Difference between revisions of "Digital Signal Transmission/Basics of Coded Transmission"

From LNTwww
m (Text replacement - "[File:" to "[File:")
 
(42 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Codierte und mehrstufige Übertragung
+
|Untermenü=Coded and Multilevel Transmission
 
|Vorherige Seite=Lineare digitale Modulation – Kohärente Demodulation
 
|Vorherige Seite=Lineare digitale Modulation – Kohärente Demodulation
 
|Nächste Seite=Redundanzfreie Codierung
 
|Nächste Seite=Redundanzfreie Codierung
 
}}
 
}}
  
== # ÜBERBLICK ZUM ZWEITEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 
<br>
 
<br>
Das zweite Hauptkapitel behandelt die so genannte '''Übertragungscodierung''', die in der Literatur manchmal auch als „Leitungscodierung” bezeichnet wird. Dabei wird durch gezieltes Hinzufügen von Redundanz eine Anpassung des digitalen Sendesignals an die Eigenschaften des Übertragungskanals erreicht. Im Einzelnen werden behandelt:
+
The second main chapter deals with so-called&nbsp; '''transmission coding''',&nbsp; which is sometimes also referred to as&nbsp; "line coding"&nbsp; in literature.&nbsp; In this process,&nbsp; an adaptation of the digital transmitted signal to the characteristics of the transmission channel is achieved through the targeted addition of redundancy.&nbsp; In detail,&nbsp; the following are dealt with:
  
*einige grundlegende Begriffe der Informationstheorie wie ''Informationsgehalt''&nbsp; und ''Entropie'',
+
#&nbsp; Some basic concepts of information theory such as&nbsp; &raquo;information content&laquo;&nbsp; and&nbsp; &raquo;entropy&laquo;,
*die AKF&ndash;Berechnung und die Leistungsdichtespektren von Digitalsignalen,
+
#&nbsp; the&nbsp; &raquo;auto-correlation function&laquo;&nbsp; and the&nbsp; &raquo;power-spectral densities&laquo;&nbsp; of digital signals,
*die redundanzfreie Codierung, die zu einem nichtbinären Sendesignal führt,
+
#&nbsp; the&nbsp; &raquo;redundancy-free coding&laquo;&nbsp; which leads to a non-binary transmitted signal,
*die Berechnung von Symbol&ndash; und Bitfehlerwahrscheinlichkeit bei mehrstufigen Systemen,
+
#&nbsp; the calculation of&nbsp; &raquo;symbol and bit error probability&laquo;&nbsp; for&nbsp; &raquo;multilevel systems&laquo;&nbsp;,
*die so genannten 4B3T&ndash;Codes als ein wichtiges Beispiel von blockweiser Codierung, und
+
#&nbsp; the so-called&nbsp; &raquo;4B3T codes&laquo;&nbsp; as an important example of&nbsp; &raquo;block-wise coding&laquo;,&nbsp; and
*die Pseudoternärcodes, die jeweils eine symbolweise Codierung realisieren.
+
#&nbsp; the&nbsp; &raquo;pseudo-ternary codes&laquo;,&nbsp; each of which realizes symbol-wise coding.
  
  
Die Beschreibung erfolgt durchgehend im Basisband und es werden weiterhin einige vereinfachende Annahmen (unter Anderem: &nbsp;keine Impulsinterferenzen) getroffen.
+
The description is in baseband throughout and some simplifying assumptions&nbsp; (among others: &nbsp;no intersymbol interfering)&nbsp; are still made.
 
 
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
 
 
 
*Kapitel 15: &nbsp; Codierte und mehrstufige Übertragung, Programm cod
 
  
 +
== Information content – Entropy – Redundancy ==
 +
<br>
 +
We assume an &nbsp;$M$&ndash;level digital source that outputs the following source signal:
 +
:$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm}a_\nu \in \{ a_1, \text{...} \ , a_\mu , \text{...} \ , a_{ M}\}.$$
 +
*The source symbol sequence &nbsp;$\langle q_\nu \rangle$&nbsp;  is thus mapped to the sequence &nbsp;$\langle a_\nu \rangle$&nbsp; of the dimensionless amplitude coefficients.
  
des Praktikums „Simulationsmethoden in der Nachrichtentechnik”. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
+
*Simplifying,&nbsp; first for the time indexing variable &nbsp;$\nu = 1$, ... , $N$&nbsp; is set,&nbsp; while the ensemble indexing variable &nbsp;$\mu$&nbsp; can assume values between &nbsp;$1$&nbsp; and level number&nbsp; $M$.
 
