Difference between revisions of "Channel Coding/Decoding of Convolutional Codes"

From LNTwww
 
(47 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
|Untermenü=Convolutional Codes and Their Decoding  
 
|Untermenü=Convolutional Codes and Their Decoding  
 
|Vorherige Seite=Code Description with State and Trellis Diagram
 
|Vorherige Seite=Code Description with State and Trellis Diagram
|Nächste Seite=Distance Characteristics and Error Probability Barriers
+
|Nächste Seite=Distance Characteristics and Error Probability Bounds
 
}}
 
}}
  
 
== Block diagram and requirements ==
 
== Block diagram and requirements ==
 
<br>
 
<br>
A significant advantage of convolutional coding is that there is a very efficient decoding method for this in the form of the Viterbi algorithm. This algorithm, developed by&nbsp; [https://en.wikipedia.org/wiki/Andrew_Viterbi "Andrew James Viterbi"]&nbsp; has already been described in the chapter&nbsp; [[Digital_Signal_Transmission/Viterbi_Receiver| "Viterbi receiver"]]&nbsp; of the book "Digital Signal Transmission" with regard to its use for equalization.  
+
A significant advantage of convolutional coding is that there is a very efficient decoding method for this in the form of the&nbsp; "Viterbi algorithm".&nbsp; This algorithm,&nbsp; developed by&nbsp; [https://en.wikipedia.org/wiki/Andrew_Viterbi $\text{Andrew James Viterbi}$]&nbsp; has already been described in the chapter&nbsp; [[Digital_Signal_Transmission/Viterbi_Receiver| "Viterbi receiver"]]&nbsp; of the book "Digital Signal Transmission" with regard to its use for equalization.  
  
[[File:P ID2651 KC T 3 4 S1 v1.png|center|frame|System model for the description of the decoding of convolutional codes|class=fit]]
+
For its use as a convolutional decoder we assume the block diagram on the right and the following prerequisites:<br>
  
For its use as a convolutional decoder we assume the above block diagram and the following prerequisites:<br>
+
[[File:EN_KC_T_3_4_S1.png|right|frame|System model for the decoding of convolutional codes|class=fit]]
*The information sequence&nbsp; $\underline{u} = (u_1, \ u_2, \ \text{... } \ )$&nbsp; is here in contrast to the description of linear block codes &nbsp; &#8658; &nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes#Block_diagram_and_requirements| "first main chapter"]]&nbsp; or of Reed&ndash; Solomon&ndash;Codes &nbsp; &#8658; &nbsp; [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel#Block_diagram_and_requirements_for_RS_fault_detection| "second main chapter"]]&nbsp; generally infinitely long&nbsp; (<i>"semi&ndash;infinite"</i>&nbsp;). For the information symbols always applies&nbsp; $u_i &#8712; \{0, 1\}$.<br>
 
  
*The code sequence&nbsp; $\underline{x} = (x_1, \ x_2, \ \text{... })$&nbsp; with&nbsp; $x_i &#8712; \{0, 1\}$&nbsp; depends not only on&nbsp; $\underline{u}$&nbsp; but also on the code rate&nbsp; $R = 1/n$, the memory&nbsp; $m$&nbsp; and the transfer function matrix&nbsp; $\mathbf{G}(D)$&nbsp; . For finite number&nbsp; $L$&nbsp; of information bits, the convolutional code should be terminated by appending&nbsp; $m$&nbsp; zeros:
+
*The information sequence&nbsp; $\underline{u} = (u_1, \ u_2, \ \text{... } \ )$&nbsp; is here in contrast to the description of linear block codes &nbsp; &#8658; &nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes#Block_diagram_and_requirements| "first main chapter"]]&nbsp; or of Reed&ndash;Solomon codes &nbsp; &#8658; &nbsp; [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel#Block_diagram_and_requirements_for_Reed-Solomon_error_detection| "second main chapter"]]&nbsp; generally infinitely long&nbsp; ("semi&ndash;infinite").&nbsp; For the information symbols always applies&nbsp; $u_i &#8712; \{0, 1\}$.<br>
 +
 
 +
*The encoded sequence&nbsp; $\underline{x} = (x_1, \ x_2, \ \text{... })$&nbsp; with&nbsp; $x_i &#8712; \{0, 1\}$&nbsp; depends not only on &nbsp; $\underline{u}$ &nbsp; but also on the code rate&nbsp; $R = 1/n$, the memory&nbsp; $m$&nbsp; and the transfer function matrix&nbsp; $\mathbf{G}(D)$&nbsp; . For finite number&nbsp; $L$&nbsp; of information bits,&nbsp; the convolutional code should be terminated by appending&nbsp; $m$&nbsp; zeros:
  
 
::<math>\underline{u}= (u_1,\hspace{0.05cm} u_2,\hspace{0.05cm} \text{...} \hspace{0.1cm}, u_L, \hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} \text{...}  \hspace{0.1cm}, 0 ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
::<math>\underline{u}= (u_1,\hspace{0.05cm} u_2,\hspace{0.05cm} \text{...} \hspace{0.1cm}, u_L, \hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} \text{...}  \hspace{0.1cm}, 0 ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\underline{x}= (x_1,\hspace{0.05cm} x_2,\hspace{0.05cm} \text{...}  \hspace{0.1cm}, x_{2L}, \hspace{0.05cm} x_{2L+1} ,\hspace{0.05cm} \text{...}  \hspace{0.1cm}, \hspace{0.05cm} x_{2L+2m} ) \hspace{0.05cm}.</math>
 
\underline{x}= (x_1,\hspace{0.05cm} x_2,\hspace{0.05cm} \text{...}  \hspace{0.1cm}, x_{2L}, \hspace{0.05cm} x_{2L+1} ,\hspace{0.05cm} \text{...}  \hspace{0.1cm}, \hspace{0.05cm} x_{2L+2m} ) \hspace{0.05cm}.</math>
  
*The received sequence&nbsp; $\underline{y} = (y_1, \ y_2, \ \text{...} )$&nbsp; results according to the assumed channel model. For a digital model like the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80. 93_BSC| "Binary Symmetric Channel"]]&nbsp; (BSC) holds&nbsp; $y_i &#8712; \{0, 1\}$, so the corruption of&nbsp; $\underline{x}$&nbsp; to&nbsp; $\underline{y}$&nbsp; with the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming distance"]]&nbsp; $d_{\rm H}(\underline{x}, \underline{y})$&nbsp; can be quantified. The required modifications for the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input|"AWGN channel"]]&nbsp; follow in the section&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics| "Viterbi algorithm based on correlation and metrics"]].
+
*The received sequence&nbsp; $\underline{y} = (y_1, \ y_2, \ \text{...} )$&nbsp; results according to the assumed channel model. For a digital model like the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|$\text{Binary Symmetric Channel}$]]&nbsp; $\rm (BSC)$&nbsp; holds &nbsp; $y_i &#8712; \{0, 1\}$,&nbsp; so the falsification from&nbsp; $\underline{x}$&nbsp; to&nbsp; $\underline{y}$ &nbsp; can be quantified with the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|$\text{Hamming distance}$]]&nbsp; $d_{\rm H}(\underline{x}, \underline{y})$.  
  
*The Viterbi algorithm provides an estimate&nbsp; $\underline{z}$&nbsp; for the code sequence&nbsp; $\underline{x}$&nbsp; and another estimate&nbsp; $\underline{v}$&nbsp; for the information sequence&nbsp; $\underline{u}$. Thereby holds:
+
*The required modifications for the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_binary_input|$\text{AWGN channel}$]]&nbsp; follow in the section&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics| "Viterbi algorithm based on correlation and metrics"]].
 +
 
 +
*The Viterbi algorithm provides an estimate&nbsp; $\underline{z}$&nbsp; for the encoded sequence&nbsp; $\underline{x}$&nbsp; and another estimate&nbsp; $\underline{v}$&nbsp; for the information sequence&nbsp; $\underline{u}$.&nbsp; Thereby holds:
  
 
::<math>{\rm Pr}(\underline{z} \ne \underline{x})\stackrel{!}{=}{\rm Minimum}
 
::<math>{\rm Pr}(\underline{z} \ne \underline{x})\stackrel{!}{=}{\rm Minimum}
Line 30: Line 33:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Conclusion:}$&nbsp; Given a digital channel model (for example, the BSC model), the Viterbi algorithm searches from all possible code sequences&nbsp; $\underline{x}\hspace{0.05cm}'$&nbsp; the sequence&nbsp; $\underline{z}$&nbsp; with the minimum Hamming distance&nbsp; $d_{\rm H}(\underline{x}\hspace{0.05cm}', \underline{y})$&nbsp; to the receiving sequence&nbsp; $\underline{y}$:
+
$\text{Conclusion:}$&nbsp; Given a digital channel model &nbsp; $($for example, &nbsp; the BSC model$)$, &nbsp; the Viterbi algorithm searches from all possible encoded sequences&nbsp; $\underline{x}\hspace{0.05cm}'$&nbsp; the sequence&nbsp; $\underline{z}$&nbsp; with the minimum Hamming distance &nbsp; $d_{\rm H}(\underline{x}\hspace{0.05cm}', \underline{y})$ &nbsp; to the received sequence&nbsp; $\underline{y}$:
  
 
:<math>\underline{z} = {\rm arg} \min_{\underline{x}\hspace{0.05cm}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm H}( \underline{x}\hspace{0.05cm}'\hspace{0.02cm},\hspace{0.02cm} \underline{y}  )  
 
:<math>\underline{z} = {\rm arg} \min_{\underline{x}\hspace{0.05cm}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm H}( \underline{x}\hspace{0.05cm}'\hspace{0.02cm},\hspace{0.02cm} \underline{y}  )  
 
= {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm} \vert \hspace{0.05cm} \underline{x}')\hspace{0.05cm}.</math>
 
= {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm} \vert \hspace{0.05cm} \underline{x}')\hspace{0.05cm}.</math>
  
This also means: &nbsp; The Viterbi algorithm satisfies the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "maximum likelihood criterion"]].}}<br>
+
*This also means: &nbsp; The Viterbi algorithm satisfies the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB|$\text{maximum likelihood criterion}$]].}}<br>
  
 
== Preliminary remarks on the following decoding examples ==
 
== Preliminary remarks on the following decoding examples ==
 
<br>
 
<br>
 
[[File:P ID2652 KC T 3 4 S2 v1.png|right|frame|Trellis for decoding the received sequence&nbsp;  $\underline{y}$|class=fit]]
 
[[File:P ID2652 KC T 3 4 S2 v1.png|right|frame|Trellis for decoding the received sequence&nbsp;  $\underline{y}$|class=fit]]
The following&nbsp; '''prerequisites''' apply to all examples in this chapter:
+
The following&nbsp; &raquo;'''prerequisites'''&laquo; &nbsp; apply to all examples in this chapter:
  
*Standard convolutional encoder: &nbsp; Rate $R = 1/2$,&nbsp; Memory&nbsp; $m = 2$;  
+
*Standard convolutional encoder: &nbsp; Rate $R = 1/2$,&nbsp; memory&nbsp; $m = 2$;
 +
 
*transfer function matrix: &nbsp; $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
 
*transfer function matrix: &nbsp; $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
*Length of information sequence: &nbsp; $L = 5$;
+
 
*Consideration of termination: &nbsp; $L\hspace{0.05cm}' = 7$;  
+
*length of information sequence: &nbsp; $L = 5$;
*Length of sequences&nbsp; $\underline{x}$&nbsp; and&nbsp; $\underline{y}$&nbsp;: &nbsp; $14$ bits each;
+
 
*Distribution according to&nbsp; $\underline{y} = (\underline{y}_1, \ \underline{y}_2, \ \text{...} \ , \ \underline{y}_7)$ <br>&rArr; &nbsp; bit pairs&nbsp; $\underline{y}_i &#8712; \{00, 01, 10, 11\}$;
+
*consideration of termination: &nbsp; $L\hspace{0.05cm}' = 7$;
 +
 
 +
*length of sequences&nbsp; $\underline{x}$&nbsp; and&nbsp; $\underline{y}$&nbsp;: &nbsp; $14$&nbsp; bits each;
 +
 
 +
*allocation according to&nbsp; $\underline{y} = (\underline{y}_1, \ \underline{y}_2, \ \text{...} \ , \ \underline{y}_7)$ <br>&rArr; &nbsp; bit pairs&nbsp; $\underline{y}_i &#8712; \{00, 01, 10, 11\}$;
 
*Viterbi decoding using trellis diagram:  
 
*Viterbi decoding using trellis diagram:  
 
::red arrow &nbsp; &rArr; &nbsp; hypothesis&nbsp; $u_i = 0$,  
 
::red arrow &nbsp; &rArr; &nbsp; hypothesis&nbsp; $u_i = 0$,  
 
::blue arrow &nbsp; &rArr; &nbsp; hypothesis&nbsp; $u_i = 1$;
 
::blue arrow &nbsp; &rArr; &nbsp; hypothesis&nbsp; $u_i = 1$;
*hypothetical code sequence&nbsp; $\underline{x}_i\hspace{0.01cm}' &#8712; \{00, 01, 10, 11\}$;
+
 
 +
*hypothetical encoded sequence&nbsp; $\underline{x}_i\hspace{0.01cm}' &#8712; \{00, 01, 10, 11\}$;
 +
 
 
*all hypothetical quantities with apostrophe.
 
*all hypothetical quantities with apostrophe.
 
<br clear=all>
 
<br clear=all>
We always assume that the Viterbi decoding is done at the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| Hamming distance]]&nbsp; $d_{\rm H}(\underline{x}_i\hspace{0. 01cm}', \ \underline{y}_i)$&nbsp; between the received word&nbsp; $\underline{y}_i$&nbsp; and the four possible codewords&nbsp; $x_i\hspace{0.01cm}' &#8712; \{00, 01, 10, 11\}$&nbsp; is based. We then proceed as follows:
+
We always assume that the Viterbi decoding is based at the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|$\text{Hamming distance}$]]&nbsp; $d_{\rm H}(\underline{x}_i\hspace{0.01cm}', \ \underline{y}_i)$&nbsp; between the received word&nbsp; $\underline{y}_i$&nbsp; and the four possible code words&nbsp; $x_i\hspace{0.01cm}' &#8712; \{00, 01, 10, 11\}$.&nbsp; We then proceed as follows:
  
*In the still empty circles the error value&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; of the states&nbsp; $S_{\mu} (0 &#8804; \mu &#8804; 3)$&nbsp; at the time points&nbsp; $i$&nbsp; are entered. The initial value is always&nbsp; ${\it \Gamma}_0(S_0) = 0$.
+
*In the still empty circles the error value&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; of states&nbsp; $S_{\mu} (0 &#8804; \mu &#8804; 3)$&nbsp; at time points&nbsp; $i$&nbsp; are entered.&nbsp; The initial value is always&nbsp; ${\it \Gamma}_0(S_0) = 0$.
  
