Difference between revisions of "Mobile Communications/Probability Density of Rayleigh Fading"

From LNTwww
 
(50 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
 
{{Header
 
{{Header
|Untermenü=Zeitvariante Übertragungskanäle
+
|Untermenü=Time-Variant Transmission Channels
|Vorherige Seite=Distanzabhängige Dämpfung und Abschattung
+
|Vorherige Seite=Distance Dependent Attenuation and Shading
|Nächste Seite=Statistische Bindungen innerhalb des Rayleigh–Prozesses
+
|Nächste Seite=Statistical Bonds Within the Rayleigh Process
 
}}
 
}}
  
== Eine sehr allgemeine Beschreibung des Mobilfunkkanals ==
+
== A very general description of the mobile communication channel ==
 
<br>
 
<br>
Im Folgenden wird zur Vereinfachung der Schreibweise auf den Zusatz &bdquo;TP&rdquo; verzichtet. Somit liegt das reelle Signal&nbsp; $s(t) = 1$&nbsp; am Eingang des Mobilfunkkanals an und das Ausgangssignal&nbsp; $r(t)$&nbsp; ist komplexwertig. Zusätzliche Rauschprozesse werden ausgeschlossen.<br>
+
To simplify the notation, the addition "TP" (Tiefpass &nbsp; &rArr; &nbsp; low-pass)&nbsp; is omitted in the following.&nbsp; Thus the real signal&nbsp; $s(t) = 1$&nbsp; is present at the input of the mobile radio channel and the output signal&nbsp; $r(t)$&nbsp; is complex-valued.&nbsp; Additional noise processes are excluded.<br>
  
Das Funksignal&nbsp; $s(t)$&nbsp; kann den Empfänger über eine Vielzahl von Pfaden erreichen, wobei die einzelnen Signalanteile in unterschiedlicher Weise gedämpft und verschieden lang verzögert werden. Allgemein kann man für das Tiefpass&ndash;Empfangssignal ohne Berücksichtigung von thermischem Rauschen schreiben:
+
The radio signal&nbsp; $s(t)$&nbsp; can reach the receiver via a large number of paths, whereby the individual signal components are attenuated in different ways and delayed for different lengths.&nbsp; In general, it is possible to express the received signal&nbsp; (in the equivalent low-pass range)&nbsp; without taking thermal noise into account as it follows:
  
 
::<math>r(t)=  \sum_{k=1}^{K}  \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k})
 
::<math>r(t)=  \sum_{k=1}^{K}  \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k})
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Hierbei sind folgende Bezeichnungen verwendet:
+
The following designations are used here:
*Der zeitabhängige Dämpfungsfaktor auf dem&nbsp; $k$&ndash;ten Pfad ist&nbsp; $\alpha_k(t)$.<br>
+
*The time dependent attenuation factor on the&nbsp; $k$&ndash;th path is&nbsp; $\alpha_k(t)$.<br>
  
*Der zeitabhängige Phasenverlauf auf dem&nbsp; $k$&ndash;ten Pfad ist&nbsp; $\phi_k(t)$.<br>
+
*The time dependent phase progression on the&nbsp; $k$&ndash;th path is&nbsp; $\phi_k(t)$.<br>
  
*Die zeitabhängige Laufzeit auf dem&nbsp; $k$&ndash;ten Pfad ist&nbsp; $\tau_k(t)$.<br><br>
+
*The time dependent runtime on the&nbsp; $k$&ndash;th path is&nbsp; $\tau_k(t)$.<br><br>
  
Die Anzahl&nbsp; $K$&nbsp; der sich (zumindest geringfügig) unterscheidenden Pfade ist meist sehr groß und für eine direkte Modellierung ungeeignet.  
+
The number&nbsp; $K$&nbsp; of (at least slightly) different paths is usually very large and unsuitable for direct modeling.  
  
*Das Modell lässt sich aber entscheidend vereinfachen, wenn man jeweils Pfade mit näherungsweise gleichen Verzögerungen zusammenfasst.  
+
*The model can be simplified considerably by combining paths with approximately equal delays.  
*Man unterscheidet somit nur noch&nbsp; $M$&nbsp; Hauptpfade, die durch großräumige Wegeunterschiede und damit merkliche Laufzeitunterschiede gekennzeichnet sind:
+
*So you only distinguish between&nbsp; $M$&nbsp; main paths, which are characterized by large differences in distance and thus noticeable differences in delay:
  
 
::<math>r(t)=  \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
 
::<math>r(t)=  \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
Line 33: Line 32:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Die beiden bisher angegebenen Gleichungen sind identisch. Eine Vereinfachung ergibt sich erst dann, wenn man für jeden Hauptpfad&nbsp; $m \in \{1, \hspace{0.04cm}\text{...}\hspace{0.04cm}, M\}$&nbsp; die&nbsp; $N_m$&nbsp; Laufzeiten, die sich durch Reflexionen an Feinstrukturen sowie eventuell durch Beugungs&ndash; und Brechungserscheinungen geringfügig unterscheiden, durch eine mittlere Laufzeit ersetzt:
+
The two equations given so far are identical.&nbsp; A simplification results only if one replaces for each main path&nbsp; $m \in \{1, \hspace{0.04cm}\text{...}\hspace{0.04cm}, M\}$&nbsp; the&nbsp; $N_m$&nbsp; delays, which differ slightly due to reflections at fine structures as well as possibly due to diffraction and refraction phenomena, by a mean delay:
  
