According to the second equation we get:
 
According to the second equation we get:
 
:$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$
 
:$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$
*The first value is correct. With the second calculation method, you have to round or &ndash; even better &ndash; interpolate, which is very difficult due to the strong non-linearity of this function.<br>
+
*The first value is correct.&nbsp; With the second calculation method,&nbsp; you have to round or &ndash; even better &ndash; interpolate,&nbsp; which is very difficult due to the strong non-linearity of this function.<br>
*With the given numerical values, the  Q&ndash;function is therefore more suitable. Outside of exercise examples, &nbsp;$s_0/\sigma_d$&nbsp; will usually have a "curved" value. In this case, of course, the Q&ndash;function offers no advantage over &nbsp;${\rm erfc}(x)$.}}
+
*With the given numerical values,&nbsp; the  Q&ndash;function is therefore more suitable.&nbsp; Outside of exercise examples,&nbsp; $s_0/\sigma_d$&nbsp; will usually have a&nbsp; "curved"&nbsp; value.&nbsp; In this case,&nbsp; of course,&nbsp; the Q&ndash;function offers no advantage over &nbsp;${\rm erfc}(x)$.}}
  
 
== Optimal binary receiver &ndash; "Matched Filter" realization ==
 
== Optimal binary receiver &ndash; "Matched Filter" realization ==
 
<br>
 
<br>
Wir gehen weiter von den &nbsp;[[Digital_Signal_Transmission/Systemkomponenten_eines_Basisbandübertragungssystems#Ersatzschaltbild_und_Voraussetzungen_f.C3.BCr_das_erste_Hauptkapitel|vorne festgelegten Voraussetzungen]]&nbsp; aus.
+
We further assume the &nbsp;[[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Block_diagram_and_prerequisites_for_the_first_main_chapter|"conditions defined in the previous section"]].&nbsp;  
  
[[File:EN_Dig_T_1_2_S4.png|center|frame|Optimaler Binärempfänger (Matched-Filter-Variante)]]
+
[[File:EN_Dig_T_1_2_S4_v23.png|right|frame|Optimal binary receiver (matched filter variant) ]]
  
*Dann kann man für den Frequenzgang und die Impulsantwort des Empfängerfilters ansetzen:
+
*Then we can assume for the frequency response and the impulse response of the receiver filter:
:$$H_{\rm E}(f) =  {\rm si}(\pi f T) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
+
:$$H_{\rm E}(f) =  {\rm sinc}(f T)\hspace{0.05cm},$$
 +
:$$H_{\rm E}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
 
  1/(2T) \\ 0 \\ \end{array} \right.\quad
 
  1/(2T) \\ 0 \\ \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
+
\begin{array}{*{1}c} {\rm{for}}
\\  {\rm{f\ddot{u}r}} \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}} \\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
|\hspace{0.05cm}t\hspace{0.05cm}|< T/2 \hspace{0.05cm},\\
 
|\hspace{0.05cm}t\hspace{0.05cm}|< T/2 \hspace{0.05cm},\\
 
|\hspace{0.05cm}t\hspace{0.05cm}|= T/2 \hspace{0.05cm},\\
 
|\hspace{0.05cm}t\hspace{0.05cm}|= T/2 \hspace{0.05cm},\\
Line 154: Line 169:
 
\end{array}$$
 
\end{array}$$
  
*Aufgrund der Linearität kann für das ''Detektionsnutzsignal''&nbsp; geschrieben werden:
+
*Because of linearity,&nbsp; it can be written for the signal component of the detection signal&nbsp; $d(t)$:&nbsp;
:$$d_{\rm S}(t) =  \sum_{(\nu)} a_\nu \cdot g_d ( t - \nu \cdot T)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}g_d(t) = g_s(t) \star h_{\rm E}(t) \hspace{0.05cm}.$$
+
:$$d_{\rm S}(t) =  \sum_{(\nu)} a_\nu \cdot g_d ( t - \nu \cdot T)\hspace{0.2cm}{\rm with}\hspace{0.2cm}g_d(t) = g_s(t) \star h_{\rm E}(t) \hspace{0.05cm}.$$
*Die Faltung zweier Rechtecke gleicher Breite &nbsp;$T$&nbsp; und Höhe &nbsp;$s_0$&nbsp; ergibt einen dreieckförmigen Detektionsgrundimpuls &nbsp;$g_d(t)$&nbsp;  mit &nbsp;$g_d(t = 0) = s_0$. Wegen &nbsp;$g_d(|t| \ge 0) \equiv 0$&nbsp; ist das System impulsinterferenzfrei; es gilt &nbsp;$d_{\rm S}(\nu  T)= \pm s_0$.
+
 
 +
*Convolution of two rectangles of equal width &nbsp;$T$&nbsp; and height &nbsp;$s_0$&nbsp; yields a triangular detection pulse &nbsp;$g_d(t)$&nbsp;  with &nbsp;$g_d(t = 0) = s_0$.  
 +
 
 +
*Because of &nbsp;$g_d(|t| \ge T/2) = 0$,&nbsp; the system is free of intersymbol interference &nbsp; &rArr; &nbsp; $d_{\rm S}(\nu  T)= \pm s_0$.
  
*Die Varianz des Detektionsstörsignals &nbsp;$d_{\rm N}(t)$ &ndash; also die ''Detektionsstörleistung'' &ndash; lautet:
+
*The variance of the noise component&nbsp; $d_{\rm N}(t)$&nbsp; of the detection signal  &nbsp; &rArr; &nbsp; "detection noise power":
 
:$$\sigma _d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{
 
:$$\sigma _d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{
 
+ \infty } {\left| {H_{\rm E}( f )} \right|^2
 
+ \infty } {\left| {H_{\rm E}( f )} \right|^2
 
\hspace{0.1cm}{\rm{d}}f} =  \frac{N_0 }{2}  \cdot \int_{-
 
\hspace{0.1cm}{\rm{d}}f} =  \frac{N_0 }{2}  \cdot \int_{-
\infty }^{+ \infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f =
+
\infty }^{+ \infty } {\rm sinc}^2(f T)\hspace{0.1cm}{\rm{d}}f =
 
\frac{N_0 }{2T} \hspace{0.05cm}.$$
 
\frac{N_0 }{2T} \hspace{0.05cm}.$$
*Damit ergeben sich für die ''Bitfehlerwahrscheinlichkeit'' entsprechend der letzten Seite die beiden äquivalenten Gleichungen:
+
*This gives the two equivalent equations for the&nbsp; '''bit error probability'''&nbsp; corresponding to the last section:
 
