Difference between revisions of "Exercise 2.3Z: xDSL Frequency Band"

From LNTwww
 
(15 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/xDSL als Übertragungstechnik
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/xDSL_as_Transmission_Technology
  
 
}}
 
}}
  
[[File:P_ID1969__Bei_Z_2_3.png|right|frame|Vorgegebene xDSL-Frequenzbandbelegung]]
+
[[File:P_ID1969__Bei_Z_2_3.png|right|frame|xDSL frequency band allocation]]
  
Die Abbildung zeigt die Frequenzbandbelegung eines gebräuchlichen xDSL–Systems. Im unteren Bereich befindet sich das ISDN–Band, danach folgen zwei Bänder $A$ und $B$, die für Downstream und Upstream stehen. Über die Reihenfolge der beiden Bänder wird nichts ausgesagt. Dies ist die Fragestellung zur Teilaufgabe 2).
+
The figure shows the frequency band allocation of a common  $\rm xDSL$ system:
 +
*The ISDN band is located at the bottom.
 +
*Two bands follow  $\rm A$  and  $\rm B$, representing downstream and upstream.  
 +
*Nothing is said about the order of the two bands. This is the question for subtask '''(2)'''.
  
Weiter ist bei xDSL/DMT standardisiert, dass
 
  
*pro Sekunde $4000$ Rahmen übertragen werden,
+
Further it is standardized with xDSL/DMT that.
*nach $68$ Datenrahmen jeweils ein Synchronisationsrahmen eingefügt wird,
 
*die Symboldauer wegen des zyklischen Präfix noch um den Faktor $16/17$ verkürzt werden muss,
 
*jeder Datenrahmen zu einem DMT–Symbol codiert wird.
 
  
Damit ist auch die Integrationsdauer $T$ festgelegt, die beim Empfänger zur Detektion ausgewertet wird, und gleichzeitig auch die Grundfrequenz $f_{0} = 1/T$ des hier betrachteten DMT–Verfahrens ''(Discrete Multitone Transmission).''
+
*$4000$ frames are transmitted per second,
 +
*a synchronization frame is inserted after every $68$ data frames,
 +
*the symbol duration must be shortened by the factor  $16/17$  because of the cyclic prefix,
 +
*each data frame is encoded to a DMT symbol.
  
''Hinweis:''
 
  
Die Aufgabe bezieht sich auf das Kapitel [[Beispiele_von_Nachrichtensystemen/xDSL_als_Übertragungstechnik|xDSL als Übertragungstechnik]] dieses Buches. Informationen zum ''zyklischen Präfix'' finden Sie im Kapitel [[Beispiele_von_Nachrichtensystemen/Verfahren_zur_Senkung_der_Bitfehlerrate_bei_DSL|Verfahren zur Senkung der Bitfehlerrate bei DSL]].
+
This also determines the integration duration  $T$  which is evaluated at the receiver for detection, and at the same time also represents the fundamental frequency  $f_{0} = 1/T$  of the DMT (''Discrete Multitone Transmission'') method considered here.
  
  
Line 25: Line 26:
  
  
===Fragebogen===
+
Hint:
 +
 
 +
*This exercise refers to the chapter  [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology|"xDSL as Transmission Technology"]].
 +
*For information on the ''cyclic prefix'', refer to the chapter  [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL|"Methods to Reduce the Bit Error Rate in DSL"]].
 +
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
{ Um welches xDSL–System handelt es sich?
+
{ What&nbsp; $\rm xDSL$ system is it?
|type="[]"}
+
|type="()"}
 
- ADSL,
 
- ADSL,
 
+ ADSL2+,
 
+ ADSL2+,
 
- VDSL.
 
- VDSL.
  
{ Wie ist die Reihenfolge von Upstream und Downstream?
+
{ What is the order of upstream and downstream?
|type="[]"}
+
|type="()"}
+ $A$ kennzeichnet den Upstream und $B$ den Downstream.
+
+ $\rm A$&nbsp; identifies the upstream and&nbsp; $\rm B$&nbsp; the downstream.
- $A$ kennzeichnet den Downstream und $B$ den Upstream.
+
- $\rm A$&nbsp; denotes the downstream and&nbsp; $\rm B$&nbsp; the upstream.
  
 
+
{ What symbol duration&nbsp; $T$&nbsp; results for the DMT system?
{ Welche Symboldauer ergibt sich für das DMT-Sytem?
 
 
|type="{}"}
 
|type="{}"}
$T \ = \ ${ 232 3% } $\ \mu \rm s$
+
$T \ = \ ${ 232 3% } $\ \rm &micro; s$
  
{ Welche Grundfrequenz liegt dem DMT–Verfahren zugrunde?
+
{ What is the fundamental frequency&nbsp; $ f_{0}$&nbsp; underlying the DMT process?
 