 
::<math>\tau_{m} =  \frac{1}{N_m} \cdot  \sum_{n=1}^{N_m} \tau_{m,\hspace{0.04cm}n}
 
::<math>\tau_{m} =  \frac{1}{N_m} \cdot  \sum_{n=1}^{N_m} \tau_{m,\hspace{0.04cm}n}
Line 39: Line 38:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Damit erhält man folgendes Zwischenergebnis: &nbsp; Das&nbsp; '''Ausgangssignal im äquivalenten Tiefpassbereich'''&nbsp; kann dargestellt werden als
+
$\text{Conclusion:}$&nbsp; This gives the following intermediate result for mobile radio: &nbsp; The&nbsp; &raquo;'''received signal in the equivalent low-pass range'''&laquo; &nbsp; can be represented as
  
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
+
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm with}
 
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
 
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
Line 47: Line 46:
 
  \hspace{0.05cm}.</math>}}
 
  \hspace{0.05cm}.</math>}}
  
== Frequenzselektives Fading vs. nichtfrequenzselektives Fading==
+
== Frequency-selective fading vs. non-frequency-selective fading==
 
<br>
 
<br>
Ausgehend von der soeben hergeleiteten Gleichung
+
Based on the equation just derived
  
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
+
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm with}
 
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
 
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
Line 57: Line 56:
 
  \hspace{0.05cm}</math>
 
  \hspace{0.05cm}</math>
  
können zwei wichtige Sonderfälle abgeleitet werden:
+
two important special cases can be derived:
*Gibt es mehr als einen Hauptpfad&nbsp; $(M \ge 2)$, so spricht man von <i>Mehrwegeausbreitung</i>. Wie im Hauptkapitel&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme|Frequenzselektive Übertragungskanäle]]&nbsp; noch gezeigt werden wird, kommt es dann &ndash; je nach Frequenz &ndash; zu konstruktiven oder destruktiven Überlagerungen bis hin zu völliger Auslöschung.  
+
*If there is more than one main path&nbsp; $(M \ge 2)$, one speaks of&nbsp; <b>multipath propagation</b>. &nbsp; As will be shown in the second main chapter &nbsp; &rArr; &nbsp; [[Mobile_Communications/General_description_of_time_variant_systems|"Frequency-selective transmission channels"]]&nbsp; then&nbsp; &ndash;&nbsp; depending on the frequency&nbsp; &ndash;&nbsp; constructive or destructive overlaps up to complete extinction occur.  
*Für manche Frequenzen erweist sich die Mehrwegeausbreitung als günstig, für andere als extrem ungünstig. Man bezeichnet den Effekt als&nbsp; '''frequenzselektives Fading'''.<br>
+
*For some frequencies, multipath propagation proves to be favourable, for others, very unfavourable.&nbsp; This effect is called&nbsp; &raquo;'''frequency selective fading'''&laquo;.<br>
  
*Bei nur einem Hauptpfad&nbsp; $(M = 1)$&nbsp; vereinfacht sich die obige Gleichung wie folgt (auf den Index &bdquo;$m = 1$&rdquo; verzichten wir in diesem Fall):
+
 
 +
With only one main path&nbsp; $(M = 1)$&nbsp; the above equation is simplified as follows&nbsp; $($in this case the index "$m = 1$" will be omitted$)$:
  
 
::<math>r(t)=  z(t) \cdot  s(t - \tau)  
 
::<math>r(t)=  z(t) \cdot  s(t - \tau)  
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Die Verzögerung&nbsp; $\tau$&nbsp; bewirkt hier eine für alle Frequenzen konstante Laufzeit, die nicht weiter betrachtet werden muss.  
+
The delay&nbsp; $\tau$&nbsp; causes here a constant transmission time for all frequencies, which does not need to be considered further.  
 
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Für&nbsp; $M=1$&nbsp; gibt es keine Überlagerungen von Signalanteilen mit merklichen Laufzeitunterschieden und damit auch keine Frequenzabhängigkeit des Gesamtsignals. Man spricht deshalb von&nbsp; '''nichtfrequenzselektivem Fading'''&nbsp; oder <i>Flat&ndash;Fading</i>&nbsp; oder&nbsp; '''Rayleigh&ndash;Fading'''. Für dieses gilt:
+
$\text{Conclusion:}$&nbsp; For&nbsp; $M=1$&nbsp; there is no superposition of signal components with noticeable differences in propagation time, thus also no frequency dependence of the total signal:&nbsp;  
  
::<math>r(t)=  z(t) \cdot  s(t) \hspace{0.5cm} {\rm mit}
+
::<math>r(t)=  z(t) \cdot  s(t) \hspace{0.5cm} {\rm with}
 