:$$p_{\rm B}  =  {\rm Q} \left( \sqrt{\frac{2 \cdot s_0^2 \cdot T}{N_0}}\right)=  {\rm Q} \left(
 
:$$p_{\rm B}  =  {\rm Q} \left( \sqrt{\frac{2 \cdot s_0^2 \cdot T}{N_0}}\right)=  {\rm Q} \left(
 
  \sqrt{\rho_d}\right)\hspace{0.05cm},\hspace{0.5cm}
 
  \sqrt{\rho_d}\right)\hspace{0.05cm},\hspace{0.5cm}
Line 173: Line 191:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Verwendet ist das momentane '''Signal&ndash;zu&ndash;Stör&ndash;Leistungsverhältnis''' (SNR) &nbsp;$\rho_d$&nbsp;&nbsp; des Detektionssignals &nbsp;$d(t)$&nbsp; zu den Zeiten &nbsp;$\nu T$, kurz '''Detektions&ndash;SNR''':
+
$\text{Definition:}$&nbsp; Used in this equation is the instantaneous&nbsp; '''signal&ndash;to&ndash;noise power ratio&nbsp; $\rm  (SNR)$&nbsp; $\rho_d$&nbsp;&nbsp; of the detection signal &nbsp;$d(t)$&nbsp; at times &nbsp;$\nu T$''':  
:$$\rho_d = \frac{d_{\rm S}^2(\nu  T)}{ {\rm E}\big[d_{\rm N}^2(\nu  T)\big ]}= \frac{s_0^2}{\sigma _d ^2}
+
:$$\rho_d = \frac{d_{\rm S}^2(\nu  T)}{ {\rm E}\big[d_{\rm N}^2(\nu  T)\big ]}= {s_0^2}/{\sigma _d ^2}
\hspace{0.05cm}.$$}}  
+
\hspace{0.05cm}.$$
 +
In part,&nbsp; we use for&nbsp; $\rho_d$&nbsp; in short the designation&nbsp; "detection SNR":}}  
  
  
Ein Vergleich dieses Ergebnisses mit der Seite  &nbsp;[[Theory_of_Stochastic_Signals/Matched-Filter#Optimierungskriterium_des_Matched.E2.80.93Filters| Optimierungskriterium des Matched-Filters]]&nbsp; im Buch "Stochastische Signaltheorie" zeigt, dass das Empfangsfilter
+
A comparison of this result with the section&nbsp;[[Theory_of_Stochastic_Signals/Matched_Filter#Optimization_criterion_of_the_matched_filter|"Optimization Criterion of Matched Filter"]]&nbsp; in the book&nbsp; "Theory of Stochastic Signals"&nbsp; shows that the receiver filter
&nbsp;$H_{\rm E}(f)$&nbsp; ein an den Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; angepasstes Matched&ndash;Filter ist:
+
&nbsp;$H_{\rm E}(f)$&nbsp; is a matched filter adapted to the basic transmitter pulse &nbsp;$g_s(t)$:&nbsp;  
 
:$$H_{\rm E}(f) = H_{\rm MF}(f) = K_{\rm MF}\cdot G_s^*(f)\hspace{0.05cm}.$$
 
:$$H_{\rm E}(f) = H_{\rm MF}(f) = K_{\rm MF}\cdot G_s^*(f)\hspace{0.05cm}.$$
Gegenüber der Seite &nbsp;[[Theory_of_Stochastic_Signals/Matched-Filter#Matched-Filter-Optimierung| Matched&ndash;Filter&ndash;Optimierung]]&nbsp; sind hier folgende Modifikationen berücksichtigt:
+
Compared to the &nbsp;[[Theory_of_Stochastic_Signals/Matched_Filter#Matched_filter_optimization| "matched filter optimization"]]&nbsp; section,&nbsp; the following modifications are considered here:
*Die Matched&ndash;Filter&ndash;Konstante ist hier zu &nbsp;$K_{\rm MF} = 1/(s_0 \cdot T)$&nbsp; gesetzt. Damit ist der Frequenzgang &nbsp;$ H_{\rm MF}(f)$&nbsp; dimensionslos.
+
*The matched filter constant is here set to &nbsp;$K_{\rm MF} = 1/(s_0 \cdot T)$.&nbsp; Thus the frequency response &nbsp;$ H_{\rm MF}(f)$&nbsp; is dimensionless.
*Der im allgemeinen frei wählbare Detektionszeitpunkt ist hier zu &nbsp;$T_{\rm D} = 0$&nbsp; gewählt. Damit ergibt sich allerdings ein akausales Filter.
+
*The in general freely selectable detection time is chosen here to &nbsp;$T_{\rm D} = 0$.&nbsp; However,&nbsp; this results in an acausal filter.
*Das Detektions&ndash;SNR kann für jeden beliebigen Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; mit Spektrum &nbsp;$G_s(f)$&nbsp; wie folgt dargestellt werden, wobei sich die rechte Identität aus dem &nbsp;[https://de.wikipedia.org/wiki/Satz_von_Parseval Parsevalschen Theorem]&nbsp; ergibt:
+
*The detection SNR can be represented for any basic transmitter pulse &nbsp;$g_s(t)$&nbsp; with spectrum &nbsp;$G_s(f)$&nbsp; as follows,&nbsp; where the right identity results from &nbsp;[https://en.wikipedia.org/wiki/Parseval%27s_theorem "Parseval's theorem"]:&nbsp;
:$$\rho_d = \frac{2 \cdot E_{\rm B}}{N_0}\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
+
:$$\rho_d = \frac{2 \cdot E_{\rm B}}{N_0}\hspace{0.4cm}{\rm with}\hspace{0.4cm}
 