|type="{}"}
 
|type="{}"}
 
$ f_{0} \ = \ ${ 4.3125 3% } $\ \rm kHz$
 
$ f_{0} \ = \ ${ 4.3125 3% } $\ \rm kHz$
  
{ Wieviele Kanäle könnten in $2208 \ \rm kHz$ übertragen werden?
+
{ How many channels&nbsp; $(\hspace{-0.03cm}K_{\rm max}\hspace{-0.03cm})$&nbsp; could be transmitted in&nbsp; $2208 \ \rm kHz$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$ K_{\rm max} \ = \ ${ 512 3% }  
+
$ K_{\rm max} \ = \ ${ 512 }  
  
{ Wieviele Downstreamkanäle ergeben sich bei diesem System, wenn man die Aussparung der unteren Frequenzen berücksichtigt?
+
{ How many downstream channels&nbsp; $(\hspace{-0.03cm}K_{\rm down}\hspace{-0.03cm})$&nbsp; result in this system, given the omission of lower frequencies?
 
|type="{}"}
 
|type="{}"}
$K \ = \ ${ 448 3% }  
+
$K_{\rm down} \ = \ ${ 448 }  
  
{ Mit wievielen ${\rm Bit} (b)$ müssten die Subkanäle im Mittel belegt werden, damit die Bitrate $R_{\rm B} = 25 \ \rm Mbit/s$ beträgt?
+
{ With how many bits&nbsp; $(b)$&nbsp; would the bins have to be occupied on average &nbsp; &rArr; &nbsp; ${\rm E}\big [ \hspace{0.05cm} b \hspace{0.05cm}\big ]$&nbsp; so that the bit rate&nbsp; $R_{\rm B} = 25 \ \rm Mbit/s$&nbsp; is?
 
|type="{}"}
 
|type="{}"}
$ b \ = \ ${ 13.95 3% } $\ \rm bit$
+
$ {\rm E}\big [ \hspace{0.05cm} b \hspace{0.05cm}\big ] \ = \ ${ 13.95 3% } $\ \rm bit$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Correct is <u>the second proposed solution</u>:
 +
*For ADSL2+, the frequency band ends at $2208 \rm kHz$ as shown in the sketch.
 +
*For ADSL, the frequency band already ends at $1104 \rm kHz$.
 +
*VDSL has a much larger bandwidth, depending on the band plan, with upstream and downstream bands alternating in each case.
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct is <u>the first proposed solution</u>:
 +
*The upstream was assigned the better (lower) frequencies, since a loss of the fewer upstream channels has a less favorable percentage effect than a loss of a downstream channel.
 +
 
 +
 
 +
'''(3)'''&nbsp; Without taking into account the synchronization frames (after every $68$ of frames occupied with user data) and the guard interval, the frame duration would result in
 +
:$$T = 1/(4000/{\rm s}) = 250 \ \rm &micro; s.$$
 +
*With this overhead taken into account, the symbol duration is shorter by a factor of $68/69 \cdot 16/17$:
 +
:$$T = \frac{68}{69} \cdot \frac{16}{17} \cdot 250\, {\rm \mu s} \hspace{0.15cm}\underline{ \approx 232\, {\rm &micro; s}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; The subcarriers lie at DMT at all multiples of $f_0$, where must hold:
 +
:$$f_0 = \frac{1}{T} \hspace{0.15cm}\underline{= 4.3125 \, {\rm kHz}}.$$
 +
 
 +
*In fact, the time windowing corresponds to the multiplication of the cosine carrier signals by a square wave function of duration $T$.
 +
*In the frequency domain, this results in the convolution with the si function.
 +
*If the system quantities $T$ and $f_0 = 1/T$ were not tuned to each other, a ''de-orthogonalization'' of the individual DMT channels and thus ''intercarrier interference'' would occur.
 +
 
 +
 
 +
'''(5)'''&nbsp; Ignoring ISDN/upstream reservation, we get $K_{\rm max} = 2208/4.3125 \underline{= 512}.$
 +
 
 +
 
 +
'''(6)'''&nbsp; The lower $276/4.3125 = 64$ channels are reserved for ISDN and upstream in the "ADSL2+" system considered here.
 +
* This leaves $K_{\rm down} = 512 - 64\hspace{0.15cm} \underline{= 448}$ usable channels.
 +
 
 +
 
 +
'''(7)'''&nbsp; For the bitrate holds.
 +
:$$R_{\rm B} = 4000 \, \,\frac {\rm frame}{\rm s} \cdot K \cdot b \hspace{0.05cm}.$$
 +
*This results in the (average) bit allocation per bin:
 +
:$${\rm E}\big [ \hspace{0.05cm} b \hspace{0.05cm}\big ] = \frac{R_{\rm B}}{ 4000 \, \, {\rm frame}/{\rm s} \cdot K} = \frac{25 \cdot 10^6 \,\, {\rm bit/s}}{ 4000 \, \, {1}/{\rm s} \cdot 448} \hspace{0.15cm}\underline{= 13.95 \, \, {\rm bit}}\hspace{0.05cm}.$$
 +
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 71: Line 116:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^2.3 xDSL als Übertragungstechnik
+
[[Category:Examples of Communication Systems: Exercises|^2.3 xDSL Transmission Technology
  
 
^]]
 
^]]

Latest revision as of 17:19, 7 March 2023

xDSL frequency band allocation

The figure shows the frequency band allocation of a common  $\rm xDSL$ system:

  • The ISDN band is located at the bottom.
  • Two bands follow  $\rm A$  and  $\rm B$, representing downstream and upstream.
  • Nothing is said about the order of the two bands. This is the question for subtask (2).