  \hspace{0.5cm} z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
 
  \hspace{0.5cm} z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
 
  \phi_{n}(t)}
 
  \phi_{n}(t)}
  \hspace{0.05cm}. </math>}}
+
  \hspace{0.05cm}. </math>
 +
One speaks in this case of&nbsp; &raquo;'''non-frequency selective fading'''&laquo; &nbsp; or&nbsp; &raquo;'''Flat Fading'''&laquo;&nbsp; or&nbsp; &raquo;'''Rayleigh Fading'''&laquo;. }}
  
== Modellierung von nichtfrequenzselektivem Fading==
+
== Modeling of non-frequency-selective fading==
 
<br>
 
<br>
Die Grafik zeigt das Modell zur Erzeugung von nichtfrequenzselektivem Fading &nbsp; &rArr; &nbsp; Rayleigh&ndash;Fading.<br>
+
The figure shows the model for generating non-frequency selective fading &nbsp; &rArr; &nbsp; Rayleigh fading.<br>
  
*Das Empfangssignal&nbsp; $r(t)$&nbsp; ergibt sich, wenn man das Sendesignal&nbsp; $s(t)$&nbsp; mit der Zeitfunktion&nbsp; $z(t)$&nbsp; multipliziert.  
+
*The received signal&nbsp; $r(t)$&nbsp; is obtained by multiplying the transmitted signal&nbsp; $s(t)$&nbsp; by the time function&nbsp; $z(t)$.  
*Es sei nochmals daran erinnert, dass sich alle Signale bzw. Zeitfunktionen&nbsp; $s(t)$,&nbsp; $z(t)$&nbsp; und&nbsp; $r(t)$&nbsp; auf den äquivalenten Tiefpassbereich beziehen.
+
*It should be remembered again that all signals or time functions&nbsp; $s(t)$,&nbsp; $z(t)$&nbsp; and&nbsp; $r(t)$&nbsp; refer to the equivalent low-pass range.
  
  
[[File:P ID2108 Mob T 1 2 S2 v2.png|center|frame|Rayleigh–Fading–Kanalmodell|class=fit]]
+
[[File:EN_Mob_T_1_2_S2.png|center|frame|Rayleigh fading channel model|class=fit]]
 
+
We now look at the multiplicative error&nbsp; $z(t)\ne 1$&nbsp; according to this Rayleigh model more precisely.&nbsp; For the complex coefficient applies according to the last section:
Wir betrachten nun die multiplikative Verfälschung&nbsp; $z(t)$&nbsp; gemäß diesem Rayleigh&ndash;Modell genauer. Für den komplexen Koeffizienten gilt entsprechend der letzten Seite:
 
  
 
::<math>z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
 
::<math>z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
Line 100: Line 99:
 
  \hspace{0.05cm}. </math>
 
  \hspace{0.05cm}. </math>
  
Zu dieser Gleichung und obiger Grafik ist anzumerken:
+
It should be noted about this equation and the above graph:
*Die zeitabhängige Dämpfung&nbsp; $\alpha_{n}(t)$&nbsp; und die zeitabhängige Phase&nbsp; $\phi_{n}(t)$&nbsp; hängen von den Umgebungsbedingungen ab.
+
*The time dependent attenuation&nbsp; $\alpha_{n}(t)$&nbsp; and the time dependent phase&nbsp; $\phi_{n}(t)$&nbsp; depend on the environmental conditions.
* $\phi_{n}(t)$&nbsp; erfasst die  verschiedenen Laufzeiten auf den&nbsp; $N$&nbsp; Pfaden und den&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh–Prozesses#Ph.C3.A4nomenologische_Beschreibung_des_Dopplereffekts| Dopplereffekt]]&nbsp; aufgrund der Bewegung.
+
* $\phi_{n}(t)$&nbsp; captures the slightly different delays on the&nbsp; $N$&nbsp; paths and the&nbsp; [[Mobile_Communications/Statistical_Properties_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution|$\text{Doppler effect}$]]&nbsp; due to the movement.
  
*Die Zeitfunktion&nbsp; $z(t)$&nbsp; ist eine komplexe Größe, deren Real&ndash; und Imaginärteil wir im Folgenden wieder mit&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; bezeichnen.
+
*The time function&nbsp; $z(t)$&nbsp; is a complex quantity whose real and imaginary part denoted in the following as&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp;.
 +
*A deterministic description of the random variable&nbsp; $z(t) = x(t) + {\rm j}\cdot y(t)$&nbsp; is not possible;&nbsp; the functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$ must be modeled by stochastic processes.
  
*Eine deterministische Beschreibung der Zufallsgröße&nbsp; $z(t) = x(t)  + {\rm j}\cdot  y(t)$&nbsp; ist nicht möglich.
+
*If the number&nbsp; $N$&nbsp; of the&nbsp; (slightly)&nbsp; different delays is sufficiently large, then according to the&nbsp; [https://en.wikipedia.org/wiki/Central_limit_theorem $\text{Central Limit Theorem}$]&nbsp; for this&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|$\text{Gaussian Random Variable}$]].
*Vielmehr müssen die Zeitfunktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$ durch stochastische Prozesse modelliert werden.
 