  E_{\rm B} =    \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  E_{\rm B} =    \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  d}t =    \int^{+\infty} _{-\infty} |G_s(f)|^2\,{\rm
 
  d}t =    \int^{+\infty} _{-\infty} |G_s(f)|^2\,{\rm
 
  d}f\hspace{0.05cm}.$$
 
  d}f\hspace{0.05cm}.$$
*$E_{\rm B}$&nbsp; wird oft als ''Energie pro Bit''&nbsp; bezeichnet und &nbsp;$E_{\rm B}/N_0$ &ndash; fälschlicherweise &ndash; als &nbsp;$\rm SNR$. Wie aus der letzten Gleichung ersichtlich ist, unterscheidet sich nämlich bei binärer Basisbandübertragung  &nbsp;$E_{\rm B}/N_0$&nbsp; vom Detektions&ndash;SNR &nbsp;$\rho_d$&nbsp; um den Faktor &nbsp;$2$.
+
*$E_{\rm B}$&nbsp; is often referred to as&nbsp; "energy per bit"&nbsp; and &nbsp;$E_{\rm B}/N_0$ &ndash; incorrectly &ndash; as &nbsp;$\rm SNR$.&nbsp; Indeed,&nbsp; as can be seen from the last equation,&nbsp; for binary baseband transmission&nbsp; $E_{\rm B}/N_0$&nbsp; differs from the detection SNR &nbsp;$\rho_d$&nbsp; by a factor of &nbsp;$2$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Die hier hergeleitete '''Bitfehlerwahrscheinlichkeit des optimalen Binärempfängers''' kann somit auch wie folgt geschrieben werden:
+
$\text{Conclusion:}$&nbsp; The&nbsp; '''bit error probability of the optimal binary receiver with bipolar signaling'''&nbsp; derived here can thus also be written as follows:
 
:$$p_{\rm B} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)=  {1}/{2} \cdot{\rm erfc} \left( \sqrt{ {E_{\rm B} }/{N_0} }\right)
 
:$$p_{\rm B} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)=  {1}/{2} \cdot{\rm erfc} \left( \sqrt{ {E_{\rm B} }/{N_0} }\right)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Diese Gleichung gilt sowohl für die Realisierung mit Matched-Filter als auch für die Realisierungsform „Integrate & Dump”&nbsp; (siehe nächste Seite).}}
+
This equation is valid for the realization with matched filter as well as for the realization form&nbsp; "Integrate & Dump"&nbsp; (see next section).}}
  
  
Zur Verdeutlichung der hier behandelten Thematik  weisen wir auf unser Interaktionsmodul &nbsp;[[Applets:Matched_Filter|Zur Verdeutlichung des Matched-Filters]]&nbsp; hin.
+
For clarification of the topic discussed here,&nbsp; we refer to our HTML 5/JavaScript applet &nbsp;[[Applets:Matched_Filter_Properties|"Matched Filter Properties"]].&nbsp;
  
 
== Optimal binary receiver &ndash; "Integrate & Dump" realization ==
 
== Optimal binary receiver &ndash; "Integrate & Dump" realization ==
 
<br>
 
<br>
Bei rechteckförmigen NRZ&ndash;Sendeimpulsen kann das Matched&ndash;Filter auch als Integrator $($jeweils über eine Symboldauer &nbsp;$T)$ realisiert werden. Damit gilt für das Detektionssignal zu den Detektionszeitpunkten:
+
For rectangular NRZ transmission pulses,&nbsp; the matched filter can also be implemented as an integrator&nbsp; $($in each case over a symbol duration &nbsp;$T)$.&nbsp; Thus,&nbsp; the following applies to the detection signal at the detection times:
  
[[File:EN_Dig_T_1_2_S6.png|right|Frame|Signale beim MF– und beim I&E–Empfänger]]
+
[[File:EN_Dig_T_1_2_S6_alt_kontrast.png|right|frame|Signals at the receivers&nbsp;  "MF"&nbsp; and&nbsp; "I&D"]]
 
:$$d(\nu \cdot T + T/2) = \frac {1}{T} \cdot \int^{\nu \cdot T + T/2} _{\nu \cdot T - T/2} r(t)\,{\rm
 
:$$d(\nu \cdot T + T/2) = \frac {1}{T} \cdot \int^{\nu \cdot T + T/2} _{\nu \cdot T - T/2} r(t)\,{\rm
 
  d}t \hspace{0.05cm}.$$
 
  d}t \hspace{0.05cm}.$$
Die Grafik verdeutlicht die Unterschiede bei der Realisierung des optimalen Binärempfängers 
+
The diagram illustrates the differences in the realization of the optimal binary receiver
*mit Matched&ndash;Filter $\rm (MF)$ &nbsp; &#8658; &nbsp; mittlere Skizze, bzw.
+
*with matched filter $\rm (MF)$ &nbsp; &#8658; &nbsp; middle figure,&nbsp; and
*als "Integrate & Dump" $\rm (I\&D)$ &nbsp; &#8658; &nbsp; untere Skizze.
+
*as "Integrate & Dump" $\rm (I\&D)$ &nbsp; &#8658; &nbsp; bottom figure.
  
  
Man erkennt aus diesen Signalverläufen:
+
One can see from these signal waveforms:
*Das Detektionsnutzsignal &nbsp;$d_{\rm S}(t)$&nbsp; ist zu den Detektionszeitpunkten &nbsp; &rArr; &nbsp; gelbe Markierungen $\rm (MF$: &nbsp; bei  &nbsp;$\nu \cdot T$, $\rm I\&D$: &nbsp; bei &nbsp;$\nu \cdot T +T/2$&nbsp; in beiden Fällen gleich $\pm s_0$.
+
*The signal component &nbsp;$d_{\rm S}(t)$&nbsp; of the detection signal at the detection times &nbsp; &rArr; &nbsp; yellow markers $\rm (MF$: &nbsp; at &nbsp;$\nu \cdot T$, &nbsp; $\rm I\&D$: &nbsp; at &nbsp;$\nu \cdot T +T/2)$&nbsp; is equal to&nbsp; $\pm s_0$&nbsp; in both cases.
*Die unterschiedlichen Detektionszeitpunkte sind darauf zurückzuführen, dass das Matched&ndash;Filter im Gegensatz zu "Integrate & Dump" als akausal angesetzt wurde (siehe letzte Seite).
+
*The different detection times are due to the fact that the matched filter was assumed to be acausal&nbsp; (see last section),&nbsp; in contrast to&nbsp; "Integrate & Dump".
*Beim Matched&ndash;Filter&ndash;Empfänger ist die Varianz des Detektionsstörsignals  zu allen Zeiten &nbsp;$t$&nbsp; gleich: &nbsp; ${\rm E}\big[d_{\rm N}^2(t)\big]= {\sigma _d ^2} = {\rm const.}$  Dagegen nimmt beim I&D&ndash;Empfänger die Varianz von Symbolanfang bis Symbolende zu.
+
*For the matched filter receiver,&nbsp; the variance of the detection noise component is the same at all times &nbsp;$t$:&nbsp; &nbsp; ${\rm E}\big[d_{\rm N}^2(t)\big]= {\sigma _d ^2} = {\rm const.}$&nbsp; In contrast,&nbsp; for the I&D&nbsp; receiver,&nbsp; the variance increases from symbol start to symbol end.
*Zu den gelb markierten Zeitpunkten ist die Detektionsstörleistung in beiden Fällen gleich, so dass sich die gleiche Bitfehlerwahrscheinlichkeit ergibt. Mit &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; gilt wieder:
+
*At the times marked in yellow,&nbsp; the detection noise power is the same in both cases,&nbsp; resulting in the same bit error probability.&nbsp; With &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; holds again:
 