 
*The error values for&nbsp; $i = 1$&nbsp; and&nbsp; $i = 2$&nbsp; are given by
 
*The error values for&nbsp; $i = 1$&nbsp; and&nbsp; $i = 2$&nbsp; are given by
Line 70: Line 80:
 
::<math>{\it \Gamma}_i(S_3) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm}.</math>
 
::<math>{\it \Gamma}_i(S_3) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm}.</math>
  
*Of the two branches arriving at a node&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; the worse one (which would have led to a larger&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp;) is eliminated. Only one branch then leads to each node.<br>
+
*Of the two branches arriving at a node&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; the worse one&nbsp; $($which would have led to a larger&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; is eliminated.&nbsp; Only one branch then leads to each node.<br>
 +
 
 +
*Once all error values up to and including&nbsp; $i = 7$&nbsp; have been determined,&nbsp; the Viterbi algotithm can be completed by searching the&nbsp; "connected path"&nbsp; from the end of the trellis &nbsp; &#8658; &nbsp; ${\it \Gamma}_7(S_0)$&nbsp; to the beginning &nbsp; &#8658; &nbsp; ${\it \Gamma}_0(S_0)$&nbsp;.
  
*Once all error values up to and including&nbsp; $i = 7$&nbsp; have been determined, the viterbi algotithm can be completed by searching the connected path from the end of the trellis &nbsp; &#8658; &nbsp; ${\it \Gamma}_7(S_0)$&nbsp; to the beginning &nbsp; &#8658; &nbsp; ${\it \Gamma}_0(S_0)$&nbsp;.
+
*Through this path,&nbsp; the most likely encoded sequence&nbsp; $\underline{z}$&nbsp; and the most likely information sequence&nbsp; $\underline{v}$&nbsp; are then fixed.
<br>
+
 +
*Not all received sequences are transmitted error-free&nbsp; $(\underline{y} =\underline{x})$,&nbsp; however often holds with Viterbis decoding: &nbsp; $\underline{z} = \underline{x}$&nbsp; and&nbsp; $\underline{v} = \underline{u}$.  
  
*Through this path, the most likely code sequence&nbsp; $\underline{z}$&nbsp; and the most likely information sequence&nbsp; $\underline{v}$&nbsp; are then fixed.
+
*'''But if there are too many transmission errors,&nbsp; the Viterbi algorithm also fails'''.<br>
*Not all receive sequences&nbsp; $\underline{y}$&nbsp; are true, however&nbsp; $\underline{z} = \underline{x}$&nbsp; and&nbsp; $\underline{v} = \underline{u}$. That is, &nbsp; '''If there are too many transmission errors, the Viterbi algorithm also fails'''.<br>
 
  
== Creating the trellis in the error-free case &nbsp;&ndash;&nbsp; error value calculation.==
+
== Creating the trellis in the error-free case &nbsp;&ndash;&nbsp; Acumulated error value calculation==
 
<br>
 
<br>
First, we assume the receive sequence&nbsp; $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$&nbsp; which here &ndash; is already divided into bit pairs&nbsp; $\underline{y}_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ \underline{y}_7$&nbsp; is subdivided. The numerical values entered in the trellis and the different types of strokes are explained in the following text.<br>
+
First,&nbsp; we assume the received sequence&nbsp; $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$&nbsp; which is here already subdivided into bit pairs:&nbsp;  
 +
:$$\underline{y}_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ \underline{y}_7.$$
 +
 
 +
The numerical values entered in the trellis and the different types of strokes are explained in the following text.<br>
  
 
[[File:KC_T_3_4_S3a_neu.png|right|frame|Viterbi scheme for the received vector&nbsp; $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$|class=fit]]
 
[[File:KC_T_3_4_S3a_neu.png|right|frame|Viterbi scheme for the received vector&nbsp; $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$|class=fit]]
  
 
*Starting from the initial value&nbsp; ${\it \Gamma}_0(S_0) = 0$&nbsp; we get&nbsp; $\underline{y}_1 = (11)$&nbsp; by adding the Hamming distances
 
*Starting from the initial value&nbsp; ${\it \Gamma}_0(S_0) = 0$&nbsp; we get&nbsp; $\underline{y}_1 = (11)$&nbsp; by adding the Hamming distances
:$$d_{\rm H}((00), \ \underline{y}_1) = 2\text{   or   }d_{\rm H}((11), \ \underline{y}_1) = 0$$
+
:$$d_{\rm H}((00), \ \underline{y}_1) = 2\hspace{0.6cm} \text{or} \hspace{0.6cm}d_{\rm H}((11), \ \underline{y}_1) = 0$$
  
:to the error values&nbsp; ${\it \Gamma}_1(S_0) = 2, \ {\it \Gamma}_1(S_1) = 0$.<br>
+
:to the&nbsp; "$($acumulated$)$ error values" &nbsp; ${\it \Gamma}_1(S_0) = 2, \ {\it \Gamma}_1(S_1) = 0$.<br>
  
 
*In the second decoding step there are error values for all four states: &nbsp; With&nbsp; $\underline{y}_2 = (01)$&nbsp; one obtains:
 
*In the second decoding step there are error values for all four states: &nbsp; With&nbsp; $\underline{y}_2 = (01)$&nbsp; one obtains:
Line 96: Line 111:
 
::<math>{\it \Gamma}_2(S_3) = {\it \Gamma}_1(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )  = 0+0=0 \hspace{0.05cm}.</math>
 
::<math>{\it \Gamma}_2(S_3) = {\it \Gamma}_1(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )  = 0+0=0 \hspace{0.05cm}.</math>
  
*In all further decoding steps, two values must be compared in each case, whereby the node&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; is always assigned the smaller value. For example, for&nbsp; $i = 3$&nbsp; with&nbsp; $\underline{y}_3 = (01)$:
+
*In all further decoding steps,&nbsp; two values must be compared in each case,&nbsp; whereby the node&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; is always assigned the smaller value.  
 +
 
 +
*For example,&nbsp; for&nbsp; $i = 3$&nbsp; with&nbsp; $\underline{y}_3 = (01)$:
  
 
::<math>{\it \Gamma}_3(S_0) ={\rm min} \left [{\it \Gamma}_{2}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \big ] = 3\hspace{0.05cm},</math>
 
::<math>{\it \Gamma}_3(S_0) ={\rm min} \left [{\it \Gamma}_{2}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \big ] = 3\hspace{0.05cm},</math>
 
::<math>{\it \Gamma}_3(S_3) ={\rm min} \left [{\it \Gamma}_{2}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+0\hspace{0.05cm},\hspace{0.05cm} 0+2 \big ] = 2\hspace{0.05cm}.</math>
 
::<math>{\it \Gamma}_3(S_3) ={\rm min} \left [{\it \Gamma}_{2}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+0\hspace{0.05cm},\hspace{0.05cm} 0+2 \big ] = 2\hspace{0.05cm}.</math>
  
*From&nbsp; $i = 6$&nbsp; the termination of the convolutional code becomes effective in the considered example. Here only two comparisons are left to determine&nbsp; ${\it \Gamma}_6(S_0) = 3$&nbsp; and&nbsp; ${\it \Gamma}_6(S_2)= 0$&nbsp; and for&nbsp; $i = 7$&nbsp; only one comparison with the final result&nbsp; ${\it \Gamma}_7(S_0) = 0$.<br>
+
* In the considered example,&nbsp; from&nbsp; $i = 6$&nbsp; the termination of the convolutional code becomes effective.&nbsp; Here,&nbsp; only two comparisons are left to determine&nbsp; ${\it \Gamma}_6(S_0) = 3$&nbsp; and&nbsp; ${\it \Gamma}_6(S_2)= 0$&nbsp; and for&nbsp; $i = 7$&nbsp; only one comparison with the final error value&nbsp; ${\it \Gamma}_7(S_0) = 0$.<br>
  
  
The description of the Viterbi decoding process continues on the next page.
+
The description of the Viterbi decoding process continues in the next section.
  
== Evaluating the trellis in the error-free case &nbsp;&ndash;&nbsp; Path search.==
+
== Evaluating the trellis in the error-free case &nbsp;&ndash;&nbsp; Path search==
 
<br>
 
<br>
After all error values&nbsp; ${\it \Gamma}_i(S_{\mu})$ &nbsp;&ndash;&nbsp; have been determined for&nbsp; $1 &#8804; i &#8804; 7$&nbsp; and&nbsp; $0 &#8804; \mu &#8804; 3$ &nbsp;&ndash;&nbsp; in the present example, the Viterbi decoder can start the path search:<br>
+
After all error values&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; have been determined&nbsp; $($ in the present example for&nbsp; $1 &#8804; i &#8804; 7$&nbsp; and&nbsp; $0 &#8804; \mu &#8804; 3)$,&nbsp; the Viterbi decoder can start the path search:<br>
 +
 
 +
# &nbsp; The following graph shows the trellis after the error value calculation.&nbsp; All circles are assigned numerical values.
 +
# &nbsp; However,&nbsp; the most probable path already drawn in the graphic is not yet known.
 +
# &nbsp;  In the following,&nbsp; of course,&nbsp; no use is made of the&nbsp; "error-free case"&nbsp; information already contained in the heading.
 +
# &nbsp; Of the two branches arriving at a node,&nbsp; only the one that led to the minimum error value&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; is used for the final path search.
 +
# &nbsp; The&nbsp; "bad"&nbsp; branches are discarded.&nbsp; They are each shown dotted in the above graph.
  
 
[[File:P ID2654 KC T 3 4 S3b v1.png|right|frame|Viterbi path search for for the received vector&nbsp; $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$|class=fit]]
 
[[File:P ID2654 KC T 3 4 S3b v1.png|right|frame|Viterbi path search for for the received vector&nbsp; $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$|class=fit]]
*The graphic shows the trellis after the error value calculation. All circles are assigned numerical values.
+
 
*However, the most probable path already drawn in the graphic is not yet known.
+
 
*Of the two branches arriving at a node, only the one that led to the minimum error value&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; is used for the final path search.
 
*The "bad" branches are discarded. They are each shown dotted in the above graph.
 
<br clear=all>
 
 
The path search runs as follows:
 
The path search runs as follows:
*Starting from the end value&nbsp; ${\it \Gamma}_7(S_0)$&nbsp; a continuous path is searched in backward direction to the start value&nbsp; ${\it \Gamma}_0(S_0)$&nbsp;. Only the solid branches are allowed. Dotted lines cannot be part of the selected path.<br>
+
*Starting from the end value&nbsp; ${\it \Gamma}_7(S_0)$&nbsp; a continuous path is searched in backward direction to the start value&nbsp; ${\it \Gamma}_0(S_0)$.&nbsp; Only the solid branches are allowed.&nbsp; Dotted lines cannot be part of the selected&nbsp; $($best$)$&nbsp;  path.<br>
  
*The selected path traverses from right to left the states&nbsp; $S_0 &#8592; S_2 &#8592; S_1 &#8592; S_0 &#8592; S_2 &#8592; S_3 &#8592; S_1 &#8592; S_0$&nbsp; and is grayed out in the graph. There is no second continuous path from&nbsp; ${\it \Gamma}_7(S_0)$ to ${\it \Gamma}_0(S_0)$. This means: &nbsp; The decoding result is unique.<br>
+
*The selected path&nbsp; $($grayed out in the graph$)$&nbsp; traverses from right to left in the sketch the states is&nbsp;  
 +
::$$S_0 &#8592; S_2 &#8592; S_1 &#8592; S_0 &#8592; S_2 &#8592; S_3 &#8592; S_1 &#8592; S_0.$$
 +
:There is no second continuous path from&nbsp; ${\it \Gamma}_7(S_0)$&nbsp; to&nbsp; ${\it \Gamma}_0(S_0)$. This means: &nbsp; The decoding result is unique.<br>
  
*The result&nbsp; $\underline{v} = (1, 1, 0, 0, 1, 0, 0)$&nbsp; of the Viterbi decoder with respect to the information sequence is obtained if for the continuous path &nbsp;&ndash;&nbsp; but now in forward direction from left to right &nbsp;&ndash;&nbsp; the colors of the individual branches are evaluated $($red corresponds to a&nbsp; $0$&nbsp;and blue to a&nbsp; $1)$.<br><br>
+
*The result&nbsp; $\underline{v} = (1, 1, 0, 0, 1, 0, 0)$&nbsp; of the Viterbi decoder with respect to the information sequence is obtained if for the continuous path&nbsp; $($but now in forward direction from left to right$)$&nbsp; the colors of the individual branches are evaluated&nbsp; $($red &nbsp; &rArr; &nbsp; "$0$", &nbsp; blue &nbsp; &rArr; &nbsp; $1)$.<br><br>
  
From the final value&nbsp; ${\it \Gamma}_7(S_0) = 0$&nbsp; it can be seen that there were no transmission errors in this first example:  
+
From the final value &nbsp; ${\it \Gamma}_7(S_0) = 0$ &nbsp; it can be seen that there were no transmission errors in this first example:  
*The decoding result&nbsp; $\underline{z}$&nbsp; thus matches the received vector &nbsp;$\underline{y} = (11, 01, 01, 11, 11, 10, 11)$&nbsp; and the actual code sequence&nbsp; $\underline{x}$&nbsp;.
+
*The decoding result&nbsp; $\underline{z}$&nbsp; thus matches the received vector &nbsp;$\underline{y} = (11, 01, 01, 11, 11, 10, 11)$&nbsp; and the actual encoded sequence&nbsp; $\underline{x}$.  
*With error-free transmission, &nbsp;$\underline{v}$&nbsp; is not only the most probable information sequence according to the ML criterion&nbsp; $\underline{u}$, but both are even identical: &nbsp; $\underline{v} \equiv \underline{u}$.<br>
 
  
 +
*With error-free transmission,&nbsp; $ \underline{v}$&nbsp; is not only the most probable info sequence&nbsp; $\underline{u}$&nbsp; according to the maximum likelihood  criterion,&nbsp; but both are even identical: &nbsp; $\underline{v} \equiv \underline{u}$.<br>
  
<i>Note:</i> &nbsp; In the decoding described, of course, no use was made of the "error-free case" information already contained in the heading.
 