  
*Ist die Anzahl&nbsp; $N$&nbsp; der (leicht) unterschiedlichen Laufzeiten hinreichend groß, so ergeben sich nach dem&nbsp; [https://de.wikipedia.org/wiki/Zentraler_Grenzwertsatz zentralen Grenzwertsatz]&nbsp; hierfür &nbsp;[[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen|Gaußsche Zufallsgrößen]].
+
*The two components&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; are each mean-free and have the same variance&nbsp; $\sigma^2$:
 
 
*Die beiden Komponenten&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; sind jeweils mittelwertfrei und besitzen die gleiche Varianz&nbsp; $\sigma^2$:
 
  
 
::<math>{\rm E}[x(t)] = {\rm E}\big[y(t)\big] = 0\hspace{0.05cm}, \hspace{0.8cm}{\rm E}\big[x^2(t)\big] = {\rm E}\big[y^2(t)\big] = \sigma^2
 
::<math>{\rm E}[x(t)] = {\rm E}\big[y(t)\big] = 0\hspace{0.05cm}, \hspace{0.8cm}{\rm E}\big[x^2(t)\big] = {\rm E}\big[y^2(t)\big] = \sigma^2
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Zu berücksichtigen ist die Orthogonität von Realteil und Imaginärteil (jeweils Cosinus und Sinus des gleichen Arguments). Damit sind die beiden Komponenten auch unkorreliert. Nur bei Gaußschen Zufallsgrößen folgt daraus weiter die statistische Unabhängigkeit von&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$.
+
*We observe the orthogonality of the real part and the imaginary part&nbsp; (both cosine and sine of the same argument).&nbsp; Thus the two components are also uncorrelated.&nbsp; Only in the case of Gaussian random variables does the statistical independence of&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$ follow from this.
  
*Aufgrund des Dopplereffekts gibt es allerdings statistische Bindungen innerhalb des Realteils&nbsp; $x(t)$&nbsp; und innerhalb des Imaginärteils&nbsp; $y(t)$. Diese beiden Größen werden im obigen Modell durch die beiden&nbsp; [[Stochastische_Signaltheorie/Digitale_Filter| Digitalen Filter]]&nbsp; erzeugt.
+
*Because of the Doppler effect, however, there are statistical dependencies within the real part&nbsp; $x(t)$&nbsp; and within the imaginary part&nbsp; $y(t)$.&nbsp; These two quantities are created in the above model by two&nbsp; [[Theory_of_Stochastic_Signals/Digital_Filters|$\text{Digital Filters}$]].
  
== Beispielhafte Signalverläufe bei Rayleigh–Fading==
+
== Exemplary signal curves with Rayleigh fading==
 
<br>
 
<br>
Die folgenden Grafiken zeigen jeweils durch Simulation gewonnene Signalverläufe von&nbsp; $\text{100 ms}$&nbsp; Dauer und die dazugehörigen Dichtefunktionen. Es handelt sich um Bildschirmabzüge des Windows&ndash;Programms &bdquo;Mobilfunkkanal&rdquo; aus dem (ehemaligen) Praktikum ''Simulation digitaler Übertragungssysteme'' an der TU München:
+
The following graphs show signal curves of&nbsp; $\text{100 ms}$&nbsp; duration and the corresponding density functions.&nbsp; These are screen shots of the Windows program&nbsp; "Mobile Radio Channel"&nbsp; from the (former) practical course&nbsp; "Simulation of Digital Transmission Systems"&nbsp; at the TU Munich.
*[http://en.lntwww.de/downloads/Sonstiges/Programme/MFK.zip Windows&ndash;Programm MFK] &nbsp; &nbsp; Link verweist auf die ZIP-Version des Programms und
 
*[http://en.lntwww.de/downloads/Sonstiges/Texte/Mobilfunkkanal.pdf Praktikumsanleitung] &nbsp; &nbsp; Link verweist auf die PDF-Version (58 Seiten).
 
 
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Nachfolgend sind beispielhafte Signalverläufe bei Rayleigh–Fading und die dazugehörigen Wahrscheinlichkeitsdichtefunktionen dargestellt.
+
$\text{Example 1:}$&nbsp; In the following, exemplary signal curves for Rayleigh fading and the corresponding probability density functions are shown.&nbsp; These time curve representations can be interpreted as follows:
  
[[File:P ID2110 Mob T 1 2 S3 v1.png|center|frame|Realteil, Imaginärteil und Phasenverlauf bei Rayleigh-Fading|class=fit]]
+
[[File:P ID2110 Mob T 1 2 S3 v1.png|right|frame|Real part, imaginary part and phase response with Rayleigh fading|class=fit]]
  
Diese Zeitverläufe Darstellungen lassen sich wie folgt interpretieren:
+
*The real part is Gaussian distributed&nbsp; (see upper right graph), as shown in the signal&nbsp; $x(t)$.&nbsp; &nbsp; Red is the Gaussian PDF $f_x(x)$ and blue is the histogram obtained by simulation over&nbsp; $10\hspace{0.05cm}000$&nbsp; samples.
*Der Realteil ist gaußverteilt (siehe rechte obere Grafik), wie auch aus dem Zeitsignalverlauf  $x(t)$ hervorgeht. Rot eingezeichnet ist die Gaußsche WDF $f_x(x)$ und blau das durch Simulation über 10.000 Abtastwerte gewonnene Histogramm.
 