:$$\sigma _d ^2  =  \frac{N_0}{2}  \cdot \int_{-
 
:$$\sigma _d ^2  =  \frac{N_0}{2}  \cdot \int_{-
\infty }^{ +\infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f =
+
\infty }^{ +\infty } {\rm sinc}^2(f T)\hspace{0.1cm}{\rm{d}}f =
 
\frac{N_0}{2T} $$
 
\frac{N_0}{2T} $$
 
:$$\Rightarrow \hspace{0.3cm} p_{\rm B} = {\rm Q} \left( \sqrt{ s_0^2 /
 
:$$\Rightarrow \hspace{0.3cm} p_{\rm B} = {\rm Q} \left( \sqrt{ s_0^2 /
Line 226: Line 245:
 
<br clear=all>
 
<br clear=all>
  
== Interpretation des optimalen Empfängers ==
+
== Interpretation of the optimal receiver ==
 
<br>
 
<br>
In diesem Abschnitt wurde gezeigt, dass mit einem Empfänger, bestehend aus linearem Empfangsfilter und nichtlinearem Entscheider, die kleinstmögliche Bitfehlerwahrscheinlichkeit zu erreichen ist:
+
In this section,&nbsp;  it is shown that the smallest possible bit error probability can be achieved with a receiver consisting of a linear receiver filter and a nonlinear decision:
 
:$$ p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)
 
:$$ p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)
 
  = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ E_{\rm B}}/{N_0}}\right) \hspace{0.05cm}.$$
 
  = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ E_{\rm B}}/{N_0}}\right) \hspace{0.05cm}.$$
Die sich ergebende Konfiguration ist ein Sonderfall des so genannten '''Maximum&ndash;Aposteriori&ndash;Empfängers''' (MAP), der im Abschnitt &nbsp;[[Digital_Signal_Transmission/Optimale_Empfängerstrategien|Optimale Empfängerstrategien]]&nbsp;  im dritten Hauptkapitel dieses Buches behandelt wird.
+
The resulting configuration is a special case of the so-called&nbsp; '''maximum a&ndash;posteriori receiver'''&nbsp; $\rm (MAP)$,&nbsp; which is discussed in the section &nbsp;[[Digital_Signal_Transmission/Optimale_Empfängerstrategien|"Optimal Receiver Strategies"]]&nbsp;  in the third main chapter of this book.
 +
 
 +
However,&nbsp; for the above equation to be valid,&nbsp; a number of conditions must be met:
 +
*The transmitted signal &nbsp; $s(t)$&nbsp; is binary as well as bipolar&nbsp; (antipodal)&nbsp; and has the&nbsp; (average)&nbsp; energy &nbsp;$E_{\rm B}$&nbsp; per bit.&nbsp; The&nbsp; (average)&nbsp; transmitted power is therefore&nbsp; $E_{\rm B}/T$.
 +
 
 +
*An AWGN channel&nbsp; ("Additive White Gaussian Noise")&nbsp; with constant&nbsp; (one-sided)&nbsp; noise power density &nbsp;$N_0$&nbsp; is present.
 +
 
 +
*The receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is matched as best as possible to the spectrum &nbsp;$G_s(f)$&nbsp; of basic transmitter pulse according to the&nbsp; "matched filter criterion".
 +
 
 +
*The decision&nbsp; (threshold,&nbsp; detection times)&nbsp; is optimal.&nbsp; A causal realization of the matched filter can be compensated by shifting the detection timing.
 +
 
 +
*The above equation is valid independent of the basic transmitter pulse &nbsp;$g_s(t)$.&nbsp; Only the energy &nbsp;$E_{\rm B}$&nbsp; spent for the transmission of a binary symbol is decisive for the bit error probability &nbsp;$p_{\rm B}$ in addition to the noise power density &nbsp;$N_0$.&nbsp;
 +
 
 +
*A prerequisite for the applicability of the above equation is that the detection of a symbol is not interfered with by other symbols. Such &nbsp;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|"intersymbol interferences"]]&nbsp; increase the bit error probability &nbsp;$p_{\rm B}$&nbsp; enormously.
 +
 
 +
*If the absolute duration &nbsp;$T_{\rm S}$&nbsp; of the basic transmitter pulse is less than or equal to the symbol spacing &nbsp;$T$,&nbsp;  the above equation is always applicable if the matched filter criterion is fulfilled.
  
Für die Gültigkeit obiger Gleichung müssen allerdings eine Reihe von Voraussetzungen erfüllt sein:
+
*The equation is also valid for Nyquist systems where &nbsp;$T_{\rm S} > T$&nbsp; holds,&nbsp; but intersymbol interference does not occur due to equidistant zero crossings of the basic detection pulse &nbsp;$g_d(t)$.&nbsp; We will deal with this in the next chapter.
*Das Sendesignal &nbsp;$s(t)$&nbsp; ist binär sowie bipolar (antipodisch) und weist pro Bit die (mittlere) Energie &nbsp;$E_{\rm B}$&nbsp; auf. Die (mittlere) Sendeleistung ist somit $E_{\rm B}/T$.
 
*Es liegt ein AWGN&ndash;Kanal (<i>Additive White Gaussian Noise</i>&nbsp;) mit der konstanten (einseitigen) Rauschleistungsdichte &nbsp;$N_0$&nbsp; vor.
 
*Das Empfangsfilter &nbsp;$H_{\rm E}(f)$&nbsp; ist bestmöglich an das Sendegrundimpulsspektrum &nbsp;$G_s(f)$&nbsp; entsprechend dem "Matched&ndash;Filter&ndash;Kriterium" angepasst.
 
*Der Entscheider (Schwellenwert, Detektionszeitpunkte) ist optimal. Eine kausale Realisierung des Matched&ndash;Filters kann man durch Verschiebung des Detektionszeitpunktes ausgleichen.
 
*Obige Gleichung gilt unabhängig vom Sendegrundimpuls &nbsp;$g_s(t)$. Allein die für die Übertragung eines Binärsymbols aufgewendete Energie &nbsp;$E_{\rm B}$&nbsp; ist neben der Rauschleistungsdichte &nbsp;$N_0$&nbsp; entscheidend für die Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$.
 