  
Now follow three examples of Viterbi decoding for the errorneous case. <br>
 
  
 
== Decoding examples for the erroneous case  ==
 
== Decoding examples for the erroneous case  ==
 
<br>
 
<br>
 +
Now follow three examples of Viterbi decoding for the erroneous case. <br>
 +
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp;  We assume here the received vector &nbsp;$\underline{y} = \big (11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) $&nbsp; which does not represent a valid code sequence&nbsp; $\underline{x}$&nbsp;. The calculation of error sizes&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; and the path search is done as described on page&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance| "Preliminaries"]]&nbsp; and demonstrated on the last two pages for the error-free case.<br>
+
$\text{Example 1:}$&nbsp;  We assume here the received vector &nbsp;$\underline{y} = \big (11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) $&nbsp; which does not represent a valid encoded sequence&nbsp; $\underline{x}$&nbsp;. The calculation of error values&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; and the path search is done as described in section&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance| "Preliminaries"]]&nbsp; and demonstrated in the last two sections for the error-free case.<br>
  
[[File:P ID2655 KC T 3 4 S4a v1.png|center|frame|Decoding example with two bit errors|class=fit]]
+
[[File:P ID2655 KC T 3 4 S4a v1.png|right|frame|Decoding example with two bit errors at the beginning|class=fit]]
  
As&nbsp; '''summary'''&nbsp; of this first example, it should be noted:
+
As summary of this first example,&nbsp; it should be noted:
*Also with the above trellis, a unique path (with a dark gray background) can be traced, leading to the following results. <br>(recognizable by the labels or the colors of this path):
+
*Also with this trellis,&nbsp; a unique path&nbsp; $($with dark gray background$)$&nbsp; can be traced,&nbsp; leading to the following results&nbsp; $($recognizable by the labels or the colors of this path$)$:
  
 
::<math>\underline{z} = \big (00\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \big ) \hspace{0.05cm},</math>
 
::<math>\underline{z} = \big (00\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \big ) \hspace{0.05cm},</math>
 
::<math> \underline{\upsilon} =\big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big ) \hspace{0.05cm}.</math>
 
::<math> \underline{\upsilon} =\big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big ) \hspace{0.05cm}.</math>
  
*Comparing the most likely transmitted code sequence &nbsp;$\underline{z}$&nbsp; with the received vector &nbsp;$\underline{y}$&nbsp; shows that there were two bit errors here (right at the beginning). But since the used convolutional code has the [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance| "free distance"]] $d_{\rm F} = 5$, two errors do not yet lead to a wrong decoding result.<br>
+
*Comparing the most likely transmitted encoded sequence &nbsp;$\underline{z}$&nbsp; with the received vector &nbsp;$\underline{y}$&nbsp; shows that there were two bit errors directly at the beginning.&nbsp; But since the used convolutional code has the [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance| $\text{free distance}$]]&nbsp; $d_{\rm F} = 5$,&nbsp; two transmission errors do not yet lead to a wrong decoding result.<br>
 
 
*There are other paths such as the lighter highlighted path $(S_0 &#8594; S_1 &#8594; S_3 &#8594; S_3 &#8594; S_2 &#8594; S_0 &#8594; S_0)$ that initially appear to be promising. Only in the last decoding step $(i = 7)$ can this light gray path finally be discarded.<br>
 
 
 
*The example shows that a too early decision is often not purposeful. One can also see the expediency of termination: &nbsp; With final decision at $i = 5$ (end of information sequence), the sequences &nbsp;$(0, 1, 0, 1, 1)$&nbsp; and &nbsp;$(1, 1, 1, 1, 0)$&nbsp; would still have been considered equally likely.<br><br>
 
  
<i>Notes:</i> &nbsp; In the calculation of&nbsp; ${\it \Gamma}_5(S_0) = 3$&nbsp; and&nbsp; ${\it \Gamma}_5(S_1) = 3$&nbsp; here in each case the two comparison branches lead to exactly the same minimum error value. In the graph these two special cases are marked by dash dots.<br>
+
*There are other paths such as the lighter highlighted path
 +
:$$S_0 &#8594; S_1 &#8594; S_3 &#8594; S_3 &#8594; S_3 &#8594; S_2 &#8594; S_0 &#8594; S_0$$
 +
:that initially appear to be promising.&nbsp; Only in the last decoding step&nbsp; $(i = 7)$&nbsp; can this light gray path finally be discarded.<br>
  
*In this example, this special case has no effect on the path search.  
+
<u>Further remarks:</u>
*Nevertheless, the algorithm always expects a decision between two competing branches.  
+
# The example shows that a too early decision is often not purposeful.&nbsp;
*In practice, one helps oneself by randomly selecting one of the two paths if they are equal.}}<br>
+
# One can also see the expediency of termination: &nbsp; With final decision at&nbsp; $i = 5$&nbsp; $($end of information sequence$)$,&nbsp; the sequences &nbsp;$(0, 1, 0, 1, 1)$&nbsp; and &nbsp;$(1, 1, 1, 1, 0)$&nbsp; would still have been considered equally likely.
 +
# In the calculation of&nbsp; ${\it \Gamma}_5(S_0) = 3$&nbsp; and&nbsp; ${\it \Gamma}_5(S_1) = 3$&nbsp; here in each case the two comparison branches lead to exactly the same minimum error value. In the graph these two special cases are marked by dash dots.&nbsp; In this example,&nbsp; this special case has no effect on the path search.  
 +
# Nevertheless,&nbsp; the algorithm always expects a decision between two competing branches.&nbsp; In practice,&nbsp; one helps by randomly selecting one of the two paths if they are equal.}}<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 2:}$&nbsp;   
 
$\text{Example 2:}$&nbsp;   
In this example, we assume the following assumptions regarding source and encoder:
+
In this example,&nbsp; we assume the following assumptions regarding source and encoder:
 +
[[File:P ID2700 KC T 3 4 S4b v1.png|right|frame|Decoding example with three bit errors|class=fit]]
 +
:$$\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0  \big )$$
 +
:$$\Rightarrow \hspace{0.3cm}
 +
\underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.$$
  
::<math>\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
From the graph you can see here that the decoder decides for the correct path&nbsp; $($dark background$)$&nbsp; despite three bit errors.  
\underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.</math>
+
*So there is not always a wrong decision,&nbsp; if more than&nbsp; $d_{\rm F}/2$&nbsp; bit errors occurred.
 +
   
 +
*But with statistical distribution of the three bit errors,&nbsp; wrong decision would be more frequent than right.}}<br>
  
[[File:P ID2700 KC T 3 4 S4b v1.png|center|frame|Decoding example with three bit errors|class=fit]]<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;  Here also applies&nbsp;
 +
[[File:P ID2704 KC T 3 4 S4c v1.png|right|frame|Decoding example with four bit errors|class=fit]]
 +
:$$\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0  \big )$$
 +
:$$\Rightarrow \hspace{0.3cm}
 +
\underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.$$
  
From the graphic you can see that here the decoder decides for the correct path (dark background) despite three bit errors.
+
Unlike the last example,&nbsp; a fourth bit error is added:&nbsp; $\underline{y}_7 = (01).$
*So there is not always a wrong decision, if more than&nbsp; $d_{\rm F}/2$&nbsp; bit errors occurred.
 
*But with statistical distribution of the three transmission errors, wrong decision would be more frequent than right.}}<br>
 
  
{{GraueBox|TEXT=
+
*Now both branches in step&nbsp; $i = 7$&nbsp; lead to the minimum error value&nbsp; ${\it \Gamma}_7(S_0) = 4$,&nbsp; recognizable by the dash-dotted transitions.  
$\text{Example 3:}$&nbsp; Here also applies&nbsp; <math>\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0  \big )\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.</math> Unlike&nbsp; $\text{example 2}$&nbsp; however, a fourth bit error is added in the form of&nbsp; $\underline{y}_7 = (01)$.
 
  
[[File:P ID2704 KC T 3 4 S4c v1.png|center|frame|Decoding example with four bit errors|class=fit]]
+
*If one decides in the then required lottery procedure for the path with dark background,&nbsp; the correct decision is still made even with four bit errors:  &nbsp; $\underline{v} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0  \big )$. <br>
  
*Now both branches in step&nbsp; $i = 7$&nbsp; lead to the minimum error value&nbsp; ${\it \Gamma}_7(S_0) = 4$, recognizable by the dash-dotted transitions. If one decides in the then required lottery procedure for the path with dark background, the correct decision is still made even with four bit errors:  &nbsp; $\underline{v} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )$. <br>
+
*Otherwise,&nbsp; a wrong decision is made. Depending on the outcome of the dice roll in step&nbsp; $i =6$&nbsp; between the two dash-dotted competitors,&nbsp; you choose either the purple or the light gray path.&nbsp;   
  
*Otherwise, a wrong decision is made. Depending on the outcome of the dice roll in step&nbsp; $i =6$&nbsp; between the two dash-dotted competitors, you choose either the purple or the light gray path.  Both have little in common with the correct path.}}
+
*Both have little in common with the correct path.}}
  
  
Line 184: Line 213:
 
== Relationship between Hamming distance and correlation ==
 
== Relationship between Hamming distance and correlation ==
 
<br>
 
<br>
Especially for the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80. 93_BSC|"BSC Model"]]&nbsp; &ndash; but also for any other binary channel&nbsp; &#8658; &nbsp; input&nbsp; $x_i &#8712; \{0,1\}$,&nbsp; output $y_i &#8712; \{0,1\}$&nbsp; such as the&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_Gilbert-Elliott|"Gilbert&ndash;Elliott model"]]&nbsp; &ndash; provides the Hamming distance&nbsp; $d_{\rm H}(\underline{x}, \ \underline{y})$&nbsp; exactly the same information about the similarity of the input sequence&nbsp; $\underline{x}$&nbsp; and the output sequence&nbsp; $\underline{y}$&nbsp; as the&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Nomenclature_in_the_fourth_chapter| "inner product"]]. Assuming that the two sequences are in bipolar representation (denoted by tildes) and that the sequence length is&nbsp; $L$&nbsp; in each case, the inner product is:
+
Especially for the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|$\text{BSC model}$]]&nbsp; $($but also for any other binary channel&nbsp; &#8658; &nbsp; input&nbsp; $x_i &#8712; \{0,1\}$,&nbsp; output $y_i &#8712; \{0,1\}$&nbsp; such as the&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_Gilbert-Elliott|$\text{Gilbert&ndash;Elliott model}$]]$)$&nbsp; provides  
 +
*the Hamming distance&nbsp; $d_{\rm H}(\underline{x}, \ \underline{y})$&nbsp; exactly the same information about the similarity of the input sequence&nbsp; $\underline{x}$&nbsp; and the output sequence&nbsp; $\underline{y}$&nbsp;  
 +
 
 +
*as the&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Nomenclature_in_the_fourth_chapter| $\text{inner product}$]].&nbsp; Assuming that the sequences are in bipolar form&nbsp; $($denoted by tildes$)$&nbsp; and that the sequence length is&nbsp; $L$&nbsp; in each case,&nbsp; the inner product is:
  
 
::<math><\hspace{-0.1cm}\underline{\tilde{x}}, \hspace{0.05cm}\underline{\tilde{y}} \hspace{-0.1cm}> \hspace{0.15cm}
 
::<math><\hspace{-0.1cm}\underline{\tilde{x}}, \hspace{0.05cm}\underline{\tilde{y}} \hspace{-0.1cm}> \hspace{0.15cm}
= \sum_{i = 1}^{L} \tilde{x}_i \cdot \tilde{y}_i \hspace{0.3cm}{\rm mit } \hspace{0.2cm} \tilde{x}_i = 1 - 2 \cdot x_i  \hspace{0.05cm},\hspace{0.2cm} \tilde{y}_i = 1 - 2 \cdot y_i \hspace{0.05cm},\hspace{0.2cm} \tilde{x}_i, \hspace{0.05cm}\tilde{y}_i \in \hspace{0.1cm}\{ -1, +1\} \hspace{0.05cm}.</math>
+
= \sum_{i = 1}^{L} \tilde{x}_i \cdot \tilde{y}_i \hspace{0.3cm}{\rm with } \hspace{0.2cm} \tilde{x}_i = 1 - 2 \cdot x_i  \hspace{0.05cm},\hspace{0.2cm} \tilde{y}_i = 1 - 2 \cdot y_i \hspace{0.05cm},\hspace{0.2cm} \tilde{x}_i, \hspace{0.05cm}\tilde{y}_i \in \hspace{0.1cm}\{ -1, +1\} \hspace{0.05cm}.</math>
  
We sometimes refer to this inner product as the "correlation value". The quotation marks are to indicate that the range of values of a&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Correlation_coefficient| "correlation coefficient"]]&nbsp; is actually $&plusmn;1$.<br>
+
We sometimes refer to this inner product as the&nbsp; &raquo;'''correlation value'''&laquo;.&nbsp; Unlike the &nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Correlation_coefficient| $\text{correlation coefficient}$]]&nbsp; the&nbsp; "correlation value"&nbsp; may well exceed the range of values&nbsp; $&plusmn;1$.
  
[[File:KC_T_3_4_S5_neu.png|right|frame|Relationship between Haming distance and "correlation value" |class=fit]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp;  Wir betrachten hier zwei Binärfolgen der Länge&nbsp; $L = 10$.<br>
+
$\text{Example 4:}$&nbsp;  We consider here two binary sequences of length&nbsp; $L = 10$.&nbsp; Shown on the left are the&nbsp; &raquo;'''unipolar'''&laquo;&nbsp; sequences&nbsp; $\underline{x}$&nbsp; and&nbsp; $\underline{y}$&nbsp; and the product&nbsp; $\underline{x} \cdot \underline{y}$.
*Shown on the left are the unipolar sequences&nbsp; $\underline{x}$&nbsp; and&nbsp; $\underline{y}$&nbsp; and the product&nbsp; $\underline{x} \cdot \underline{y}$.  
+
[[File:KC_T_3_4_S5_neu.png|right|frame|Relationship between Haming distance and correlation value |class=fit]]
*You can see the Hamming distance&nbsp; $d_{\rm H}(\underline{x}, \ \underline{y}) = 6$ &nbsp; &#8658; &nbsp; six bit errors at the arrow positions.  
+
*The inner product&nbsp; $ < \underline{x} \cdot \underline{y} > \hspace{0.15cm} = \hspace{0.15cm}0$&nbsp; has no significance here. For example, $< \underline{0} \cdot \underline{y} >&nbsp;$ is always zero regardless of&nbsp; $\underline{y}$&nbsp;.
+
*You can see the Hamming distance&nbsp; $d_{\rm H}(\underline{x}, \ \underline{y}) = 6$ &nbsp; &#8658; &nbsp; six bit errors at the arrow positions.
 +
 +
*The inner product &nbsp; $ < \underline{x} \cdot \underline{y} > \hspace{0.15cm} = \hspace{0.15cm}0$ &nbsp; has no significance here.&nbsp; For example,&nbsp; $< \underline{0} \cdot \underline{y} >&nbsp;$ is always zero regardless of&nbsp; $\underline{y}$.
  