  
*Im Programm eingestellt war für diese Darstellung eine&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh–Prozesses#Dopplerfrequenz_und_deren_Verteilung|maximale Dopplerfrequenz]]&nbsp; von&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$. Deshalb gibt es statistische Bindungen innerhalb der Funktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$. Genauere Angaben zum Dopplereffekt finden Sie im nächsten Kapitel.
+
*The parameter used was a&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler frequency and its distribution|$\text{maximum Doppler frequency}$]]&nbsp; of&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$.&nbsp; Therefore there are statistical bindings within the functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$.&nbsp; More details about the Doppler effect can be found in the next chapter.
  
*Die WDF&nbsp; $f_y(y)$&nbsp; des Imaginärteils ist identisch mit&nbsp; $f_x(x)$. Die Varianz beträgt bei der betrachteten Konstellation jeweils&nbsp; $\sigma_x^2 =\sigma_y^2 = 0.5 \ (=\sigma^2)$. Zwischen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; bestehen keine statistischen Bindungen; die Signale sind orthogonal.
+
*The PDF&nbsp; $f_y(y)$&nbsp; of the imaginary part is identical to&nbsp; $f_x(x)$.&nbsp; The variance is&nbsp; $\sigma_x^2 =\sigma_y^2 = 0. 5 \ (=\sigma^2)$.&nbsp; Between&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; there are no statistical bindings;&nbsp; the signals are orthogonal.
  
*Die Phase&nbsp; $\phi(t)$&nbsp; ist gleichverteilt zwischen&nbsp; $\pm\pi$. Wie aus den Sprungstellen im Phasenverlauf zu erahnen ist, kann&nbsp; $\phi(t)$&nbsp; durchaus größere Werte annehmen. Alle Bereiche&nbsp; $(2k+1)\cdot \pi$&nbsp; wurden aber bei der Histogrammerstellung auf den Wertebereich vo&nbsp;n $-\pi$ ... $+\pi$&nbsp; projiziert &nbsp;$(k$&nbsp; ganzzahlig$)$.
+
*The phase&nbsp; $\phi(t)$&nbsp; is equally distributed between&nbsp; $\pm\pi$.&nbsp; As can be guessed from the jumping points in the phase function,&nbsp; $\phi(t)$&nbsp; can also assume larger values.&nbsp; During the creation of the histogram, however, the ranges&nbsp; $(2k+1)\cdot \pi$&nbsp; were projected to the value range of&nbsp; $-\pi$ ... $+\pi$&nbsp; &nbsp;$(k$&nbsp; integer$)$.
  
*Die gleichverteilte Phase wird anhand der (hier nicht dargestellten) 2D&ndash;WDF verständlich. Diese ist rotationssymmetrisch und dementsprechend gibt es auch keine Vorzugsrichtung:
+
*The equally distributed phase can be understood by means of the (not shown) 2D&ndash;PDF.&nbsp; This is rotationally symmetrical and accordingly there is no preferred direction:
  
 
::<math>f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot  
 
::<math>f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot  
Line 147: Line 140:
  
  
[[File:P ID2111 Mob T 1 2 S3b v1.png|right|frame|Realteil, Imaginärteil, Betrag und Betragsquadrat bei Rayleigh-Fading|class=fit]]
+
[[File:P ID2111 Mob T 1 2 S3b v1.png|right|frame|Real part, imaginary part, absolute value and square of absolute value for Rayleigh fading|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;Fortsetzung von $\text{Beispiel 1}$
+
$\text{Example 2}$&nbsp; in continuation to&nbsp; $\text{Example 1}$:
 
   
 
   
Die nächste Grafik zeigt oben nochmals den Realteil&nbsp; $x(t)$&nbsp; und Imaginärteil&nbsp; $y(t)$&nbsp; von&nbsp; $z(t)$. Darunter gezeichnet sind Verlauf und WDF
+
This graphic shows on the
* des Betrags&nbsp; $a(t) =\vert z(t)\vert$&nbsp; und  
+
*left:&nbsp; the real part&nbsp; $x(t)$&nbsp; and the imaginary part&nbsp; $y(t)$&nbsp; of&nbsp; $z(t)$&nbsp;; 
*des Betragsquadrat&nbsp; $p(t) =a^2(t) =\vert z(t)\vert^2$.<br>
+
*right:&nbsp; the PDF $f_x(x)$;&nbsp;  the PDF $f_y(y)$ has exactly the same form.  
 +
 
 +
 
 +
Underneath it are the gradient and PDF
 +
* of the magnitude&nbsp; $a(t) =\vert z(t)\vert$&nbsp; and  
 +
*of the square&nbsp; $p(t) =a^2(t) =\vert z(t)\vert^2$.<br>
  
  
Aus diesen Darstellungen geht hervor:
+
From these descriptions it is clear:
*Der Betrag&nbsp; $a(t) =\vert z(t)\vert$&nbsp; besitzt eine&nbsp; [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung| Rayleigh&ndash;WDF]] &nbsp;&#8658;&nbsp; daher der Name &bdquo;<i>Rayleigh&ndash;Fading</i>&rdquo;:
+
*The magnitude&nbsp; $a(t) =\vert z(t)\vert$&nbsp; has a&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rayleigh_PDF|$\text{Rayleigh PDF}$]] &nbsp;&#8658;&nbsp; hence the name "Rayleigh fading":
  