*Voraussetzung für die Anwendbarkeit obiger Gleichung ist, dass die Detektion eines Symbols nicht durch andere Symbole beeinträchtigt wird. Solche &nbsp;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]]&nbsp; vergrößern die Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; enorm.
 
*Ist die absolute Sendeimpulsdauer &nbsp;$T_{\rm S}$&nbsp; kleiner oder gleich dem Symbolabstand &nbsp;$T$, so ist obige Gleichung bei Erfüllung des Matched-Filter-Kriteriums immer anwendbar.
 
*Die Gleichung gilt auch für Nyquistsysteme, bei denen zwar &nbsp;$T_{\rm S} > T$&nbsp; gilt, es aber aufgrund von äquidistanten Nulldurchgängen des Grundimpulses &nbsp;$g_d(t)$&nbsp; nicht zu Impulsinterferenzen kommt. Damit beschäftigen wir uns im nächsten Kapitel.
 
  
  
== Aufgaben zum Kapitel==
+
== Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.2_Bitfehlerquote_(BER)|Aufgabe 1.2: Bitfehlerquote (BER)]]
+
[[Aufgaben:Exercise_1.2:_Bit_Error_Rate|Exercise 1.2: Bit Error Rate]]
  
[[Aufgaben:1.2Z_Bitfehlermessung|Aufgabe 1.2Z: Bitfehlermessung]]
+
[[Aufgaben:Exercise_1.2Z:_Bit_Error_Measurement|Exercise 1.2Z: Bit Error Measurement]]
  
[[Aufgaben:1.3_Rechteckfunktionen_für_Sender_und_Empfänger|Aufgabe 1.3: Rechteckfunktionen für Sender und Empfänger]]
+
[[Aufgaben:Exercise_1.3:_Rectangular_Functions_for_Transmitter_and_Receiver|Exercise 1.3: Rectangular Functions for Transmitter and Receiver]]
  
[[Aufgaben:1.3Z_Schwellenwertoptimierung|Aufgabe 1.3Z: Schwellenwertoptimierung]]
+
[[Aufgaben:Exercise_1.3Z:_Threshold_Optimization|Exercise 1.3Z: Threshold Optimization]]
  
==Quellenverzeichnis==
+
==References==
  
 
<references/>
 
<references/>

Latest revision as of 14:48, 23 January 2023

Definition of the bit error probability


For the definition of the bit error probability

The diagram shows a very simple,  but generally valid model of a binary transmission system.

This can be characterized as follows:

  • Source and sink are described by the two binary sequences  $〈q_ν〉$  and  $〈v_ν〉$. 
  • The entire transmission system – consisting of
  1. the transmitter, 
  2. the transmission channel including noise and
  3. the receiver,

is regarded as a  "Black Box"  with binary input and binary output.

  • This  "digital channel"  is characterized solely by the error sequence $〈e_ν〉$. 
  • If the $\nu$–th bit is transmitted without errors  $(v_ν = q_ν)$,   $e_ν= 0$  is valid, 
    otherwise  $(v_ν \ne q_ν)$   $e_ν= 1$  is set.


$\text{Definition:}$  The  (average)  bit error probability for a binary system is given as follows:

$$p_{\rm B} = {\rm E}\big[{\rm Pr}(v_{\nu} \ne q_{\nu})\big]= \overline{ {\rm Pr}(v_{\nu} \ne q_{\nu}) } = \lim_{N \to\infty}\frac{1}{N}\cdot\sum\limits_{\nu=1}^{N}{\rm Pr}(v_{\nu} \ne q_{\nu})\hspace{0.05cm}.$$

This statistical quantity is the most important evaluation criterion of any digital system.


  • The calculation as expected value  $\rm E[\text{...}]$  according to the first part of the above equation corresponds to an ensemble averaging over the falsification probability  ${\rm Pr}(v_{\nu} \ne q_{\nu})$  of the  $\nu$–th symbol,  while the line in the right part of the equation marks a time averaging.
  • Both types of calculation lead  – under the justified assumption of ergodic processes –  to the same result,  as shown in the fourth main chapter  "Random Variables with Statistical Dependence"  of the book  "Theory of Stochastic Signals"
  • The bit error probability can be determined as an expected value also from the error sequence  $〈e_ν〉$,  taking into account that the error quantity  $e_ν$  can only take the values  $0$  and  $1$: 
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]= {\rm E}\big[{\it e_{\nu}}\big]\hspace{0.05cm}.$$
  • The above definition of the bit error probability applies whether or not there are statistical bindings within the error sequence  $〈e_ν〉$.  Depending on this,  one has to use different digital channel models in a system simulation.  The complexity of the bit error probability calculation depends on this.


In the fifth main chapter it will be shown that the so-called  "BSC model"  ("Binary Symmetrical Channel")  provides statistically independent errors,  while for the description of bundle error channels one has to resort to the models of  "Gilbert–Elliott"  [Gil60][1] and of  "McCullough"  [McC68][2].


Definition of the bit error rate


The  "bit error probability"  is well suited for the design and optimization of digital systems.  It is an  "a–priori parameter",  which allows a prediction about the error behavior of a transmission system without having to realize it already.

In contrast,  to measure the quality of a realized system or in a system simulation,  one must switch to the  "bit error rate",  which is determined by comparing the source symbol sequence  $〈q_ν〉$  and the sink symbol sequence  $〈v_ν〉$.  This is thus an  "a–posteriori parameter"  of the system.

$\text{Definition:}$  The bit error rate  $\rm (BER)$  is the ratio of the number  $n_{\rm B}(N)$  of bit errors  $(v_ν \ne q_ν)$  and the number  $N$  of transmitted symbols:

$$h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N} \hspace{0.05cm}.$$

In terms of probability theory,  the bit error rate is a  "relative frequency";  therefore,  it is also called  "bit error frequency".


  • The notation  $h_{\rm B}(N)$  is intended to make clear that the bit error rate determined by measurement or simulation depends significantly on the parameter  $N$   ⇒   the total number of transmitted or simulated symbols.
  • According to the elementary laws of probability theory,  only in the limiting case  $N \to \infty$  the a–posteriori parameter  $h_{\rm B}(N)$  coincides exactly with the a–priori parameter  $p_{\rm B}$. 

The connection between  "probability"  and  "relative frequency"  is clarified in the  (German language)  learning video
      "Bernoullisches Gesetz der großen Zahlen"   ⇒   "Bernoulli's law of large numbers".