  
The Hamming distance&nbsp; $d_{\rm H} = 6$&nbsp; can also be seen from the bipolar (antipodal) plot of the right graph.  
+
The Hamming distance&nbsp; $d_{\rm H} = 6$&nbsp; can also be seen from the&nbsp; &raquo;'''bipolar'''&laquo;&nbsp; $($antipodal$)$ plot in the right graph.  
*The "correlation value" now has the correct value:  
+
*The&nbsp; "correlation value"&nbsp; has now the correct value:  
 
:$$4 \cdot (+1) + 6 \cdot (-1) = \, -2.$$  
 
:$$4 \cdot (+1) + 6 \cdot (-1) = \, -2.$$  
*The deterministic relation between the two quantities with the sequence length&nbsp; $L$ holds:
+
*For the deterministic relationship between the&nbsp; "correlation value"&nbsp; and the&nbsp; "Hamming distance"&nbsp; holds with the sequence length&nbsp; $L$:
  
 
:$$ < \underline{ \tilde{x} } \cdot \underline{\tilde{y} } > \hspace{0.15cm} = \hspace{0.15cm} L - 2 \cdot d_{\rm H} (\underline{\tilde{x} }, \hspace{0.05cm}\underline{\tilde{y} })\hspace{0.05cm}. $$}}
 
:$$ < \underline{ \tilde{x} } \cdot \underline{\tilde{y} } > \hspace{0.15cm} = \hspace{0.15cm} L - 2 \cdot d_{\rm H} (\underline{\tilde{x} }, \hspace{0.05cm}\underline{\tilde{y} })\hspace{0.05cm}. $$}}
Line 208: Line 241:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Conclusion:}$&nbsp;  Let us now interpret this equation for some special cases:
+
$\text{Conclusion:}$&nbsp;  Let us now interpret this last equation for some special cases:
*Identical sequences: &nbsp; The Hamming distance is equal&nbsp; $0$&nbsp; and the "correlation value" is equal&nbsp; $L$.<br>
+
*&raquo;'''Identical sequences'''&laquo;: &nbsp; The Hamming distance is equal to&nbsp; $0$&nbsp; and the&nbsp; correlation value is equal to&nbsp; $L$.<br>
  
*Inverted: Consequences: &nbsp; The Hamming distance is equal to&nbsp; $L$&nbsp; and the "correlation value" is equal to&nbsp; $-L$.<br>
+
*&raquo;'''Inverted sequences'''&laquo;: &nbsp; The Hamming distance is equal to&nbsp; $L$&nbsp; and the&nbsp; correlation value&nbsp; is equal to&nbsp; $-L$.<br>
  
*Uncorrelated sequences: &nbsp; The Hamming distance is equal to&nbsp; $L/2$, the "correlation value" is equal to&nbsp; $0$.}}
+
*&raquo;'''Uncorrelated sequences'''&laquo;: &nbsp; The Hamming distance is equal to&nbsp; $L/2$&nbsp; and the&nbsp; correlation value&nbsp; is equal to&nbsp; $0$.}}
  
 
== Viterbi algorithm based on correlation and metrics ==
 
== Viterbi algorithm based on correlation and metrics ==
 
<br>
 
<br>
Using the insights of the last page, the Viterbi algorithm can also be characterized as follows.
+
Using the insights of the last section,&nbsp; the Viterbi algorithm can also be characterized as follows.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Alternative description:}$&nbsp;   
 
$\text{Alternative description:}$&nbsp;   
The Viterbi algorithm searches from all possible code sequences&nbsp; $\underline{x}' &#8712; \mathcal{C}$&nbsp; the sequence&nbsp; $\underline{z}$&nbsp; with the maximum " correlation value" to the receiving sequence&nbsp; $\underline{y}$:
+
*The Viterbi algorithm searches from all possible encoded sequences&nbsp; $\underline{x}' &#8712; \mathcal{C}$&nbsp; the sequence&nbsp; $\underline{z}$&nbsp; with the&nbsp; &raquo;'''maximum correlation value'''&laquo;&nbsp; to the received sequence&nbsp; $\underline{y}$:
  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} \left\langle \tilde{\underline{x} }'\hspace{0.05cm} ,\hspace{0.05cm}  \tilde{\underline{y} } \right\rangle
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} \left\langle \tilde{\underline{x} }'\hspace{0.05cm} ,\hspace{0.05cm}  \tilde{\underline{y} } \right\rangle
  \hspace{0.4cm}{\rm mit }\hspace{0.4cm}\tilde{\underline{x} }\hspace{0.05cm}'= 1 - 2 \cdot \underline{x}'\hspace{0.05cm}, \hspace{0.2cm}
+
  \hspace{0.4cm}{\rm with }\hspace{0.4cm}\tilde{\underline{x} }\hspace{0.05cm}'= 1 - 2 \cdot \underline{x}'\hspace{0.05cm}, \hspace{0.2cm}
 
  \tilde{\underline{y} }= 1 - 2 \cdot \underline{y}
 
  \tilde{\underline{y} }= 1 - 2 \cdot \underline{y}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
$&#9001;\ \text{ ...} \  &#9002;$&nbsp; denotes a "correlation value" according to the statements on the last page. The tildes again indicate the bipolar (antipodal) representation.}}<br>
+
*Here,&nbsp; $&#9001;\ \text{ ...} \  &#9002;$&nbsp; denotes a&nbsp; "correlation value"&nbsp; according to the statements in the last section.&nbsp; The tildes again indicate the bipolar representation.}}<br>
  
Die Grafik zeigt die diesbezügliche Trellisauswertung. Zugrunde liegt wie für die&nbsp; [[Channel_Coding/Decodierung_von_Faltungscodes#Decodierbeispiele_f.C3.BCr_den_fehlerbehafteten_Fall| Trellisauswertung gemäß Beispiel 1]]&nbsp; &ndash; basierend auf der minimalen Hamming&ndash;Distanz und den Fehlergrößen ${\it \Gamma}_i(S_{\mu})$ &ndash; wieder die Eingangsfolge&nbsp;
+
The graphic shows the corresponding trellis evaluation.&nbsp;
$\underline{u} = \big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big )$ &nbsp; &rArr; &nbsp; Codefolge
+
*As for the&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Decoding_examples_for_the_erroneous_case|$\text{Trellis evaluation according to Example 1}$]]&nbsp; based on the minimum Hamming distance and the error values&nbsp; ${\it \Gamma}_i(S_{\mu})$  
$\underline{x} = \big (00, 11, 10, 00, 01, 01, 11 \big ) \hspace{0.05cm}.$
 
  
[[File:P ID2663 KC T 3 4 S6 v1.png|right|frame|Viterbi–Decodierung, basierend auf Korrelation und Metrik|class=fit]]
+
*the input sequence and the encoded sequence are
Weiter werden vorausgesetzt:
+
:$$\underline{u} = \big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big ) \hspace{0.3cm} &rArr; \hspace{0.3cm} \underline{x} = \big (00, 11, 10, 00, 01, 01, 11 \big ) \hspace{0.05cm}.$$
*der Standard&ndash;Faltungscodierer: &nbsp; Rate&nbsp; $R = 1/2$,&nbsp; Gedächtnis&nbsp; $m = 2$;
+
[[File:P ID2663 KC T 3 4 S6 v1.png|right|frame|Viterbi decoding based on correlation and metrics|class=fit]]
*die Übertragungsfunktionsmatrix: &nbsp; $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
 
*Länge der Informationssequenz: &nbsp; $L = 5$;
 
*Berücksichtigung der Terminierung: &nbsp;$L' = 7$;
 
*der Empfangsvektor &nbsp; $\underline{y} = (11, 11, 10, 00, 01, 01, 11)$ <br>&rArr; &nbsp; zwei Bitfehler zu Beginn;
 
*Viterbi&ndash;Decodierung mittels Trellisdiagramms:
 
**roter Pfeil &rArr; &nbsp; Hypothese $u_i = 0$,
 
**blauer Pfeil &rArr; &nbsp; Hypothese $u_i = 1$.
 
  
 +
Further are assumed:
 +
* Standard convolutional encoder: &nbsp; rate&nbsp; $R = 1/2$,&nbsp; memory&nbsp; $m = 2$;
  
Nebenstehendes Trellis und die&nbsp;  [[Channel_Coding/Decodierung_von_Faltungscodes#Decodierbeispiele_f.C3.BCr_den_fehlerbehafteten_Fall| Trellisauswertung gemäß Beispiel 1]]&nbsp; ähneln sich sehr. Ebenso wie die Suche nach der Sequenz mit der minimalen Hamming&ndash;Distanz geschieht auch die&nbsp; <i>Suche nach dem maximalen Korrelationswert</i>&nbsp; schrittweise:  
+
* the transfer function matrix: &nbsp; $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
*Die Knoten bezeichnet man hier als die Metriken&nbsp; ${\it \Lambda}_i(S_{\mu})$.
 
*Die englische Bezeichnung hierfür ist&nbsp; <i>Cumulative Metric</i>, während&nbsp;  <i>Branch Metric</i>&nbsp; den Metrikzuwachs angibt.<br>
 
  
*Der Endwert&nbsp; ${\it \Lambda}_7(S_0) = 10$&nbsp; gibt den "Korrelationswert" zwischen der ausgewählten Folge&nbsp; $\underline{z}$&nbsp; und dem Empfangsvektor&nbsp; $\underline{y}$&nbsp; an.
+
* length of the information sequence: &nbsp; $L = 5$;
*Im fehlerfreien Fall ergäbe sich&nbsp; ${\it \Lambda}_7(S_0) = 14$.<br><br>
 
  
 +
* consideration of termination: &nbsp;$L' = 7$;
 +
 +
* received vector &nbsp; $\underline{y} = (11, 11, 10, 00, 01, 01, 11)$ &nbsp; &rArr; &nbsp; two bit errors;
 +
 +
* Viterbi decoding using trellis diagram:
 +
:*red arrow &rArr; &nbsp; hypothesis $u_i = 0$,
 +
:*blue arrow &rArr; &nbsp; hypothesis $u_i = 1$.
 +
 +
 +
Adjacent trellis and the&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Decoding_examples_for_the_erroneous_case|$\text{Example 1 trellis}$ ]]&nbsp; are very similar.&nbsp; Just like the search for the sequence with the&nbsp; "minimum Hamming distance",&nbsp; the&nbsp; "search for the maximum correlation value"&nbsp; is also done step by step:
 +
# &nbsp; The nodes here are called the&nbsp; "cumulative metrics"&nbsp; ${\it \Lambda}_i(S_{\mu})$.
 +
# &nbsp; The&nbsp; "branch metrics"&nbsp; specify the&nbsp;  "metric increments".<br>
 +
# &nbsp; The final value&nbsp; ${\it \Lambda}_7(S_0) = 10$&nbsp; indicates the&nbsp;  "end correlation value"&nbsp;  between the selected sequence&nbsp; $\underline{z}$&nbsp; and the received vector&nbsp; $\underline{y}$.
 +
# &nbsp; In the error-free case,&nbsp;  the result would be&nbsp; ${\it \Lambda}_7(S_0) = 14$.<br><br>
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp;  Die folgende Detailbeschreibung der Trellisauswertung beziehen sich auf das obige Trellis:
+
$\text{Example 5:}$&nbsp;  The following detailed description of the trellis evaluation refer to the above trellis:
  
*Die Metriken zum Zeitpunkt&nbsp; $i = 1$&nbsp; ergeben sich mit&nbsp; $\underline{y}_1 = (11)$&nbsp; zu
+
*The acumulated metrics at time&nbsp; $i = 1$&nbsp; result with&nbsp; $\underline{y}_1 = (11)$&nbsp; to
  
 
::<math>{\it \Lambda}_1(S_0) \hspace{0.15cm}  =  \hspace{0.15cm} <\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm}
 
::<math>{\it \Lambda}_1(S_0) \hspace{0.15cm}  =  \hspace{0.15cm} <\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm}
Line 265: Line 303:
 
= \hspace{0.1cm} +2  \hspace{0.05cm}.</math>
 
= \hspace{0.1cm} +2  \hspace{0.05cm}.</math>
  
*Entsprechend gilt zum Zeitpunkt&nbsp; $i = 2$&nbsp; mit&nbsp; $\underline{y}_2 = (11)$:
+
*Accordingly,&nbsp; at time&nbsp; $i = 2$&nbsp; with&nbsp; $\underline{y}_2 = (11)$:
  
 
::<math>{\it \Lambda}_2(S_0) =  {\it \Lambda}_1(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm}
 
::<math>{\it \Lambda}_2(S_0) =  {\it \Lambda}_1(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm}
Line 276: Line 314:
 
= \hspace{0.1cm} +2+0 = +2  \hspace{0.05cm}.</math>
 
= \hspace{0.1cm} +2+0 = +2  \hspace{0.05cm}.</math>
  
*Ab dem Zeitpunkt&nbsp; $i =3$&nbsp; muss eine Entscheidung zwischen zwei Metriken getroffen werden. Beispielsweise erhält man mit&nbsp; $\underline{y}_3 = (10)$&nbsp; für die oberste und die unterste Metrik im Trellis:
+
*From time&nbsp; $i =3$&nbsp; a decision must be made between two acumulated metrics.&nbsp; For example,&nbsp; $\underline{y}_3 = (10)$&nbsp; is obtained for the top and bottom metrics in the trellis:
  
 
::<math>{\it \Lambda}_3(S_0)={\rm max} \left [{\it \Lambda}_{2}(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}> \right ] = {\rm max} \left [ -4+0\hspace{0.05cm},\hspace{0.05cm} +2+0 \right ] = +2\hspace{0.05cm},</math>
 
::<math>{\it \Lambda}_3(S_0)={\rm max} \left [{\it \Lambda}_{2}(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}> \right ] = {\rm max} \left [ -4+0\hspace{0.05cm},\hspace{0.05cm} +2+0 \right ] = +2\hspace{0.05cm},</math>
 
::<math>{\it \Lambda}_3(S_3) ={\rm max} \left [{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(01)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_3) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(10)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}> \right ] = {\rm max} \left [ 0+0\hspace{0.05cm},\hspace{0.05cm} +2+2 \right ] = +4\hspace{0.05cm}.</math>
 
::<math>{\it \Lambda}_3(S_3) ={\rm max} \left [{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(01)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_3) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(10)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}> \right ] = {\rm max} \left [ 0+0\hspace{0.05cm},\hspace{0.05cm} +2+2 \right ] = +4\hspace{0.05cm}.</math>
  
Vergleicht man die zu zu maximierenden Metriken&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; mit den zu minimierenden Fehlergrößen&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; gemäß dem&nbsp;[[Channel_Coding/Decodierung_von_Faltungscodes#Decodierbeispiele_f.C3.BCr_den_fehlerbehafteten_Fall| $\text{Beispiel 1}$]], so erkennt man den folgenden deterministischen Zusammenhang:
+
*Comparing the&nbsp; &raquo;'''accumulated correlation values'''&laquo;&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; to be maximized with the &nbsp; &raquo;'''accumulated error values'''&laquo;&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; to be minimized&nbsp;  according to the&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Decoding_examples_for_the_erroneous_case| $\text{$\text{Example 1}$}$]],&nbsp; one sees the following deterministic relationship:
  
 
::<math>{\it \Lambda}_i(S_{\mu}) = 2 \cdot  \big [ i -  {\it \Gamma}_i(S_{\mu}) \big ] \hspace{0.05cm}.</math>
 
::<math>{\it \Lambda}_i(S_{\mu}) = 2 \cdot  \big [ i -  {\it \Gamma}_i(S_{\mu}) \big ] \hspace{0.05cm}.</math>
  
Die Auswahl der zu den einzelnen Decodierschritten überlebenden Zweige ist bei beiden Verfahren identisch, und auch die Pfadsuche liefert das gleiche Ergebnis.<br>}}
+
*The selection of surviving  branches to each decoding step is identical for both methods,&nbsp;  and the path search also gives the same result.<br>}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;   
+
$\text{Conclusions:}$&nbsp;   
*Beim Binärkanal &ndash; zum Beispiel nach dem BSC&ndash;Modell &ndash; führen die beiden beschriebenen Viterbi&ndash;Varianten "Fehlergrößenminimierung" und "Metrikmaximierung" zum gleichen Ergebnis.<br>
+
# &nbsp; &nbsp; In the binary channel &ndash; for example according to the BSC model &ndash; '''the two described Viterbi variants'''&nbsp; "error value minimization"&nbsp; and &nbsp; "correlation value maximization"&nbsp; '''lead to the same result'''.<br>
 +
# &nbsp; In the AWGN channel,&nbsp; on the other hand,&nbsp; "error value minimization"&nbsp; is not applicable because no Hamming distance can be specified between the binary input&nbsp; $\underline{x}$&nbsp; and the analog output&nbsp; $\underline{y}$.<br>
 +
# &nbsp; For the AWGN channel,&nbsp; the&nbsp; "correlation value maximization"&nbsp; is rather identical to the minimization of the&nbsp; [https://en.wikipedia.org/wiki/Euclidean_distance $\text{Euclidean distance}$]&nbsp; &ndash; see&nbsp; [[Aufgaben:Exercise_3.10Z:_Maximum_Likelihood_Decoding_of_Convolutional_Codes|"Exercise 3.10Z"]].<br>
 +
# &nbsp; Another advantage of the&nbsp; "correlation value maximization"&nbsp; is that a reliability information about the received values&nbsp; $\underline{y}$&nbsp; can be considered in a simple way.}}<br>
  