 
::<math>f_a(a) =
 
::<math>f_a(a) =
 
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{-a^2/(2\sigma^2)} \\
 
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{-a^2/(2\sigma^2)} \\
 
0  \end{array} \right.\hspace{0.15cm}
 
0  \end{array} \right.\hspace{0.15cm}
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.1cm} a\hspace{-0.05cm} \ge \hspace{-0.05cm}0,
+
\begin{array}{*{1}c} {\rm for}\hspace{0.1cm} a\hspace{-0.05cm} \ge \hspace{-0.05cm}0,
\\  {\rm f\ddot{u}r}\hspace{0.1cm} a \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array}
+
\\  {\rm for}\hspace{0.1cm} a \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array}
 
</math>
 
</math>
  
*Für die Momente erster bzw. zweiter Ordnung und die Varianz der Betragsfunktion&nbsp; $a(t)$&nbsp; gilt:
+
*For the moments of first and second order and the variance of the absolute value function&nbsp; $a(t)$&nbsp; applies:
  
 
::<math>{\rm E}\big [a \big] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.5cm}{\rm E}\big[a^2 \big] = 2 \cdot \sigma^2</math>
 
::<math>{\rm E}\big [a \big] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.5cm}{\rm E}\big[a^2 \big] = 2 \cdot \sigma^2</math>
Line 172: Line 170:
 
  \hspace{0.05cm}.  </math>
 
  \hspace{0.05cm}.  </math>
  
*Die WDF des Betragsquadrats&nbsp; $p(t)$&nbsp; ergibt sich durch&nbsp; [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgr%C3%B6%C3%9Fen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen| nichtlineare Transformation]]&nbsp; der Wahrscheinlichkeitsdichtefunktion&nbsp; $f_a(a)$. Dies führt zu einer Exponentialverteilung:
+
*The PDF of the absolute value square&nbsp; $p(t)$&nbsp; is given by&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|$\text{nonlinear transformation}$]]&nbsp; the PDF $f_a(a)$ &nbsp; &rArr; &nbsp; $f_p(p)$&nbsp; is exponentially distributed:
  
 
::<math>f_p(p) \hspace{-0.05cm}=\hspace{-0.05cm}
 
::<math>f_p(p) \hspace{-0.05cm}=\hspace{-0.05cm}
 
\left\{ \begin{array}{c} (2\sigma^2)^{-1} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm e}^{-p^2\hspace{-0.05cm}/(2\sigma^2)} \\
 
\left\{ \begin{array}{c} (2\sigma^2)^{-1} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm e}^{-p^2\hspace{-0.05cm}/(2\sigma^2)} \\
 
0  \end{array} \right.\hspace{0.05cm}
 
0  \end{array} \right.\hspace{0.05cm}
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.05cm} p \hspace{-0.05cm}\ge \hspace{-0.05cm}0,
+
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \hspace{-0.05cm}\ge \hspace{-0.05cm}0,
\\  {\rm f\ddot{u}r}\hspace{0.15cm} p\hspace{-0.05cm} < \hspace{-0.05cm}0. \\ \end{array}
+
\\  {\rm for}\hspace{0.15cm} p\hspace{-0.05cm} < \hspace{-0.05cm}0. \\ \end{array}
 
</math>}}
 
</math>}}
  
  
Weitere Informationen zum <i>Rayleigh&ndash;Fading</i> finden Sie in der&nbsp; [[Aufgaben:Aufgabe_1.3:_Rayleigh–Fading|Aufgabe 1.3]]&nbsp; und der&nbsp; [[Aufgaben:Aufgabe_1.3Z:_Nochmals_Rayleigh–Fading%3F|Aufgabe 1.3Z]].<br>
+
Further information about the&nbsp; Rayleigh fading&nbsp; can be found in the&nbsp;
 +
[[Aufgaben:Exercise 1.3: Rayleigh Fading|"Exercise 1.3"]]&nbsp; and the&nbsp; [[Aufgaben:Exercise 1.3Z: Rayleigh Fading Revisited|"Exercise 1.3Z"]].<br>
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_1.3:_Rayleigh–Fading|Aufgabe 1.3: Rayleigh–Fading]]
+
[[Aufgaben:Exercise 1.3: Rayleigh Fading]]
  
[[Aufgaben:Aufgabe_1.3Z:_Nochmals_Rayleigh–Fading%3F|Aufgabe 1.3Z: Nochmals Rayleigh–Fading?]]
+
[[Aufgaben:Exercise 1.3Z: Rayleigh Fading Revisited]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:40, 1 February 2023

A very general description of the mobile communication channel


To simplify the notation, the addition "TP" (Tiefpass   ⇒   low-pass)  is omitted in the following.  Thus the real signal  $s(t) = 1$  is present at the input of the mobile radio channel and the output signal  $r(t)$  is complex-valued.  Additional noise processes are excluded.