Further it is standardized with xDSL/DMT that.

  • $4000$ frames are transmitted per second,
  • a synchronization frame is inserted after every $68$ data frames,
  • the symbol duration must be shortened by the factor  $16/17$  because of the cyclic prefix,
  • each data frame is encoded to a DMT symbol.


This also determines the integration duration  $T$  which is evaluated at the receiver for detection, and at the same time also represents the fundamental frequency  $f_{0} = 1/T$  of the DMT (Discrete Multitone Transmission) method considered here.



Hint:




Questions

1

What  $\rm xDSL$ system is it?

ADSL,
ADSL2+,
VDSL.

2

What is the order of upstream and downstream?

$\rm A$  identifies the upstream and  $\rm B$  the downstream.
$\rm A$  denotes the downstream and  $\rm B$  the upstream.

3

What symbol duration  $T$  results for the DMT system?

$T \ = \ $

$\ \rm µ s$

4

What is the fundamental frequency  $ f_{0}$  underlying the DMT process?

$ f_{0} \ = \ $

$\ \rm kHz$

5

How many channels  $(\hspace{-0.03cm}K_{\rm max}\hspace{-0.03cm})$  could be transmitted in  $2208 \ \rm kHz$ ?

$ K_{\rm max} \ = \ $

6

How many downstream channels  $(\hspace{-0.03cm}K_{\rm down}\hspace{-0.03cm})$  result in this system, given the omission of lower frequencies?

$K_{\rm down} \ = \ $

7

With how many bits  $(b)$  would the bins have to be occupied on average   ⇒   ${\rm E}\big [ \hspace{0.05cm} b \hspace{0.05cm}\big ]$  so that the bit rate  $R_{\rm B} = 25 \ \rm Mbit/s$  is?

$ {\rm E}\big [ \hspace{0.05cm} b \hspace{0.05cm}\big ] \ = \ $

$\ \rm bit$


Solution

(1)  Correct is the second proposed solution:

  • For ADSL2+, the frequency band ends at $2208 \rm kHz$ as shown in the sketch.
  • For ADSL, the frequency band already ends at $1104 \rm kHz$.
  • VDSL has a much larger bandwidth, depending on the band plan, with upstream and downstream bands alternating in each case.


(2)  Correct is the first proposed solution:

  • The upstream was assigned the better (lower) frequencies, since a loss of the fewer upstream channels has a less favorable percentage effect than a loss of a downstream channel.


(3)  Without taking into account the synchronization frames (after every $68$ of frames occupied with user data) and the guard interval, the frame duration would result in

$$T = 1/(4000/{\rm s}) = 250 \ \rm µ s.$$
  • With this overhead taken into account, the symbol duration is shorter by a factor of $68/69 \cdot 16/17$:
$$T = \frac{68}{69} \cdot \frac{16}{17} \cdot 250\, {\rm \mu s} \hspace{0.15cm}\underline{ \approx 232\, {\rm µ s}} \hspace{0.05cm}.$$


(4)  The subcarriers lie at DMT at all multiples of $f_0$, where must hold:

$$f_0 = \frac{1}{T} \hspace{0.15cm}\underline{= 4.3125 \, {\rm kHz}}.$$
  • In fact, the time windowing corresponds to the multiplication of the cosine carrier signals by a square wave function of duration $T$.
  • In the frequency domain, this results in the convolution with the si function.
  • If the system quantities $T$ and $f_0 = 1/T$ were not tuned to each other, a de-orthogonalization of the individual DMT channels and thus intercarrier interference would occur.


(5)  Ignoring ISDN/upstream reservation, we get $K_{\rm max} = 2208/4.3125 \underline{= 512}.$


(6)  The lower $276/4.3125 = 64$ channels are reserved for ISDN and upstream in the "ADSL2+" system considered here.

  • This leaves $K_{\rm down} = 512 - 64\hspace{0.15cm} \underline{= 448}$ usable channels.


(7)  For the bitrate holds.

$$R_{\rm B} = 4000 \, \,\frac {\rm frame}{\rm s} \cdot K \cdot b \hspace{0.05cm}.$$
  • This results in the (average) bit allocation per bin:
$${\rm E}\big [ \hspace{0.05cm} b \hspace{0.05cm}\big ] = \frac{R_{\rm B}}{ 4000 \, \, {\rm frame}/{\rm s} \cdot K} = \frac{25 \cdot 10^6 \,\, {\rm bit/s}}{ 4000 \, \, {1}/{\rm s} \cdot 448} \hspace{0.15cm}\underline{= 13.95 \, \, {\rm bit}}\hspace{0.05cm}.$$