*Beim AWGN&ndash;Kanal ist dagegen die Fehlergrößenminimierung nicht anwendbar, da keine Hamming&ndash;Distanz zwischen dem binären Eingang&nbsp; $\underline{x}$&nbsp; und dem analogen Ausgang&nbsp; $\underline{y}$&nbsp; angegeben werden kann.<br>
+
== Viterbi decision for non-terminated convolutional codes==
 
+
<br>
*Die Metrikmaximierung ist beim AWGN&ndash;Kanal vielmehr identisch mit der Minimierung der&nbsp; [[Channel_Coding/Signal_classification#ML.E2.80.93Entscheidung_beim_AWGN.E2.80.93Kanal| Euklidischen Distanz]]&nbsp; &ndash; siehe&nbsp; [[Aufgaben:Aufgabe_3.10Z:_ML–Decodierung_von_Faltungscodes|Aufgabe 3.10Z]].<br>
+
So far,&nbsp; a terminated convolutional code of length&nbsp; $L\hspace{0.05cm}' = L + m$&nbsp; has always been considered,&nbsp; and the result of the Viterbi decoder was the continuous trellis path from the start time&nbsp; $(i = 0)$&nbsp; to the end&nbsp; $(i = L\hspace{0.05cm}')$.<br>
 +
*For non&ndash;terminated convolutional codes&nbsp; $(L\hspace{0.05cm}' &#8594; &#8734;)$&nbsp; this decision strategy is not applicable.
 +
 +
*Here,&nbsp; the algorithm must be modified to provide a best estimate&nbsp; $($according to maximum likelihood$)$&nbsp; of the incoming bits of the encoded sequence in finite time.<br>
  
*Ein weiterer Vorteil der Metrikmaximierung ist, dass eine Zuverlässigkeitsinformation über die Empfangswerte&nbsp; $\underline{y}$&nbsp; in einfacher Weise berücksichtigt werden kann.}}<br>
+
[[File:P ID2676 KC T 3 4 S7 v1.png|right|frame|Exemplary trellis and surviving paths|class=fit]]
  
== Viterbi–Entscheidung bei nicht–terminierten Faltungscodes==
 
<br>
 
Bisher wurde stets ein terminierter Faltungscode der Länge&nbsp; $L\hspace{0.05cm}' = L + m$&nbsp; betrachtet, und das Ergebnis des Viterbi&ndash;Decoders war der durchgehende Trellispfad vom Startzeitpunkt&nbsp; $(i = 0)$&nbsp; bis zum Ende&nbsp; $(i = L\hspace{0.05cm}')$.<br>
 
*Bei nicht&ndash;terminierten Faltungscodes&nbsp; $(L\hspace{0.05cm}' &#8594; &#8734;)$&nbsp; ist diese Entscheidungsstrategie nicht anwendbar.
 
*Hier muss der Algorithmus abgewandelt werden, um in endlicher Zeit eine bestmögliche Schätzung (gemäß Maximum&ndash;Likelihood) der einlaufenden Bits der Codesequenz liefern zu können.<br>
 
  
 +
The graphic shows in the upper part an exemplary trellis for
 +
*"our standard encoder"&nbsp;  $(R = 1/2, \ m = 2)$
 +
:$$ {\rm G}(D) = (1 + D + D^2, \ 1 + D^2),$$
  
Die Grafik zeigt im oberen Teil ein beispielhaftes Trellis für
+
*the zero input sequence &nbsp; &#8658; &nbsp; $\underline{u} = \underline{0} = (0, 0, 0, \ \text{...})$;&nbsp; output:
*"unseren" Standard&ndash;Codierer &nbsp; &#8658; &nbsp; $R = 1/2, \ m = 2, \ {\rm G}(D) = (1 + D + D^2, \ 1 + D^2)$,<br>
+
:$$\underline{x} = \underline{0} = (00, 00, 00, \ \text{...}),$$
  
*die Nullfolge &nbsp; &#8658; &nbsp; $\underline{u} = \underline{0} = (0, 0, 0, \ \text{...})$ &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $\underline{x} = \underline{0} = (00, 00, 00, \ \text{...})$,<br>
+
*in each case,&nbsp; transmission errors at&nbsp; $i = 4$&nbsp; and&nbsp; $i = 5$.
  
*jeweils einen Übertragungsfehler bei&nbsp; $i = 4$&nbsp; und&nbsp; $i = 5$.<br><br>
 
  
Anhand der Stricharten erkennt man erlaubte (durchgezogene) und verbotene (punktierte) Pfeile in rot $(u_i = 0)$ und blau $(u_i = 1)$. Punktierte Linien haben einen Vergleich gegen einen Konkurrenten verloren und können nicht Teil des ausgewählten Pfades sein.<br>
+
&rArr; &nbsp; Based on the stroke types,&nbsp; one can recognize allowed&nbsp; $($solid$)$&nbsp; and forbidden&nbsp; $($dotted$)$&nbsp; arrows in red&nbsp; $(u_i = 0)$&nbsp; and blue&nbsp; $(u_i = 1)$.  
  
[[File:P ID2676 KC T 3 4 S7 v1.png|center|frame|Beispielhaftes Trellis und überlebende Pfade|class=fit]]
+
Dotted lines have lost a comparison against a competitor and cannot be part of the selected path.<br>
  
Der untere Teil der Grafik zeigt die&nbsp; $2^m = 4$&nbsp; überlebenden Pfade&nbsp; ${\it \Phi}_9(S_{\mu})$&nbsp; zum Zeitpunkt&nbsp; $i = 9$.  
+
&rArr; &nbsp; The lower part of the graph shows the&nbsp; $2^m = 4$&nbsp; surviving paths&nbsp; ${\it \Phi}_9(S_{\mu})$&nbsp; at time&nbsp; $i = 9$.  
*Man findet diese Pfade am einfachsten von rechts nach links (Rückwärtsrichtung).  
+
*It is easiest to find these paths from right to left&nbsp;  $($"backward"$)$.
*Die folgende Angabe zeigt die durchlaufenen Zustände&nbsp; $S_{\mu}$&nbsp; allerdings in Vorwärtsrichtung:<br>
+
 +
*The following specification shows the  traversed states&nbsp; $S_{\mu}$&nbsp; but in the forward direction:<br>
 
:$${\it \Phi}_9(S_0) \text{:} \hspace{0.4cm} S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0,$$
 
:$${\it \Phi}_9(S_0) \text{:} \hspace{0.4cm} S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0,$$
 
:$${\it \Phi}_9(S_1) \text{:} \hspace{0.4cm}  S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1,$$
 
:$${\it \Phi}_9(S_1) \text{:} \hspace{0.4cm}  S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1,$$
Line 324: Line 366:
 
:$${\it \Phi}_9(S_3) \text{:} \hspace{0.4cm}  S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_1 &#8594; S_2 &#8594; S_1 &#8594; S_3.$$
 
:$${\it \Phi}_9(S_3) \text{:} \hspace{0.4cm}  S_0 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_1 &#8594; S_2 &#8594; S_1 &#8594; S_3.$$
  
Zu früheren Zeitpunkten&nbsp; $(i<9)$&nbsp; würden sich andere überlebende Pfade&nbsp; ${\it \Phi}_i(S_{\mu})$&nbsp; ergeben. Deshalb definieren wir:
+
At earlier times&nbsp; $(i<9)$&nbsp; other survivors&nbsp; ${\it \Phi}_i(S_{\mu})$&nbsp; would result. Therefore, we define:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  Der&nbsp; <b>überlebende Pfad</b>&nbsp; (englisch: &nbsp;<i>Survivor</i>)&nbsp; ${\it \Phi}_i(S_{\mu})$&nbsp; ist der durchgehende Pfad vom Start&nbsp; $S_0$&nbsp; $($bei&nbsp; $i = 0)$&nbsp; zum Knoten&nbsp; $S_{\mu}$ zum Zeitpunkt&nbsp; $i$. Empfehlenswert ist die Pfadsuche in Rückwärtsrichtung.}}<br>
+
$\text{Definition:}$&nbsp;  The &nbsp; &raquo;<b>survivor</b>&laquo; &nbsp; ${\it \Phi}_i(S_{\mu})$&nbsp; is the continuous path from the start&nbsp; $S_0$&nbsp; $($at&nbsp; $i = 0)$&nbsp; to the node&nbsp; $S_{\mu}$ at time&nbsp; $i$.  
  
Die folgende Grafik zeigt die überlebenden Pfade für die Zeitpunkte&nbsp; $i = 6$&nbsp; bis&nbsp; $i = 9$. Zusätzlich sind die jeweiligen Metriken&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; für alle vier Zustände angegeben.
+
*It is recommended to search for paths in the backward direction.}}<br>
  
[[File:P ID2677 KC T 3 4 S7b v1.png|center|frame|Die überlebenden Pfade&nbsp; ${\it \Phi}_6, \ \text{...} \ , \ {\it \Phi}_9$|class=fit]]
+
The following graph shows the surviving paths for time points&nbsp; $i = 6$&nbsp; to&nbsp; $i = 9$.&nbsp; In addition,&nbsp; the respective metrics&nbsp; $($accumulated correlaltion values$)$&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; for all four states are given.
  
Diese Grafik ist wie folgt zu interpretieren:
+
[[File:EN_KC_T_3_4_S7b.png|right|frame|The survivors&nbsp; ${\it \Phi}_6, \ \text{...} \ , \ {\it \Phi}_9$|class=fit]]
*Zum Zeitpunkt&nbsp; $i = 9$&nbsp; kann noch keine endgültige ML&ndash;Entscheidung über die ersten neun Bit der Informationssequenz getroffen werden. Allerdings ist bereits sicher, dass die wahrscheinlichste Bitfolge durch einen der Pfade&nbsp; ${\it \Phi}_9(S_0), \ \text{...} \ , \ {\it \Phi}_9(S_3)$&nbsp; richtig wiedergegeben wird.<br>
 
  
*Da alle vier Pfade bis&nbsp; $i = 3$&nbsp; identisch sind, ist die Entscheidung "$v_1 = 0, v_2 = 0, \ v_3 = 0$" die bestmögliche (hellgraue Hinterlegung). Auch zu einem späteren Zeitpunkt würde keine andere Entscheidung getroffen werden. Hinsichtlich der Bits&nbsp; $v_4, \ v_5, \ \text{...}$&nbsp; sollte man sich zu diesem frühen Zeitpunkt noch nicht festlegen.<br>
+
This graph is to be interpreted as follows:
 
+
#At time&nbsp; $i = 9$&nbsp; no final maximum  likelihood decision can yet be made about the first nine bits of the information sequence.
*Müsste man zum Zeitpunkt&nbsp; $i = 9$&nbsp; eine Zwangsentscheidung treffen, so würde man sich für&nbsp; ${\it \Phi}_9(S_0)$ &nbsp; &#8658; &nbsp; $\underline{v} = (0, 0, \ \text{...} \ , 0)$ entscheiden, da die Metrik&nbsp; ${\it \Lambda}_9(S_0) = 14$&nbsp; größer ist als die Vergleichsmetriken.<br>
+
#But it is already certain that the most probable bit sequence is represented by one of the paths&nbsp; ${\it \Phi}_9(S_0), \ \text{...} \ , \ {\it \Phi}_9(S_3)$.<br>
 
+
#Since all four paths up to&nbsp; $i = 3$&nbsp; are identical,&nbsp; the decision&nbsp; "$v_1 = 0,\ v_2 = 0, \ v_3 = 0$"&nbsp; is the the most probable.&nbsp; Also at a later time no other decision would be made.&nbsp;
*Die Zwangsentscheidung zum Zeitpunkt&nbsp; $i = 9$&nbsp; führt in diesem Beispiel zum richtigen Ergebnis. Zum Zeitpunkt&nbsp; $i = 6$&nbsp; wäre ein solcher Zwangsentscheid falsch gewesen &nbsp; &#8658; &nbsp; $\underline{v} = (0, 0, 0, 1, 0, 1)$, und zu den Zeitpunten&nbsp; $i = 7$&nbsp; bzw.&nbsp; $i = 8$&nbsp; nicht eindeutig.<br>
+
#Regarding the bits&nbsp; $v_4, \ v_5, \ \text{...}$&nbsp; one should not decide at this early stage.&nbsp; Only the first two zeros are safe,&nbsp; not&nbsp; $v_3 = 0$.  
 
+
#If one had to make a constraint decision at time&nbsp; $i = 9$&nbsp; one would choose&nbsp; ${\it \Phi}_9(S_0)$ &nbsp; &#8658; &nbsp; $\underline{v} = (0, 0, \text{. ..} \ , 0)$ since the metric&nbsp; ${\it \Lambda}_9(S_0) = 14$&nbsp; is larger than the comparison metrics.<br>
 
+
#The forced decision at time&nbsp; $i = 9$&nbsp; leads to the correct result in this example,&nbsp; see lower sketch.  
 
+
#A decision at time&nbsp; $i = 6$&nbsp;  would have would have led to the wrong result&nbsp; &#8658; &nbsp; $\underline{v} = (0, 0, 0, 1, 0, 1)$,&nbsp; see upper sketch.
== Weitere Decodierverfahren für Faltungscodes ==
+
# At time&nbsp; $i = 7$&nbsp; resp.&nbsp; $i = 8$,&nbsp;  a forced decision would not have been clear,&nbsp; as shown in the two middle diagrams<br>
 +
<br clear=all>
 +
== Other decoding methods for convolutional codes ==
 
<br>
 
<br>
Wir haben uns bisher nur mit dem Viterbi&ndash;Algorithmus in der Form beschäftigt, der 1967 von Andrew J. Viterbi in&nbsp; [Vit67]<ref name'Vit67'>Viterbi, A.J.: ''Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm''. In: IEEE Transactions on Information Theory, vol. IT-13, pp. 260-269, April 1967.</ref> veröffentlicht wurde. Erst 1974 hat&nbsp; [https://de.wikipedia.org/wiki/David_Forney George David Forney]&nbsp; nachgewiesen, dass dieser Algorithmus eine Maximum&ndash;Likelihood&ndash;Decodierung von Faltungscodes durchführt.<br>
+
We have so far dealt only with the Viterbi algorithm in the form presented in 1967 by Andrew J. Viterbi in&nbsp; [Vit67]<ref name'Vit67'>Viterbi, A.J.:&nbsp; Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm.&nbsp; In: IEEE Transactions on Information Theory, vol. IT-13, pp. 260-269, April 1967.</ref>.&nbsp; It was not until 1974 that&nbsp; [https://en.wikipedia.org/wiki/Dave_Forney $\text{George David Forney}$]&nbsp; proved that this algorithm performs maximum likelihood decoding of convolutional codes.<br>
  