The radio signal  $s(t)$  can reach the receiver via a large number of paths, whereby the individual signal components are attenuated in different ways and delayed for different lengths.  In general, it is possible to express the received signal  (in the equivalent low-pass range)  without taking thermal noise into account as it follows:

\[r(t)= \sum_{k=1}^{K} \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k}) \hspace{0.05cm}.\]

The following designations are used here:

  • The time dependent attenuation factor on the  $k$–th path is  $\alpha_k(t)$.
  • The time dependent phase progression on the  $k$–th path is  $\phi_k(t)$.
  • The time dependent runtime on the  $k$–th path is  $\tau_k(t)$.

The number  $K$  of (at least slightly) different paths is usually very large and unsuitable for direct modeling.

  • The model can be simplified considerably by combining paths with approximately equal delays.
  • So you only distinguish between  $M$  main paths, which are characterized by large differences in distance and thus noticeable differences in delay:
\[r(t)= \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{m,\hspace{0.04cm}n}(t)} \cdot s(t - \tau_{m,\hspace{0.04cm}n}) \hspace{0.05cm}.\]

The two equations given so far are identical.  A simplification results only if one replaces for each main path  $m \in \{1, \hspace{0.04cm}\text{...}\hspace{0.04cm}, M\}$  the  $N_m$  delays, which differ slightly due to reflections at fine structures as well as possibly due to diffraction and refraction phenomena, by a mean delay:

\[\tau_{m} = \frac{1}{N_m} \cdot \sum_{n=1}^{N_m} \tau_{m,\hspace{0.04cm}n} \hspace{0.05cm}.\]

$\text{Conclusion:}$  This gives the following intermediate result for mobile radio:   The  »received signal in the equivalent low-pass range«   can be represented as

\[r(t)= \sum_{m=1}^{M} z_m(t) \cdot s(t - \tau_{m}) \hspace{0.5cm} {\rm with} \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{m,\hspace{0.04cm}n}(t)} \hspace{0.05cm}.\]

Frequency-selective fading vs. non-frequency-selective fading


Based on the equation just derived

\[r(t)= \sum_{m=1}^{M} z_m(t) \cdot s(t - \tau_{m}) \hspace{0.5cm} {\rm with} \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{m,\hspace{0.04cm}n}(t)} \hspace{0.05cm}\]

two important special cases can be derived:

  • If there is more than one main path  $(M \ge 2)$, one speaks of  multipath propagation.   As will be shown in the second main chapter   ⇒   "Frequency-selective transmission channels"  then  –  depending on the frequency  –  constructive or destructive overlaps up to complete extinction occur.
  • For some frequencies, multipath propagation proves to be favourable, for others, very unfavourable.  This effect is called  »frequency selective fading«.


With only one main path  $(M = 1)$  the above equation is simplified as follows  $($in this case the index "$m = 1$" will be omitted$)$:

\[r(t)= z(t) \cdot s(t - \tau) \hspace{0.05cm}.\]

The delay  $\tau$  causes here a constant transmission time for all frequencies, which does not need to be considered further.

$\text{Conclusion:}$  For  $M=1$  there is no superposition of signal components with noticeable differences in propagation time, thus also no frequency dependence of the total signal: 

\[r(t)= z(t) \cdot s(t) \hspace{0.5cm} {\rm with} \hspace{0.5cm} z(t) = \sum_{n=1}^{N} \alpha_{n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{n}(t)} \hspace{0.05cm}. \]

One speaks in this case of  »non-frequency selective fading«   or  »Flat Fading«  or  »Rayleigh Fading«.

Modeling of non-frequency-selective fading


The figure shows the model for generating non-frequency selective fading   ⇒   Rayleigh fading.

  • The received signal  $r(t)$  is obtained by multiplying the transmitted signal  $s(t)$  by the time function  $z(t)$.
  • It should be remembered again that all signals or time functions  $s(t)$,  $z(t)$  and  $r(t)$  refer to the equivalent low-pass range.


Rayleigh fading channel model

We now look at the multiplicative error  $z(t)\ne 1$  according to this Rayleigh model more precisely.  For the complex coefficient applies according to the last section:

\[z(t) = \sum_{n=1}^{N} \alpha_{n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.04cm}\cdot \hspace{0.04cm} \phi_{n}(t) }= \sum_{n=1}^{N} \alpha_{n}(t) \cdot \cos\hspace{-0.1cm}\big [ \phi_{n}( t) \big ] + {\rm j}\cdot \sum_{n=1}^{N} \alpha_{n}(t) \cdot \sin\hspace{-0.1cm}\big [ \phi_{n}( t)\big ] \hspace{0.05cm}. \]

It should be noted about this equation and the above graph:

  • The time dependent attenuation  $\alpha_{n}(t)$  and the time dependent phase  $\phi_{n}(t)$  depend on the environmental conditions.
  • $\phi_{n}(t)$  captures the slightly different delays on the  $N$  paths and the  $\text{Doppler effect}$  due to the movement.
  • The time function  $z(t)$  is a complex quantity whose real and imaginary part denoted in the following as  $x(t)$  and  $y(t)$ .
  • A deterministic description of the random variable  $z(t) = x(t) + {\rm j}\cdot y(t)$  is not possible;  the functions  $x(t)$  and  $y(t)$ must be modeled by stochastic processes.
  • The two components  $x(t)$  and  $y(t)$  are each mean-free and have the same variance  $\sigma^2$:
\[{\rm E}[x(t)] = {\rm E}\big[y(t)\big] = 0\hspace{0.05cm}, \hspace{0.8cm}{\rm E}\big[x^2(t)\big] = {\rm E}\big[y^2(t)\big] = \sigma^2 \hspace{0.05cm}.\]
  • We observe the orthogonality of the real part and the imaginary part  (both cosine and sine of the same argument).  Thus the two components are also uncorrelated.  Only in the case of Gaussian random variables does the statistical independence of  $x(t)$  and  $y(t)$ follow from this.
  • Because of the Doppler effect, however, there are statistical dependencies within the real part  $x(t)$  and within the imaginary part  $y(t)$.  These two quantities are created in the above model by two  $\text{Digital Filters}$.