Bit error probability and bit error rate in the BSC model


The following derivations are based on the BSC model  ("Binary Symmetric Channel"),  which is described in detail in  "chapter 5.2"

  • Each bit is distorted with probability  $p = {\rm Pr}(v_{\nu} \ne q_{\nu}) = {\rm Pr}(e_{\nu} = 1)$,  independent of the error probabilities of the neighboring symbols.
  • Thus,  the  (average)  bit error probability  $p_{\rm B}$  is also equal to  $p$.


Now we estimate how accurately in the BSC model the bit error probability  $p_{\rm B} = p$  is approximated by the bit error rate  $h_{\rm B}(N)$: 

  • The number of bit errors in the transmission of  $N$  symbols is a discrete random quantity:
$$n_{\rm B}(N) = \sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu} \hspace{0.2cm} \in \hspace{0.2cm} \{0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm} , N \}\hspace{0.05cm}.$$
  • In the case of statistically independent errors  (BSC model),  $n_{\rm B}(N)$  is "binomially distributed".  Consequently,  mean and standard deviation of this random variable are:
$$m_{n{\rm B}}=N \cdot p_{\rm B},\hspace{0.2cm}\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}\hspace{0.05cm}.$$
  • Therefore,  for mean and standard deviation of the bit error rate  $h_{\rm B}(N)= n_{\rm B}(N)/N$  holds\[m_{h{\rm B}}= \frac{m_{n{\rm B}}}{N} = p_{\rm B}\hspace{0.05cm},\hspace{0.2cm}\sigma_{h{\rm B}}= \frac{\sigma_{n{\rm B}}}{N}= \sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}{N}}\hspace{0.05cm}.\]
  • However,  according to  "Moivre"  and  "Laplace":   The binomial distribution can be approximated by a Gaussian distribution:
$$f_{h{\rm B}}({h_{\rm B}}) \approx \frac{1}{\sqrt{2\pi}\cdot\sigma_{h{\rm B}}}\cdot {\rm e}^{-(h_{\rm B}-p_{\rm B})^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{h{\rm B}}^2)}.$$
  • Using the  "Gaussian error integral"  ${\rm Q}(x)$,  the probability  $p_\varepsilon$  can be calculated that the bit error rate  $h_{\rm B}(N)$  determined by simulation/measurement over  $N$  symbols differs in magnitude by less than a value  $\varepsilon$  from the actual bit error probability  $p_{\rm B}$: 
$$p_{\varepsilon}= {\rm Pr} \left( |h_{\rm B}(N) - p_{\rm B}| < \varepsilon \right) = 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon}{\sigma_{h{\rm B}}} \right)= 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon \cdot \sqrt{N}}{\sqrt{p_{\rm B} \cdot (1-p_{\rm B})}} \right)\hspace{0.05cm}.$$

$\text{Conclusion:}$  This result can be interpreted as follows:

  1. If one performs an infinite number of test series over  $N$  symbols each,  the mean value  $m_{h{\rm B} }$  is actually equal to the sought error probability  $p_{\rm B}$.
  2. With a single test series,  on the other hand,  one will only obtain an approximation,  whereby the respective deviation from the nominal value is Gaussian distributed with several test series.


$\text{Example 1:}$  The bit error probability  $p_{\rm B}= 10^{-3}$  is given and it is known that the bit errors are statistically independent.

  • If we now make a large number of test series with  $N= 10^{5}$  symbols each,  the respective results  $h_{\rm B}(N)$  will vary around the nominal value  $10^{-3}$  according to a Gaussian distribution.  The standard deviation here is  $\sigma_{h{\rm B} }= \sqrt{ { p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N} }\approx 10^{-4}\hspace{0.05cm}.$
  • Thus,  the probability that the relative frequency will have a value between  $0.9 \cdot 10^{-3}$  and  $1.1 \cdot 10^{-3}$    $(\varepsilon=10^{-4})$:
$$p_{\varepsilon} = 1 - 2 \cdot {\rm Q} \left({\varepsilon}/{\sigma_{h{\rm B} } } \right )= 1 - 2 \cdot {\rm Q} (1) \approx 68.4\%.$$
  • If this probability accuracy is to be increased to  $95\%$,   $N = 400\hspace{0.05cm}000$  symbols would be required.


Error probability with Gaussian noise


According to the  "prerequisites to this chapter",  we make the following assumptions:

"Error probability with Gaussian noise"
  • The detection signal at the detection times can be represented as follows:  
$$ d(\nu T) = d_{\rm S}(\nu T)+d_{\rm N}(\nu T)\hspace{0.05cm}. $$


  • The signal component is described by the probability density function  (PDF)  $f_{d{\rm S}}(d_{\rm S}) $,  where we assume here different occurrence probabilities  
$$p_{\rm L} = {\rm Pr}(d_{\rm S} = -s_0),\hspace{0.5cm}p_{\rm H} = {\rm Pr}(d_{\rm S} = +s_0)= 1-p_{\rm L}.$$


  • Let the probability density function  $f_{d{\rm N}}(d_{\rm N})$  of the noise component be Gaussian and possess the standard deviation  $\sigma_d$.


Assuming that  $d_{\rm S}(\nu T)$  and  $d_{\rm N}(\nu T)$  are statistically independent of each other  ("signal independent noise"),  the probability density function  $f_d(d) $  of the detection samples  $d(\nu T)$  is obtained as the convolution product

$$f_d(d) = f_{d{\rm S}}(d_{\rm S}) \star f_{d{\rm N}}(d_{\rm N})\hspace{0.05cm}.$$

The threshold decision with threshold  $E = 0$  makes a wrong decision whenever

  • the symbol  $\rm L$  was sent  $(d_{\rm S} = -s_0)$  and  $d > 0$  $($red shaded area$)$,  or
  • the symbol  $\rm H$  was sent  $(d_{\rm S} = +s_0)$  and  $d < 0$  $($blue shaded area$)$.


Since the areas of the red and blue Gaussian curves add up to  $1$,  the sum of the red and blue shaded areas gives the bit error probability  $p_{\rm B}$.  The two green shaded areas in the upper probability density function  $f_{d{\rm N}}(d_{\rm N})$  are – each separately – also equal to  $p_{\rm B}$.