Aber schon in den Jahren zuvor waren viele Wissenschaftler sehr bemüht, effiziente Decodierverfahren für die 1955 erstmals von&nbsp; [https://de.wikipedia.org/wiki/Peter_Elias Peter Elias]&nbsp; beschriebenen Faltungscodes bereitzustellen. Zu nennen sind hier unter Anderem &ndash; genauere Beschreibungen findet man beispielsweise in&nbsp; [Bos98]<ref name='Bos98'>Bossert, M.: ''Kanalcodierung.'' Stuttgart: B. G. Teubner, 1998.</ref> oder der englischen Ausgabe&nbsp; [Bos99]<ref name='Bos99'>Bossert, M.: ''Channel Coding for Telecommunications.'' Wiley & Sons, 1999.</ref>.  
+
But even in the years before,&nbsp; many scientists were very eager to provide efficient decoding methods for the convolutional codes first described by&nbsp; [https://en.wikipedia.org/wiki/Peter_Elias $\text{Peter Elias}$]&nbsp; in 1955.&nbsp; Among others,&nbsp; more detailed descriptions can be found for example in&nbsp; [Bos99]<ref name='Bos99'>Bossert, M.:&nbsp; Channel Coding for Telecommunications.&nbsp; Wiley & Sons, 1999.</ref>.  
*[http://ieeexplore.ieee.org/document/1057663/ <i>Sequential Decoding</i>&nbsp;]&nbsp; von J. M. Wozencraft und B. Reiffen aus dem Jahre 1961,<br>
+
*[http://ieeexplore.ieee.org/document/1057663/ $\text{Sequential Decoding}$&nbsp;]&nbsp; by J. M. Wozencraft and B. Reiffen from 1961,<br>
  
*der Vorschlag von&nbsp; [https://en.wikipedia.org/wiki/Robert_Fano Robert Mario Fano]&nbsp; (1963), der als <i>Fano&ndash;Algorithmus</i>&nbsp; bekannt wurde,<br>
+
*the proposal of&nbsp; [https://en.wikipedia.org/wiki/Robert_Fano $\text{Robert Mario Fano}$]&nbsp; (1963),&nbsp; which became known as the&nbsp; "Fano algorithm",<br>
  
*die Arbeiten von Kamil Zigangirov (1966) und&nbsp; [https://en.wikipedia.org/wiki/Frederick_Jelinek Frederick Jelinek]&nbsp; (1969), deren Decodierverfahren auch als <i>Stack&ndash;Algorithmus</i>&nbsp; bezeichnet wird.<br><br>
+
*the work of Kamil Zigangirov&nbsp; (1966)&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Frederick_Jelinek $\text{Frederick Jelinek}$]&nbsp; (1969),&nbsp; whose decoding method is also referred to as the&nbsp; "stack algorithm".<br><br>
  
Alle diese Decodierverfahren und auch der Viterbi&ndash;Algorithmus in seiner bisher beschriebenen Form liefern "hart" entschiedene Ausgangswerte &nbsp; &#8658; &nbsp; $v_i &#8712; \{0, 1\}$. Oftmals wären jedoch Informationen über die Zuverlässigkeit der getroffenen Entscheidungen wünschenswert, insbesondere dann, wenn ein verkettetes Codierschema mit einem äußeren und einem inneren Code vorliegt.<br>
+
All of these decoding schemes,&nbsp; as well as the Viterbi algorithm as described so far,&nbsp; provide&nbsp; "hard decided"&nbsp; output values &nbsp; &#8658; &nbsp; $v_i &#8712; \{0, 1\}$.&nbsp; Often,&nbsp; however,&nbsp; information about the reliability of the decisions made would be desirable,&nbsp; especially when there is a concatenated coding scheme with an outer and an inner code.<br>
  
Kennt man die Zuverlässigkeit der vom inneren Decoder entschiedenen Bits zumindest grob, so kann durch diese Information die Bitfehlerwahrscheinlichkeit des äußeren Decoders (signifikant) herabgesetzt werden. Der von&nbsp; [[Biographies_and_Bibliographies/Lehrstuhlinhaber_des_LNT#Prof._Dr.-Ing._Dr.-Ing._E.h._Joachim_Hagenauer_.281993-2006.29|Joachim Hagenauer]]&nbsp; in&nbsp; [Hag90]<ref name='Hag90'>Hagenauer, J.: ''Soft Output Viterbi Decoder.'' In: Technischer Report, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), 1990.</ref> vorgeschlagene&nbsp; <i>Soft&ndash;Output&ndash;Viterbi&ndash;Algorithmus</i>&nbsp; (SOVA) erlaubt es, zusätzlich zu den entschiedenen Symbolen auch jeweils ein Zuverlässigkeitsmaß anzugeben.<br>
+
If the reliability of the bits decided by the inner decoder is known at least roughly,&nbsp; this information can be used to&nbsp; (significantly)&nbsp; reduce the bit error probability of the outer decoder.&nbsp; The&nbsp; "soft output Viterbi algorithm"&nbsp; $\rm(SOVA)$&nbsp; proposed by&nbsp; [[Biographies_and_Bibliographies/Lehrstuhlinhaber_des_LNT#Prof._Dr.-Ing._Dr.-Ing._E.h._Joachim_Hagenauer_.281993-2006.29|$\text{Joachim Hagenauer}$]]&nbsp; in&nbsp; [Hag90]<ref name='Hag90'>Hagenauer, J.:&nbsp; Soft Output Viterbi Decoder.&nbsp; In: Technischer Report, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), 1990.</ref>&nbsp; allows to specify a reliability measure in each case in addition to the decided symbols.
  
Abschließend gehen wir noch etwas genauer auf den&nbsp; <i>BCJR&ndash;Algorithmus</i>&nbsp; ein, benannt nach dessen Erfindern L. R. Bahl, J. Cocke, F. Jelinek und J. Raviv&nbsp; [BCJR74]<ref name='BCJR74'>Bahl, L.R.; Cocke, J.; Jelinek, F.; Raviv, J.: ''Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate.'' In: IEEE Transactions on Information Theory, Vol. IT-20, S. 284-287, 1974.</ref>.  
+
Finally, we go into some detail about the&nbsp; &raquo;<b>BCJR algorithm</b>&laquo;&nbsp; named after its inventors L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv&nbsp; [BCJR74]<ref name='BCJR74'>Bahl, L.R.; Cocke, J.; Jelinek, F.; Raviv, J.:&nbsp; Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate.&nbsp; In: IEEE Transactions on Information Theory, Vol. IT-20, pp. 284-287, 1974.</ref>.  
*Während der Viterbi&ndash;Algorithmus nur eine Schätzung der Gesamtsequenz vornimmt &nbsp; &#8658; &nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Definitionen_der_verschiedenen_Optimalempf.C3.A4nger|''block&ndash;wise ML'']], schätzt der BCJR&ndash;Algorithmus ein einzelnes Symbol (Bit) unter Berücksichtigung der gesamten empfangenen Codesequenz.
+
:While the Viterbi algorithm only estimates the total sequence &nbsp; &#8658; &nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Definitions_of_the_different_optimal_receivers|$\text{block-wise ML}$]],&nbsp; the BCJR algorithm estimates a single bit considering the entire received sequence.&nbsp; So this is a&nbsp; "bit-wise maximum a-posteriori decoding" &nbsp; &#8658; &nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Definitions_of_the_different_optimal_receivers|$\text{bit-wise MAP}$]].<br>
* Es handelt sich hierbei also um eine&nbsp; <i>symbolweise Maximum&ndash;Aposteriori&ndash;Decodierung</i> &nbsp; &#8658; &nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Definitionen_der_verschiedenen_Optimalempf.C3.A4nger|''bit&ndash;wise MAP'']].<br>
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Der Unterschied zwischen Viterbi&ndash;Algorithmus und BCJR&ndash;Algorithmus soll &ndash; stark vereinfacht &ndash; am Beispiel eines terminierten Faltungscodes dargestellt werden:
+
$\text{Conclusion:}$&nbsp;  
*Der&nbsp; <b>Viterbi&ndash;Algorithmus</b>&nbsp; arbeitet das Trellis nur in einer Richtung &ndash; der  <i>Vorwärtsrichtung</i>&nbsp; &ndash; ab und berechnet für jeden Knoten die Metriken&nbsp; ${\it \Lambda}_i(S_{\mu})$. Nach Erreichen des Endknotens wird der  überlebende Pfad gesucht, der die wahrscheinlichste Codesequenz kennzeichnet.<br>
+
 
 +
The difference between Viterbi&ndash;algorithm and BCJR algorithm shall be&nbsp; &ndash; greatly simplified &ndash;&nbsp; illustrated by the example of a terminated convolutional code:
 +
*The &nbsp; &raquo;<b>Viterbi algorithm</b> &laquo;&nbsp; processes the trellis in only one direction&nbsp; &ndash; the forward direction&nbsp; &ndash; and computes the metrics&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; for each node.&nbsp; After reaching the terminal node,&nbsp; the surviving path is searched,&nbsp; which identifies the most probable encoded sequence.<br>
  
*Beim&nbsp; <b>BCJR&ndash;Algorithmus</b>&nbsp; wird das Trellis zweimal abgearbeitet, einmal in Vorwärtsrichtung und anschließend in <i>Rückwärtsrichtung</i>. Für jeden Knoten sind dann zwei Metriken angebbar, aus denen für jedes Bit die Aposterori&ndash;Wahrscheinlichkeit bestimmt werden kann.}}<br>
+
*In the &nbsp; &raquo;<b>BCJR algorithm </b>&laquo;&nbsp; the trellis is processed twice,&nbsp; once in forward direction and then in backward direction.&nbsp; Two metrics can then be specified for each node,&nbsp; from which the a-posterori probability can be determined for each bit}}.<br>
  
<i>Hinweise:</i>  
+
<u>Notes:</u>  
*Diese Kurzzusammenfassung basiert auf dem Lehrbüchern&nbsp; [Bos98]<ref name='Bos98'>Bossert, M.: ''Kanalcodierung.'' Stuttgart: B. G. Teubner, 1998.</ref>&nbsp; bzw.&nbsp; [Bos99]<ref name='Bos99'>Bossert, M.: ''Channel Coding for Telecommunications.'' Wiley & Sons, 1999.</ref>.  
+
# &nbsp; This short summary is based on the textbook&nbsp;   [Bos99]<ref name='Bos99'>Bossert, M.:&nbsp; Channel Coding for Telecommunications.&nbsp; Wiley & Sons, 1999.</ref>.  
*Eine etwas ausführlichere Beschreibung des BCJR&ndash;Algorithmus' folgt auf der Seite&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Hard_Decision_vs._Soft_Decision| Hard Decision vs. Soft Decision]]&nbsp; [https://en.lntwww.de/Kanalcodierung im vierten Hauptkapitel]&nbsp; "Iterative Decodierverfahren".<br>
+
# &nbsp; A description of the BCJR&ndash;algorithm follows also in section&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Hard_Decision_vs._Soft_Decision| "Hard Decision vs. Soft Decision"]]&nbsp; [https://en.lntwww.de/Channel_Coding "in the fourth main chapter"]&nbsp; "Iterative Decoding Methods".<br>
  
  
== Aufgaben zum Kapitel ==
+
== Exercises for the chapter ==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_3.09:_Grundlegendes_zum_Viterbi–Algorithmus|Aufgabe 3.9: Grundlegendes zum Viterbi–Algorithmus]]
+
[[Aufgaben:Exercise_3.09:_Basics_of_the_Viterbi_Algorithm|Exercise 3.09: Basics of the Viterbi Algorithm]]
  
[[Aufgaben:Aufgabe_3.09Z:_Nochmals_Viterbi–Algorithmus|Aufgabe 3.9Z: Nochmals Viterbi–Algorithmus]]
+
[[Aufgaben:Exercise_3.09Z:_Viterbi_Algorithm_again|Exercise 3.09Z: Viterbi Algorithm again]]
  
[[Aufgaben:Aufgabe_3.10:_Fehlergrößenberechnung|Aufgabe 3.10: Fehlergrößenberechnung]]
+
[[Aufgaben:Exercise_3.10:_Metric_Calculation|Exercise 3.10: Metric Calculation]]
  
[[Aufgaben:Aufgabe_3.10Z:_ML–Decodierung_von_Faltungscodes|Aufgabe 3.10Z: ML–Decodierung von Faltungscodes]]
+
[[Aufgaben:Exercise_3.10Z:_Maximum_Likelihood_Decoding_of_Convolutional_Codes|Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes]]
  
[[Aufgaben:Aufgabe_3.11:_Viterbi–Pfadsuche|Aufgabe 3.11: Viterbi–Pfadsuche]]
+
[[Aufgaben:Exercise_3.11:_Viterbi_Path_Finding|Exercise 3.11: Viterbi Path Finding]]
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:53, 23 January 2023

Block diagram and requirements


A significant advantage of convolutional coding is that there is a very efficient decoding method for this in the form of the  "Viterbi algorithm".  This algorithm,  developed by  $\text{Andrew James Viterbi}$  has already been described in the chapter  "Viterbi receiver"  of the book "Digital Signal Transmission" with regard to its use for equalization.

For its use as a convolutional decoder we assume the block diagram on the right and the following prerequisites:

System model for the decoding of convolutional codes
  • The information sequence  $\underline{u} = (u_1, \ u_2, \ \text{... } \ )$  is here in contrast to the description of linear block codes   ⇒   "first main chapter"  or of Reed–Solomon codes   ⇒   "second main chapter"  generally infinitely long  ("semi–infinite").  For the information symbols always applies  $u_i ∈ \{0, 1\}$.
  • The encoded sequence  $\underline{x} = (x_1, \ x_2, \ \text{... })$  with  $x_i ∈ \{0, 1\}$  depends not only on   $\underline{u}$   but also on the code rate  $R = 1/n$, the memory  $m$  and the transfer function matrix  $\mathbf{G}(D)$  . For finite number  $L$  of information bits,  the convolutional code should be terminated by appending  $m$  zeros:
\[\underline{u}= (u_1,\hspace{0.05cm} u_2,\hspace{0.05cm} \text{...} \hspace{0.1cm}, u_L, \hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.1cm}, 0 ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (x_1,\hspace{0.05cm} x_2,\hspace{0.05cm} \text{...} \hspace{0.1cm}, x_{2L}, \hspace{0.05cm} x_{2L+1} ,\hspace{0.05cm} \text{...} \hspace{0.1cm}, \hspace{0.05cm} x_{2L+2m} ) \hspace{0.05cm}.\]
  • The received sequence  $\underline{y} = (y_1, \ y_2, \ \text{...} )$  results according to the assumed channel model. For a digital model like the  $\text{Binary Symmetric Channel}$  $\rm (BSC)$  holds   $y_i ∈ \{0, 1\}$,  so the falsification from  $\underline{x}$  to  $\underline{y}$   can be quantified with the  $\text{Hamming distance}$  $d_{\rm H}(\underline{x}, \underline{y})$.
  • The Viterbi algorithm provides an estimate  $\underline{z}$  for the encoded sequence  $\underline{x}$  and another estimate  $\underline{v}$  for the information sequence  $\underline{u}$.  Thereby holds:
\[{\rm Pr}(\underline{z} \ne \underline{x})\stackrel{!}{=}{\rm Minimum} \hspace{0.25cm}\Rightarrow \hspace{0.25cm} {\rm Pr}(\underline{\upsilon} \ne \underline{u})\stackrel{!}{=}{\rm Minimum} \hspace{0.05cm}.\]

$\text{Conclusion:}$  Given a digital channel model   $($for example,   the BSC model$)$,   the Viterbi algorithm searches from all possible encoded sequences  $\underline{x}\hspace{0.05cm}'$  the sequence  $\underline{z}$  with the minimum Hamming distance   $d_{\rm H}(\underline{x}\hspace{0.05cm}', \underline{y})$   to the received sequence  $\underline{y}$:

\[\underline{z} = {\rm arg} \min_{\underline{x}\hspace{0.05cm}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm H}( \underline{x}\hspace{0.05cm}'\hspace{0.02cm},\hspace{0.02cm} \underline{y} ) = {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm} \vert \hspace{0.05cm} \underline{x}')\hspace{0.05cm}.\]


Preliminary remarks on the following decoding examples


Trellis for decoding the received sequence  $\underline{y}$

The following  »prerequisites«   apply to all examples in this chapter:

  • Standard convolutional encoder:   Rate $R = 1/2$,  memory  $m = 2$;
  • transfer function matrix:   $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
  • length of information sequence:   $L = 5$;
  • consideration of termination:   $L\hspace{0.05cm}' = 7$;
  • length of sequences  $\underline{x}$  and  $\underline{y}$ :   $14$  bits each;
  • allocation according to  $\underline{y} = (\underline{y}_1, \ \underline{y}_2, \ \text{...} \ , \ \underline{y}_7)$
    ⇒   bit pairs  $\underline{y}_i ∈ \{00, 01, 10, 11\}$;
  • Viterbi decoding using trellis diagram:
red arrow   ⇒   hypothesis  $u_i = 0$,
blue arrow   ⇒   hypothesis  $u_i = 1$;
  • hypothetical encoded sequence  $\underline{x}_i\hspace{0.01cm}' ∈ \{00, 01, 10, 11\}$;
  • all hypothetical quantities with apostrophe.