Exemplary signal curves with Rayleigh fading


The following graphs show signal curves of  $\text{100 ms}$  duration and the corresponding density functions.  These are screen shots of the Windows program  "Mobile Radio Channel"  from the (former) practical course  "Simulation of Digital Transmission Systems"  at the TU Munich.

$\text{Example 1:}$  In the following, exemplary signal curves for Rayleigh fading and the corresponding probability density functions are shown.  These time curve representations can be interpreted as follows:

Real part, imaginary part and phase response with Rayleigh fading
  • The real part is Gaussian distributed  (see upper right graph), as shown in the signal  $x(t)$.    Red is the Gaussian PDF $f_x(x)$ and blue is the histogram obtained by simulation over  $10\hspace{0.05cm}000$  samples.
  • The parameter used was a  $\text{maximum Doppler frequency}$  of  $f_{\rm D, \ max} = 100 \ \rm Hz$.  Therefore there are statistical bindings within the functions  $x(t)$  and  $y(t)$.  More details about the Doppler effect can be found in the next chapter.
  • The PDF  $f_y(y)$  of the imaginary part is identical to  $f_x(x)$.  The variance is  $\sigma_x^2 =\sigma_y^2 = 0. 5 \ (=\sigma^2)$.  Between  $x(t)$  and  $y(t)$  there are no statistical bindings;  the signals are orthogonal.
  • The phase  $\phi(t)$  is equally distributed between  $\pm\pi$.  As can be guessed from the jumping points in the phase function,  $\phi(t)$  can also assume larger values.  During the creation of the histogram, however, the ranges  $(2k+1)\cdot \pi$  were projected to the value range of  $-\pi$ ... $+\pi$   $(k$  integer$)$.
  • The equally distributed phase can be understood by means of the (not shown) 2D–PDF.  This is rotationally symmetrical and accordingly there is no preferred direction:
\[f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot {\rm e}^{ -(x^2 + y^2)/(2\sigma^2)} .\]


Real part, imaginary part, absolute value and square of absolute value for Rayleigh fading

$\text{Example 2}$  in continuation to  $\text{Example 1}$:

This graphic shows on the

  • left:  the real part  $x(t)$  and the imaginary part  $y(t)$  of  $z(t)$ ;
  • right:  the PDF $f_x(x)$;  the PDF $f_y(y)$ has exactly the same form.


Underneath it are the gradient and PDF

  • of the magnitude  $a(t) =\vert z(t)\vert$  and
  • of the square  $p(t) =a^2(t) =\vert z(t)\vert^2$.


From these descriptions it is clear:

  • The magnitude  $a(t) =\vert z(t)\vert$  has a  $\text{Rayleigh PDF}$  ⇒  hence the name "Rayleigh fading":
\[f_a(a) = \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{-a^2/(2\sigma^2)} \\ 0 \end{array} \right.\hspace{0.15cm} \begin{array}{*{1}c} {\rm for}\hspace{0.1cm} a\hspace{-0.05cm} \ge \hspace{-0.05cm}0, \\ {\rm for}\hspace{0.1cm} a \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array} \]
  • For the moments of first and second order and the variance of the absolute value function  $a(t)$  applies:
\[{\rm E}\big [a \big] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.5cm}{\rm E}\big[a^2 \big] = 2 \cdot \sigma^2\]
\[ \Rightarrow \hspace{0.3cm} {\rm Var}\big[a \big] = \sigma_a^2 = \sigma^2 \cdot \left ( 2 - {\pi}/{2}\right ) \hspace{0.05cm}. \]
  • The PDF of the absolute value square  $p(t)$  is given by  $\text{nonlinear transformation}$  the PDF $f_a(a)$   ⇒   $f_p(p)$  is exponentially distributed:
\[f_p(p) \hspace{-0.05cm}=\hspace{-0.05cm} \left\{ \begin{array}{c} (2\sigma^2)^{-1} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm e}^{-p^2\hspace{-0.05cm}/(2\sigma^2)} \\ 0 \end{array} \right.\hspace{0.05cm} \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \hspace{-0.05cm}\ge \hspace{-0.05cm}0, \\ {\rm for}\hspace{0.15cm} p\hspace{-0.05cm} < \hspace{-0.05cm}0. \\ \end{array} \]


Further information about the  Rayleigh fading  can be found in the  "Exercise 1.3"  and the  "Exercise 1.3Z".

Exercises for the chapter


Exercise 1.3: Rayleigh Fading

Exercise 1.3Z: Rayleigh Fading Revisited