The results illustrated by the diagram are now to be derived as formulas.  We start from the equation

$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( v_\nu = \mathbf{H}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{L})+ p_{\rm H} \cdot {\rm Pr}(v_\nu = \mathbf{L}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{H})\hspace{0.05cm}.$$
  • Here  $p_{\rm L} $  and  $p_{\rm H} $  are the source symbol probabilities. The respective second  (conditional)  probabilities  $ {\rm Pr}( v_\nu \hspace{0.05cm}|\hspace{0.05cm} q_\nu)$ describe the interferences due to the AWGN channel. From the decision rule of the threshold decision  $($with threshold  $E = 0)$  also results:
$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+ p_{\rm H} \cdot {\rm Pr}( d(\nu T)<0) =p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>+s_0)+ p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.$$
  • The two exceedance probabilities in the above equation are equal due to the symmetry of the Gaussian probability density function  $f_{d{\rm N}}(d_{\rm N})$.  It holds:
$$p_{\rm B} = (p_{\rm L} + p_{\rm H}) \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0) = {\rm Pr}( d_{\rm N}(\nu T)>s_0)\hspace{0.05cm}.$$
This means:   For a binary system with threshold  $E = 0$,  the bit error probability  $p_{\rm B}$  does not depend on the symbol probabilities  $p_{\rm L} $  and  $p_{\rm H} = 1- p_{\rm L}$. 
  • The probability that the AWGN noise term  $d_{\rm N}$  with standard deviation  $\sigma_d$  is larger than the amplitude  $s_0$  of the NRZ transmission pulse is thus given by:
$$p_{\rm B} = \int_{s_0}^{+\infty}f_{d{\rm N}}(d_{\rm N})\,{\rm d} d_{\rm N} = \frac{\rm 1}{\sqrt{2\pi} \cdot \sigma_d}\int_{ s_0}^{+\infty}{\rm e} ^{-d_{\rm N}^2/(2\sigma_d^2) }\,{\rm d} d_{\rm N}\hspace{0.05cm}.$$
  • Using the complementary Gaussian error integral  ${\rm Q}(x)$,  the result is:
$$p_{\rm B} = {\rm Q} \left( \frac{s_0}{\sigma_d}\right)\hspace{0.4cm}{\rm with}\hspace{0.4cm}\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
  • Often  – especially in the English-language literature –  the comparable  "complementary error function"  ${\rm erfc}(x)$  is used instead of  ${\rm Q}(x)$.  With this applies:
$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2}\cdot \sigma_d}\right)\hspace{0.4cm}{\rm with}\hspace{0.4cm} {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$
  • Both functions can be found in formula collections in tabular form.  However,  you can also use our HTML 5/JavaScript applet  "Complementary Gaussian Error Functions"  to calculate the function values of  ${\rm Q}(x)$  and  $1/2 \cdot {\rm erfc}(x)$. 


$\text{Example 2:}$  For the following,  we assume that tables are available listing the argument of the Gaussian error functions at  $0.1$  intervals.

With  $s_0/\sigma_d = 4$,  we obtain for the bit error probability according to the Q–function:

$$p_{\rm B} = {\rm Q} (4) = 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$

According to the second equation we get:

$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$
  • The first value is correct.  With the second calculation method,  you have to round or – even better – interpolate,  which is very difficult due to the strong non-linearity of this function.
  • With the given numerical values,  the Q–function is therefore more suitable.  Outside of exercise examples,  $s_0/\sigma_d$  will usually have a  "curved"  value.  In this case,  of course,  the Q–function offers no advantage over  ${\rm erfc}(x)$.

Optimal binary receiver – "Matched Filter" realization


We further assume the  "conditions defined in the previous section"

Optimal binary receiver (matched filter variant)
  • Then we can assume for the frequency response and the impulse response of the receiver filter:
$$H_{\rm E}(f) = {\rm sinc}(f T)\hspace{0.05cm},$$
$$H_{\rm E}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm E}(t) = \left\{ \begin{array}{c} 1/T \\ 1/(2T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} |\hspace{0.05cm}t\hspace{0.05cm}|< T/2 \hspace{0.05cm},\\ |\hspace{0.05cm}t\hspace{0.05cm}|= T/2 \hspace{0.05cm},\\ |\hspace{0.05cm}t\hspace{0.05cm}|>T/2 \hspace{0.05cm}. \\ \end{array}$$
  • Because of linearity,  it can be written for the signal component of the detection signal  $d(t)$: 
$$d_{\rm S}(t) = \sum_{(\nu)} a_\nu \cdot g_d ( t - \nu \cdot T)\hspace{0.2cm}{\rm with}\hspace{0.2cm}g_d(t) = g_s(t) \star h_{\rm E}(t) \hspace{0.05cm}.$$
  • Convolution of two rectangles of equal width  $T$  and height  $s_0$  yields a triangular detection pulse  $g_d(t)$  with  $g_d(t = 0) = s_0$.
  • Because of  $g_d(|t| \ge T/2) = 0$,  the system is free of intersymbol interference   ⇒   $d_{\rm S}(\nu T)= \pm s_0$.
  • The variance of the noise component  $d_{\rm N}(t)$  of the detection signal   ⇒   "detection noise power":
$$\sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H_{\rm E}( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{- \infty }^{+ \infty } {\rm sinc}^2(f T)\hspace{0.1cm}{\rm{d}}f = \frac{N_0 }{2T} \hspace{0.05cm}.$$
  • This gives the two equivalent equations for the  bit error probability  corresponding to the last section:
$$p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot s_0^2 \cdot T}{N_0}}\right)= {\rm Q} \left( \sqrt{\rho_d}\right)\hspace{0.05cm},\hspace{0.5cm} p_{\rm B} = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ s_0^2 \cdot T}/{N_0}}\right)= {1}/{2}\cdot {\rm erfc}\left( \sqrt{{\rho_d}/{2}}\right) \hspace{0.05cm}.$$

$\text{Definition:}$  Used in this equation is the instantaneous  signal–to–noise power ratio  $\rm (SNR)$  $\rho_d$   of the detection signal  $d(t)$  at times  $\nu T$:

$$\rho_d = \frac{d_{\rm S}^2(\nu T)}{ {\rm E}\big[d_{\rm N}^2(\nu T)\big ]}= {s_0^2}/{\sigma _d ^2} \hspace{0.05cm}.$$

In part,  we use for  $\rho_d$  in short the designation  "detection SNR":


A comparison of this result with the section "Optimization Criterion of Matched Filter"  in the book  "Theory of Stochastic Signals"  shows that the receiver filter  $H_{\rm E}(f)$  is a matched filter adapted to the basic transmitter pulse  $g_s(t)$: 

$$H_{\rm E}(f) = H_{\rm MF}(f) = K_{\rm MF}\cdot G_s^*(f)\hspace{0.05cm}.$$

Compared to the   "matched filter optimization"  section,  the following modifications are considered here:

  • The matched filter constant is here set to  $K_{\rm MF} = 1/(s_0 \cdot T)$.  Thus the frequency response  $ H_{\rm MF}(f)$  is dimensionless.
  • The in general freely selectable detection time is chosen here to  $T_{\rm D} = 0$.  However,  this results in an acausal filter.
  • The detection SNR can be represented for any basic transmitter pulse  $g_s(t)$  with spectrum  $G_s(f)$  as follows,  where the right identity results from  "Parseval's theorem"
$$\rho_d = \frac{2 \cdot E_{\rm B}}{N_0}\hspace{0.4cm}{\rm with}\hspace{0.4cm} E_{\rm B} = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = \int^{+\infty} _{-\infty} |G_s(f)|^2\,{\rm d}f\hspace{0.05cm}.$$
  • $E_{\rm B}$  is often referred to as  "energy per bit"  and  $E_{\rm B}/N_0$ – incorrectly – as  $\rm SNR$.  Indeed,  as can be seen from the last equation,  for binary baseband transmission  $E_{\rm B}/N_0$  differs from the detection SNR  $\rho_d$  by a factor of  $2$.


$\text{Conclusion:}$  The  bit error probability of the optimal binary receiver with bipolar signaling  derived here can thus also be written as follows:

$$p_{\rm B} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)= {1}/{2} \cdot{\rm erfc} \left( \sqrt{ {E_{\rm B} }/{N_0} }\right) \hspace{0.05cm}.$$

This equation is valid for the realization with matched filter as well as for the realization form  "Integrate & Dump"  (see next section).


For clarification of the topic discussed here,  we refer to our HTML 5/JavaScript applet  "Matched Filter Properties"

Optimal binary receiver – "Integrate & Dump" realization


For rectangular NRZ transmission pulses,  the matched filter can also be implemented as an integrator  $($in each case over a symbol duration  $T)$.  Thus,  the following applies to the detection signal at the detection times:

Signals at the receivers  "MF"  and  "I&D"
$$d(\nu \cdot T + T/2) = \frac {1}{T} \cdot \int^{\nu \cdot T + T/2} _{\nu \cdot T - T/2} r(t)\,{\rm d}t \hspace{0.05cm}.$$

The diagram illustrates the differences in the realization of the optimal binary receiver

  • with matched filter $\rm (MF)$   ⇒   middle figure,  and
  • as "Integrate & Dump" $\rm (I\&D)$   ⇒   bottom figure.


One can see from these signal waveforms:

  • The signal component  $d_{\rm S}(t)$  of the detection signal at the detection times   ⇒   yellow markers $\rm (MF$:   at  $\nu \cdot T$,   $\rm I\&D$:   at  $\nu \cdot T +T/2)$  is equal to  $\pm s_0$  in both cases.
  • The different detection times are due to the fact that the matched filter was assumed to be acausal  (see last section),  in contrast to  "Integrate & Dump".
  • For the matched filter receiver,  the variance of the detection noise component is the same at all times  $t$:    ${\rm E}\big[d_{\rm N}^2(t)\big]= {\sigma _d ^2} = {\rm const.}$  In contrast,  for the I&D  receiver,  the variance increases from symbol start to symbol end.
  • At the times marked in yellow,  the detection noise power is the same in both cases,  resulting in the same bit error probability.  With  $E_{\rm B} = s_0^2 \cdot T$  holds again:
$$\sigma _d ^2 = \frac{N_0}{2} \cdot \int_{- \infty }^{ +\infty } {\rm sinc}^2(f T)\hspace{0.1cm}{\rm{d}}f = \frac{N_0}{2T} $$
$$\Rightarrow \hspace{0.3cm} p_{\rm B} = {\rm Q} \left( \sqrt{ s_0^2 / \sigma _d ^2} \right)= {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right) .$$


Interpretation of the optimal receiver


In this section,  it is shown that the smallest possible bit error probability can be achieved with a receiver consisting of a linear receiver filter and a nonlinear decision:

$$ p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right) = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ E_{\rm B}}/{N_0}}\right) \hspace{0.05cm}.$$

The resulting configuration is a special case of the so-called  maximum a–posteriori receiver  $\rm (MAP)$,  which is discussed in the section  "Optimal Receiver Strategies"  in the third main chapter of this book.

However,  for the above equation to be valid,  a number of conditions must be met:

  • The transmitted signal   $s(t)$  is binary as well as bipolar  (antipodal)  and has the  (average)  energy  $E_{\rm B}$  per bit.  The  (average)  transmitted power is therefore  $E_{\rm B}/T$.
  • An AWGN channel  ("Additive White Gaussian Noise")  with constant  (one-sided)  noise power density  $N_0$  is present.
  • The receiver filter  $H_{\rm E}(f)$  is matched as best as possible to the spectrum  $G_s(f)$  of basic transmitter pulse according to the  "matched filter criterion".
  • The decision  (threshold,  detection times)  is optimal.  A causal realization of the matched filter can be compensated by shifting the detection timing.
  • The above equation is valid independent of the basic transmitter pulse  $g_s(t)$.  Only the energy  $E_{\rm B}$  spent for the transmission of a binary symbol is decisive for the bit error probability  $p_{\rm B}$ in addition to the noise power density  $N_0$. 
  • A prerequisite for the applicability of the above equation is that the detection of a symbol is not interfered with by other symbols. Such  "intersymbol interferences"  increase the bit error probability  $p_{\rm B}$  enormously.
  • If the absolute duration  $T_{\rm S}$  of the basic transmitter pulse is less than or equal to the symbol spacing  $T$,  the above equation is always applicable if the matched filter criterion is fulfilled.
  • The equation is also valid for Nyquist systems where  $T_{\rm S} > T$  holds,  but intersymbol interference does not occur due to equidistant zero crossings of the basic detection pulse  $g_d(t)$.  We will deal with this in the next chapter.


Exercises for the chapter


Exercise 1.2: Bit Error Rate

Exercise 1.2Z: Bit Error Measurement

Exercise 1.3: Rectangular Functions for Transmitter and Receiver

Exercise 1.3Z: Threshold Optimization

References

  1. Gilbert, E. N.:  Capacity of Burst–Noise Channel,  In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266.
  2. McCullough, R.H.:  The Binary Regenerative Channel,  In: Bell Syst. Techn. J. (47), 1968.