We always assume that the Viterbi decoding is based at the  $\text{Hamming distance}$  $d_{\rm H}(\underline{x}_i\hspace{0.01cm}', \ \underline{y}_i)$  between the received word  $\underline{y}_i$  and the four possible code words  $x_i\hspace{0.01cm}' ∈ \{00, 01, 10, 11\}$.  We then proceed as follows:

  • In the still empty circles the error value  ${\it \Gamma}_i(S_{\mu})$  of states  $S_{\mu} (0 ≤ \mu ≤ 3)$  at time points  $i$  are entered.  The initial value is always  ${\it \Gamma}_0(S_0) = 0$.
  • The error values for  $i = 1$  and  $i = 2$  are given by
\[{\it \Gamma}_1(S_0) =d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_1 \big ) \hspace{0.05cm}, \hspace{2.38cm}{\it \Gamma}_1(S_1) = d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_1 \big ) \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_0) ={\it \Gamma}_1(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big )\hspace{0.05cm}, \hspace{0.6cm}{\it \Gamma}_2(S_1) = {\it \Gamma}_1(S_0)+ d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big ) \hspace{0.05cm},\hspace{0.6cm}{\it \Gamma}_2(S_2) ={\it \Gamma}_1(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big )\hspace{0.05cm}, \hspace{0.6cm}{\it \Gamma}_2(S_3) = {\it \Gamma}_1(S_1)+ d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_2 \big ) \hspace{0.05cm}.\]
  • From  $i = 3$  the trellis has reached its basic form, and to compute all  ${\it \Gamma}_i(S_{\mu})$  the minimum between two sums must be determined in each case:
\[{\it \Gamma}_i(S_0) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm},\]
\[{\it \Gamma}_i(S_1)={\rm Min} \left [{\it \Gamma}_{i-1}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm},\]
\[{\it \Gamma}_i(S_2) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm},\]
\[{\it \Gamma}_i(S_3) ={\rm Min} \left [{\it \Gamma}_{i-1}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{i-1}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} \underline{y}_i \big ) \right ] \hspace{0.05cm}.\]
  • Of the two branches arriving at a node  ${\it \Gamma}_i(S_{\mu})$  the worse one  $($which would have led to a larger  ${\it \Gamma}_i(S_{\mu})$  is eliminated.  Only one branch then leads to each node.
  • Once all error values up to and including  $i = 7$  have been determined,  the Viterbi algotithm can be completed by searching the  "connected path"  from the end of the trellis   ⇒   ${\it \Gamma}_7(S_0)$  to the beginning   ⇒   ${\it \Gamma}_0(S_0)$ .
  • Through this path,  the most likely encoded sequence  $\underline{z}$  and the most likely information sequence  $\underline{v}$  are then fixed.
  • Not all received sequences are transmitted error-free  $(\underline{y} =\underline{x})$,  however often holds with Viterbis decoding:   $\underline{z} = \underline{x}$  and  $\underline{v} = \underline{u}$.
  • But if there are too many transmission errors,  the Viterbi algorithm also fails.

Creating the trellis in the error-free case  –  Acumulated error value calculation


First,  we assume the received sequence  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$  which is here already subdivided into bit pairs: 

$$\underline{y}_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ \underline{y}_7.$$

The numerical values entered in the trellis and the different types of strokes are explained in the following text.

Viterbi scheme for the received vector  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$
  • Starting from the initial value  ${\it \Gamma}_0(S_0) = 0$  we get  $\underline{y}_1 = (11)$  by adding the Hamming distances
$$d_{\rm H}((00), \ \underline{y}_1) = 2\hspace{0.6cm} \text{or} \hspace{0.6cm}d_{\rm H}((11), \ \underline{y}_1) = 0$$
to the  "$($acumulated$)$ error values"   ${\it \Gamma}_1(S_0) = 2, \ {\it \Gamma}_1(S_1) = 0$.
  • In the second decoding step there are error values for all four states:   With  $\underline{y}_2 = (01)$  one obtains:
\[{\it \Gamma}_2(S_0) = {\it \Gamma}_1(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 2+1 = 3 \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_1) ={\it \Gamma}_1(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 2+1 = 3 \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_2) ={\it \Gamma}_1(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 0+2=2 \hspace{0.05cm},\]
\[{\it \Gamma}_2(S_3) = {\it \Gamma}_1(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) = 0+0=0 \hspace{0.05cm}.\]
  • In all further decoding steps,  two values must be compared in each case,  whereby the node  ${\it \Gamma}_i(S_{\mu})$  is always assigned the smaller value.
  • For example,  for  $i = 3$  with  $\underline{y}_3 = (01)$:
\[{\it \Gamma}_3(S_0) ={\rm min} \left [{\it \Gamma}_{2}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \big ] = 3\hspace{0.05cm},\]
\[{\it \Gamma}_3(S_3) ={\rm min} \left [{\it \Gamma}_{2}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm}, \hspace{0.2cm}{\it \Gamma}_{2}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \big [ 3+0\hspace{0.05cm},\hspace{0.05cm} 0+2 \big ] = 2\hspace{0.05cm}.\]
  • In the considered example,  from  $i = 6$  the termination of the convolutional code becomes effective.  Here,  only two comparisons are left to determine  ${\it \Gamma}_6(S_0) = 3$  and  ${\it \Gamma}_6(S_2)= 0$  and for  $i = 7$  only one comparison with the final error value  ${\it \Gamma}_7(S_0) = 0$.


The description of the Viterbi decoding process continues in the next section.

Evaluating the trellis in the error-free case  –  Path search


After all error values  ${\it \Gamma}_i(S_{\mu})$  have been determined  $($ in the present example for  $1 ≤ i ≤ 7$  and  $0 ≤ \mu ≤ 3)$,  the Viterbi decoder can start the path search:

  1.   The following graph shows the trellis after the error value calculation.  All circles are assigned numerical values.
  2.   However,  the most probable path already drawn in the graphic is not yet known.
  3.   In the following,  of course,  no use is made of the  "error-free case"  information already contained in the heading.
  4.   Of the two branches arriving at a node,  only the one that led to the minimum error value  ${\it \Gamma}_i(S_{\mu})$  is used for the final path search.
  5.   The  "bad"  branches are discarded.  They are each shown dotted in the above graph.
Viterbi path search for for the received vector  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$


The path search runs as follows:

  • Starting from the end value  ${\it \Gamma}_7(S_0)$  a continuous path is searched in backward direction to the start value  ${\it \Gamma}_0(S_0)$.  Only the solid branches are allowed.  Dotted lines cannot be part of the selected  $($best$)$  path.
  • The selected path  $($grayed out in the graph$)$  traverses from right to left in the sketch the states is 
$$S_0 ← S_2 ← S_1 ← S_0 ← S_2 ← S_3 ← S_1 ← S_0.$$
There is no second continuous path from  ${\it \Gamma}_7(S_0)$  to  ${\it \Gamma}_0(S_0)$. This means:   The decoding result is unique.
  • The result  $\underline{v} = (1, 1, 0, 0, 1, 0, 0)$  of the Viterbi decoder with respect to the information sequence is obtained if for the continuous path  $($but now in forward direction from left to right$)$  the colors of the individual branches are evaluated  $($red   ⇒   "$0$",   blue   ⇒   $1)$.

From the final value   ${\it \Gamma}_7(S_0) = 0$   it can be seen that there were no transmission errors in this first example:

  • The decoding result  $\underline{z}$  thus matches the received vector  $\underline{y} = (11, 01, 01, 11, 11, 10, 11)$  and the actual encoded sequence  $\underline{x}$.
  • With error-free transmission,  $ \underline{v}$  is not only the most probable info sequence  $\underline{u}$  according to the maximum likelihood criterion,  but both are even identical:   $\underline{v} \equiv \underline{u}$.


Decoding examples for the erroneous case


Now follow three examples of Viterbi decoding for the erroneous case.

$\text{Example 1:}$  We assume here the received vector  $\underline{y} = \big (11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) $  which does not represent a valid encoded sequence  $\underline{x}$ . The calculation of error values  ${\it \Gamma}_i(S_{\mu})$  and the path search is done as described in section  "Preliminaries"  and demonstrated in the last two sections for the error-free case.

Decoding example with two bit errors at the beginning

As summary of this first example,  it should be noted:

  • Also with this trellis,  a unique path  $($with dark gray background$)$  can be traced,  leading to the following results  $($recognizable by the labels or the colors of this path$)$:
\[\underline{z} = \big (00\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 00\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11 \hspace{0.05cm} \big ) \hspace{0.05cm},\]
\[ \underline{\upsilon} =\big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big ) \hspace{0.05cm}.\]
  • Comparing the most likely transmitted encoded sequence  $\underline{z}$  with the received vector  $\underline{y}$  shows that there were two bit errors directly at the beginning.  But since the used convolutional code has the $\text{free distance}$  $d_{\rm F} = 5$,  two transmission errors do not yet lead to a wrong decoding result.
  • There are other paths such as the lighter highlighted path
$$S_0 → S_1 → S_3 → S_3 → S_3 → S_2 → S_0 → S_0$$
that initially appear to be promising.  Only in the last decoding step  $(i = 7)$  can this light gray path finally be discarded.

Further remarks:

  1. The example shows that a too early decision is often not purposeful. 
  2. One can also see the expediency of termination:   With final decision at  $i = 5$  $($end of information sequence$)$,  the sequences  $(0, 1, 0, 1, 1)$  and  $(1, 1, 1, 1, 0)$  would still have been considered equally likely.
  3. In the calculation of  ${\it \Gamma}_5(S_0) = 3$  and  ${\it \Gamma}_5(S_1) = 3$  here in each case the two comparison branches lead to exactly the same minimum error value. In the graph these two special cases are marked by dash dots.  In this example,  this special case has no effect on the path search.
  4. Nevertheless,  the algorithm always expects a decision between two competing branches.  In practice,  one helps by randomly selecting one of the two paths if they are equal.


$\text{Example 2:}$  In this example,  we assume the following assumptions regarding source and encoder:

Decoding example with three bit errors
$$\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )$$
$$\Rightarrow \hspace{0.3cm} \underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.$$

From the graph you can see here that the decoder decides for the correct path  $($dark background$)$  despite three bit errors.

  • So there is not always a wrong decision,  if more than  $d_{\rm F}/2$  bit errors occurred.
  • But with statistical distribution of the three bit errors,  wrong decision would be more frequent than right.


$\text{Example 3:}$  Here also applies 

Decoding example with four bit errors
$$\underline{u} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )$$
$$\Rightarrow \hspace{0.3cm} \underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 01\hspace{0.05cm}, 11\hspace{0.05cm}, 11\hspace{0.05cm}, 10\hspace{0.05cm}, 11 \hspace{0.05cm} \hspace{0.05cm} \big ) \hspace{0.05cm}.$$

Unlike the last example,  a fourth bit error is added:  $\underline{y}_7 = (01).$

  • Now both branches in step  $i = 7$  lead to the minimum error value  ${\it \Gamma}_7(S_0) = 4$,  recognizable by the dash-dotted transitions.
  • If one decides in the then required lottery procedure for the path with dark background,  the correct decision is still made even with four bit errors:   $\underline{v} = \big (1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0\hspace{0.05cm}, 1 \hspace{0.05cm}, 0\hspace{0.05cm}, 0 \big )$.
  • Otherwise,  a wrong decision is made. Depending on the outcome of the dice roll in step  $i =6$  between the two dash-dotted competitors,  you choose either the purple or the light gray path. 
  • Both have little in common with the correct path.


Relationship between Hamming distance and correlation


Especially for the  $\text{BSC model}$  $($but also for any other binary channel  ⇒   input  $x_i ∈ \{0,1\}$,  output $y_i ∈ \{0,1\}$  such as the  $\text{Gilbert–Elliott model}$$)$  provides

  • the Hamming distance  $d_{\rm H}(\underline{x}, \ \underline{y})$  exactly the same information about the similarity of the input sequence  $\underline{x}$  and the output sequence  $\underline{y}$ 
  • as the  $\text{inner product}$.  Assuming that the sequences are in bipolar form  $($denoted by tildes$)$  and that the sequence length is  $L$  in each case,  the inner product is:
\[<\hspace{-0.1cm}\underline{\tilde{x}}, \hspace{0.05cm}\underline{\tilde{y}} \hspace{-0.1cm}> \hspace{0.15cm} = \sum_{i = 1}^{L} \tilde{x}_i \cdot \tilde{y}_i \hspace{0.3cm}{\rm with } \hspace{0.2cm} \tilde{x}_i = 1 - 2 \cdot x_i \hspace{0.05cm},\hspace{0.2cm} \tilde{y}_i = 1 - 2 \cdot y_i \hspace{0.05cm},\hspace{0.2cm} \tilde{x}_i, \hspace{0.05cm}\tilde{y}_i \in \hspace{0.1cm}\{ -1, +1\} \hspace{0.05cm}.\]

We sometimes refer to this inner product as the  »correlation value«.  Unlike the   $\text{correlation coefficient}$  the  "correlation value"  may well exceed the range of values  $±1$.

$\text{Example 4:}$  We consider here two binary sequences of length  $L = 10$.  Shown on the left are the  »unipolar«  sequences  $\underline{x}$  and  $\underline{y}$  and the product  $\underline{x} \cdot \underline{y}$.

Relationship between Haming distance and correlation value
  • You can see the Hamming distance  $d_{\rm H}(\underline{x}, \ \underline{y}) = 6$   ⇒   six bit errors at the arrow positions.
  • The inner product   $ < \underline{x} \cdot \underline{y} > \hspace{0.15cm} = \hspace{0.15cm}0$   has no significance here.  For example,  $< \underline{0} \cdot \underline{y} > $ is always zero regardless of  $\underline{y}$.


The Hamming distance  $d_{\rm H} = 6$  can also be seen from the  »bipolar«  $($antipodal$)$ plot in the right graph.

  • The  "correlation value"  has now the correct value:
$$4 \cdot (+1) + 6 \cdot (-1) = \, -2.$$
  • For the deterministic relationship between the  "correlation value"  and the  "Hamming distance"  holds with the sequence length  $L$:
$$ < \underline{ \tilde{x} } \cdot \underline{\tilde{y} } > \hspace{0.15cm} = \hspace{0.15cm} L - 2 \cdot d_{\rm H} (\underline{\tilde{x} }, \hspace{0.05cm}\underline{\tilde{y} })\hspace{0.05cm}. $$


$\text{Conclusion:}$  Let us now interpret this last equation for some special cases:

  • »Identical sequences«:   The Hamming distance is equal to  $0$  and the  correlation value is equal to  $L$.
  • »Inverted sequences«:   The Hamming distance is equal to  $L$  and the  correlation value  is equal to  $-L$.
  • »Uncorrelated sequences«:   The Hamming distance is equal to  $L/2$  and the  correlation value  is equal to  $0$.

Viterbi algorithm based on correlation and metrics


Using the insights of the last section,  the Viterbi algorithm can also be characterized as follows.

$\text{Alternative description:}$ 

  • The Viterbi algorithm searches from all possible encoded sequences  $\underline{x}' ∈ \mathcal{C}$  the sequence  $\underline{z}$  with the  »maximum correlation value«  to the received sequence  $\underline{y}$:
\[\underline{z} = {\rm arg} \max_{\underline{x}' \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} \left\langle \tilde{\underline{x} }'\hspace{0.05cm} ,\hspace{0.05cm} \tilde{\underline{y} } \right\rangle \hspace{0.4cm}{\rm with }\hspace{0.4cm}\tilde{\underline{x} }\hspace{0.05cm}'= 1 - 2 \cdot \underline{x}'\hspace{0.05cm}, \hspace{0.2cm} \tilde{\underline{y} }= 1 - 2 \cdot \underline{y} \hspace{0.05cm}.\]
  • Here,  $〈\ \text{ ...} \ 〉$  denotes a  "correlation value"  according to the statements in the last section.  The tildes again indicate the bipolar representation.


The graphic shows the corresponding trellis evaluation. 

  • the input sequence and the encoded sequence are
$$\underline{u} = \big (0\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0\hspace{0.05cm}, 0 \hspace{0.05cm} \big ) \hspace{0.3cm} ⇒ \hspace{0.3cm} \underline{x} = \big (00, 11, 10, 00, 01, 01, 11 \big ) \hspace{0.05cm}.$$
Viterbi decoding based on correlation and metrics

Further are assumed:

  • Standard convolutional encoder:   rate  $R = 1/2$,  memory  $m = 2$;
  • the transfer function matrix:   $\mathbf{G}(D) = (1 + D + D^2, 1 + D^2)$;
  • length of the information sequence:   $L = 5$;
  • consideration of termination:  $L' = 7$;
  • received vector   $\underline{y} = (11, 11, 10, 00, 01, 01, 11)$   ⇒   two bit errors;
  • Viterbi decoding using trellis diagram:
  • red arrow ⇒   hypothesis $u_i = 0$,
  • blue arrow ⇒   hypothesis $u_i = 1$.


Adjacent trellis and the  $\text{Example 1 trellis}$   are very similar.  Just like the search for the sequence with the  "minimum Hamming distance",  the  "search for the maximum correlation value"  is also done step by step:

  1.   The nodes here are called the  "cumulative metrics"  ${\it \Lambda}_i(S_{\mu})$.
  2.   The  "branch metrics"  specify the  "metric increments".
  3.   The final value  ${\it \Lambda}_7(S_0) = 10$  indicates the  "end correlation value"  between the selected sequence  $\underline{z}$  and the received vector  $\underline{y}$.
  4.   In the error-free case,  the result would be  ${\it \Lambda}_7(S_0) = 14$.

$\text{Example 5:}$  The following detailed description of the trellis evaluation refer to the above trellis:

  • The acumulated metrics at time  $i = 1$  result with  $\underline{y}_1 = (11)$  to
\[{\it \Lambda}_1(S_0) \hspace{0.15cm} = \hspace{0.15cm} <\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.2cm}<(+1,\hspace{0.05cm} +1)\hspace{0.05cm}, \hspace{0.05cm}(-1,\hspace{0.05cm} -1) >\hspace{0.1cm} = \hspace{0.1cm} -2 \hspace{0.05cm},\]
\[{\it \Lambda}_1(S_1) \hspace{0.15cm} = \hspace{0.15cm} <\hspace{-0.05cm}(11)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.2cm}<(-1,\hspace{0.05cm} -1)\hspace{0.05cm}, \hspace{0.05cm}(-1,\hspace{0.05cm} -1) >\hspace{0.1cm} = \hspace{0.1cm} +2 \hspace{0.05cm}.\]
  • Accordingly,  at time  $i = 2$  with  $\underline{y}_2 = (11)$:
\[{\it \Lambda}_2(S_0) = {\it \Lambda}_1(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} -2-2 = -4 \hspace{0.05cm},\]
\[{\it \Lambda}_2(S_1) = {\it \Lambda}_1(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(11)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} -2+2 = 0 \hspace{0.05cm},\]
\[{\it \Lambda}_2(S_2)= {\it \Lambda}_1(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(10)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} +2+0 = +2 \hspace{0.05cm},\]
\[{\it \Lambda}_2(S_3)= {\it \Lambda}_1(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(01)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} = \hspace{0.1cm} +2+0 = +2 \hspace{0.05cm}.\]
  • From time  $i =3$  a decision must be made between two acumulated metrics.  For example,  $\underline{y}_3 = (10)$  is obtained for the top and bottom metrics in the trellis:
\[{\it \Lambda}_3(S_0)={\rm max} \left [{\it \Lambda}_{2}(S_0) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(00)\hspace{0.05cm}, \hspace{0.05cm}(11) \hspace{-0.05cm}> \right ] = {\rm max} \left [ -4+0\hspace{0.05cm},\hspace{0.05cm} +2+0 \right ] = +2\hspace{0.05cm},\]
\[{\it \Lambda}_3(S_3) ={\rm max} \left [{\it \Lambda}_{2}(S_1) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(01)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}>\hspace{0.2cm} \hspace{0.05cm}, \hspace{0.2cm}{\it \Lambda}_{2}(S_3) \hspace{0.2cm}+ \hspace{0.1cm}<\hspace{-0.05cm}(10)\hspace{0.05cm}, \hspace{0.05cm}(10) \hspace{-0.05cm}> \right ] = {\rm max} \left [ 0+0\hspace{0.05cm},\hspace{0.05cm} +2+2 \right ] = +4\hspace{0.05cm}.\]
  • Comparing the  »accumulated correlation values«  ${\it \Lambda}_i(S_{\mu})$  to be maximized with the   »accumulated error values«  ${\it \Gamma}_i(S_{\mu})$  to be minimized  according to the  $\text{$\text{Example 1}$}$,  one sees the following deterministic relationship:
\[{\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [ i - {\it \Gamma}_i(S_{\mu}) \big ] \hspace{0.05cm}.\]
  • The selection of surviving branches to each decoding step is identical for both methods,  and the path search also gives the same result.


$\text{Conclusions:}$ 

  1.     In the binary channel – for example according to the BSC model – the two described Viterbi variants  "error value minimization"  and   "correlation value maximization"  lead to the same result.
  2.   In the AWGN channel,  on the other hand,  "error value minimization"  is not applicable because no Hamming distance can be specified between the binary input  $\underline{x}$  and the analog output  $\underline{y}$.
  3.   For the AWGN channel,  the  "correlation value maximization"  is rather identical to the minimization of the  $\text{Euclidean distance}$  – see  "Exercise 3.10Z".
  4.   Another advantage of the  "correlation value maximization"  is that a reliability information about the received values  $\underline{y}$  can be considered in a simple way.


Viterbi decision for non-terminated convolutional codes


So far,  a terminated convolutional code of length  $L\hspace{0.05cm}' = L + m$  has always been considered,  and the result of the Viterbi decoder was the continuous trellis path from the start time  $(i = 0)$  to the end  $(i = L\hspace{0.05cm}')$.

  • For non–terminated convolutional codes  $(L\hspace{0.05cm}' → ∞)$  this decision strategy is not applicable.
  • Here,  the algorithm must be modified to provide a best estimate  $($according to maximum likelihood$)$  of the incoming bits of the encoded sequence in finite time.
Exemplary trellis and surviving paths


The graphic shows in the upper part an exemplary trellis for

  • "our standard encoder"  $(R = 1/2, \ m = 2)$
$$ {\rm G}(D) = (1 + D + D^2, \ 1 + D^2),$$
  • the zero input sequence   ⇒   $\underline{u} = \underline{0} = (0, 0, 0, \ \text{...})$;  output:
$$\underline{x} = \underline{0} = (00, 00, 00, \ \text{...}),$$
  • in each case,  transmission errors at  $i = 4$  and  $i = 5$.


⇒   Based on the stroke types,  one can recognize allowed  $($solid$)$  and forbidden  $($dotted$)$  arrows in red  $(u_i = 0)$  and blue  $(u_i = 1)$.

Dotted lines have lost a comparison against a competitor and cannot be part of the selected path.

⇒   The lower part of the graph shows the  $2^m = 4$  surviving paths  ${\it \Phi}_9(S_{\mu})$  at time  $i = 9$.

  • It is easiest to find these paths from right to left  $($"backward"$)$.
  • The following specification shows the traversed states  $S_{\mu}$  but in the forward direction:
$${\it \Phi}_9(S_0) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0 → S_0,$$
$${\it \Phi}_9(S_1) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_1 → S_2 → S_1 → S_3 → S_2 → S_1,$$
$${\it \Phi}_9(S_2) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_1 → S_2 → S_1 → S_2 → S_1 → S_2,$$
$${\it \Phi}_9(S_3) \text{:} \hspace{0.4cm} S_0 → S_0 → S_0 → S_0 → S_1 → S_2 → S_1 → S_2 → S_1 → S_3.$$

At earlier times  $(i<9)$  other survivors  ${\it \Phi}_i(S_{\mu})$  would result. Therefore, we define:

$\text{Definition:}$  The   »survivor«   ${\it \Phi}_i(S_{\mu})$  is the continuous path from the start  $S_0$  $($at  $i = 0)$  to the node  $S_{\mu}$ at time  $i$.

  • It is recommended to search for paths in the backward direction.


The following graph shows the surviving paths for time points  $i = 6$  to  $i = 9$.  In addition,  the respective metrics  $($accumulated correlaltion values$)$  ${\it \Lambda}_i(S_{\mu})$  for all four states are given.

The survivors  ${\it \Phi}_6, \ \text{...} \ , \ {\it \Phi}_9$

This graph is to be interpreted as follows:

  1. At time  $i = 9$  no final maximum likelihood decision can yet be made about the first nine bits of the information sequence.
  2. But it is already certain that the most probable bit sequence is represented by one of the paths  ${\it \Phi}_9(S_0), \ \text{...} \ , \ {\it \Phi}_9(S_3)$.
  3. Since all four paths up to  $i = 3$  are identical,  the decision  "$v_1 = 0,\ v_2 = 0, \ v_3 = 0$"  is the the most probable.  Also at a later time no other decision would be made. 
  4. Regarding the bits  $v_4, \ v_5, \ \text{...}$  one should not decide at this early stage.  Only the first two zeros are safe,  not  $v_3 = 0$.
  5. If one had to make a constraint decision at time  $i = 9$  one would choose  ${\it \Phi}_9(S_0)$   ⇒   $\underline{v} = (0, 0, \text{. ..} \ , 0)$ since the metric  ${\it \Lambda}_9(S_0) = 14$  is larger than the comparison metrics.
  6. The forced decision at time  $i = 9$  leads to the correct result in this example,  see lower sketch.
  7. A decision at time  $i = 6$  would have would have led to the wrong result  ⇒   $\underline{v} = (0, 0, 0, 1, 0, 1)$,  see upper sketch.
  8. At time  $i = 7$  resp.  $i = 8$,  a forced decision would not have been clear,  as shown in the two middle diagrams


Other decoding methods for convolutional codes


We have so far dealt only with the Viterbi algorithm in the form presented in 1967 by Andrew J. Viterbi in  [Vit67][1].  It was not until 1974 that  $\text{George David Forney}$  proved that this algorithm performs maximum likelihood decoding of convolutional codes.

But even in the years before,  many scientists were very eager to provide efficient decoding methods for the convolutional codes first described by  $\text{Peter Elias}$  in 1955.  Among others,  more detailed descriptions can be found for example in  [Bos99][2].

  • the work of Kamil Zigangirov  (1966)  and  $\text{Frederick Jelinek}$  (1969),  whose decoding method is also referred to as the  "stack algorithm".

All of these decoding schemes,  as well as the Viterbi algorithm as described so far,  provide  "hard decided"  output values   ⇒   $v_i ∈ \{0, 1\}$.  Often,  however,  information about the reliability of the decisions made would be desirable,  especially when there is a concatenated coding scheme with an outer and an inner code.

If the reliability of the bits decided by the inner decoder is known at least roughly,  this information can be used to  (significantly)  reduce the bit error probability of the outer decoder.  The  "soft output Viterbi algorithm"  $\rm(SOVA)$  proposed by  $\text{Joachim Hagenauer}$  in  [Hag90][3]  allows to specify a reliability measure in each case in addition to the decided symbols.

Finally, we go into some detail about the  »BCJR algorithm«  named after its inventors L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv  [BCJR74][4].

While the Viterbi algorithm only estimates the total sequence   ⇒   $\text{block-wise ML}$,  the BCJR algorithm estimates a single bit considering the entire received sequence.  So this is a  "bit-wise maximum a-posteriori decoding"   ⇒   $\text{bit-wise MAP}$.


$\text{Conclusion:}$ 

The difference between Viterbi–algorithm and BCJR algorithm shall be  – greatly simplified –  illustrated by the example of a terminated convolutional code:

  • The   »Viterbi algorithm «  processes the trellis in only one direction  – the forward direction  – and computes the metrics  ${\it \Lambda}_i(S_{\mu})$  for each node.  After reaching the terminal node,  the surviving path is searched,  which identifies the most probable encoded sequence.
  • In the   »BCJR algorithm «  the trellis is processed twice,  once in forward direction and then in backward direction.  Two metrics can then be specified for each node,  from which the a-posterori probability can be determined for each bit

.

Notes:

  1.   This short summary is based on the textbook  [Bos99][2].
  2.   A description of the BCJR–algorithm follows also in section  "Hard Decision vs. Soft Decision"  "in the fourth main chapter"  "Iterative Decoding Methods".


Exercises for the chapter


Exercise 3.09: Basics of the Viterbi Algorithm

Exercise 3.09Z: Viterbi Algorithm again

Exercise 3.10: Metric Calculation

Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes

Exercise 3.11: Viterbi Path Finding

References

  1. Viterbi, A.J.:  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm.  In: IEEE Transactions on Information Theory, vol. IT-13, pp. 260-269, April 1967.
  2. 2.0 2.1 Bossert, M.:  Channel Coding for Telecommunications.  Wiley & Sons, 1999.
  3. Hagenauer, J.:  Soft Output Viterbi Decoder.  In: Technischer Report, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), 1990.
  4. Bahl, L.R.; Cocke, J.; Jelinek, F.; Raviv, J.:  Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate.  In: IEEE Transactions on Information Theory, Vol. IT-20, pp. 284-287, 1974.