 
*dem Lehrsoftwarepaket &nbsp;[http://en.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp;&rArr;&nbsp; Link verweist auf die ZIP-Version des Programms und
 
*dieser &nbsp;[http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_B.pdf Praktikumsanleitung]  &nbsp;&rArr;&nbsp; Link verweist auf die PDF-Version; Kapitel 15: &nbsp; Seite 337-362.
 
 
 
 
 
== Informationsgehalt – Entropie – Redundanz ==
 
<br>
 
Wir gehen von einer &nbsp;$M$&ndash;stufigen digitalen Nachrichtenquelle aus, die folgendes Quellensignal abgibt:
 
:$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.3cm}{\rm mit}\hspace{0.3cm}a_\nu \in \{ a_1, \text{...} \ , a_\mu , \text{...} \ , a_{ M}\}.$$
 
*Die Quellensymbolfolge &nbsp;$\langle q_\nu \rangle$&nbsp; ist also auf die Folge &nbsp;$\langle a_\nu \rangle$&nbsp; der dimensionslosen Amplitudenkoeffizienten abgebildet.
 
*Vereinfachend wird zunächst für die Zeitlaufvariable &nbsp;$\nu = 1$, ... , $N$&nbsp; gesetzt, während der Vorratsindex &nbsp;$\mu$&nbsp; stets Werte zwischen &nbsp;$1$&nbsp; und $M$&nbsp; annehmen kann.
 
  
  
Ist das &nbsp;$\nu$&ndash;te Folgenelement gleich &nbsp;$a_\mu$, so kann dessen ''Informationsgehalt''&nbsp; mit der Wahrscheinlichkeit &nbsp;$p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$&nbsp; wie folgt berechnet werden:
+
If the &nbsp;$\nu$&ndash;th sequence element is equal to &nbsp;$a_\mu$, its&nbsp; '''information content'''&nbsp; can be calculated with probability &nbsp;$p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$&nbsp; as follows:
:$$I_\nu  = \log_2 \ (1/p_{\nu \mu})= {\rm ld} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(Einheit:  bit)}\hspace{0.05cm}.$$
+
:$$I_\nu  = \log_2 \ (1/p_{\nu \mu})= {\rm ld} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit:  bit)}\hspace{0.05cm}.$$
Der Logarithmus zur Basis 2 &nbsp; &#8658; &nbsp; $\log_2(x)$ wird oft auch mit &nbsp;${\rm ld}(x)$ &nbsp; &#8658; &nbsp; <i>Logarithmus dualis</i>&nbsp; bezeichnet. Bei der numerischen Auswertung wird die Hinweiseinheit &bdquo;bit&rdquo; (von: &nbsp;''binary digit''&nbsp;) hinzugefügt. Mit dem Zehner&ndash;Logarithmus &nbsp;$\lg(x)$&nbsp; bzw. dem natürlichen Logarithmus &nbsp;$\ln(x)$&nbsp; gilt:
+
The logarithm to the base 2 &nbsp; &#8658; &nbsp; $\log_2(x)$ is often also called &nbsp;${\rm ld}(x)$ &nbsp; &#8658; &nbsp; "logarithm dualis".&nbsp; With the numerical evaluation the reference unit "bit" (from: &nbsp;"binary digit"&nbsp;) is added.&nbsp; With the tens logarithm &nbsp;$\lg(x)$&nbsp; and the natural logarithm &nbsp;$\ln(x)$&nbsp; applies:
 
:$${\rm log_2}(x) =  \frac{{\rm lg}(x)}{{\rm lg}(2)}= \frac{{\rm ln}(x)}{{\rm ln}(2)}\hspace{0.05cm}.$$
 
:$${\rm log_2}(x) =  \frac{{\rm lg}(x)}{{\rm lg}(2)}= \frac{{\rm ln}(x)}{{\rm ln}(2)}\hspace{0.05cm}.$$
Nach dieser auf &nbsp;[https://de.wikipedia.org/wiki/Claude_Shannon Claude E. Shannon]&nbsp; zurückgehenden Definition von Information ist der Informationsgehalt eines Symbols umso größer, je kleiner dessen Auftrittswahrscheinlichkeit ist.
+
According to this definition,&nbsp; which goes back to &nbsp;[https://en.wikipedia.org/wiki/Claude_Shannon "Claude E. Shannon"],&nbsp; the smaller the probability of occurrence of a symbol,&nbsp; the greater its information content.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die '''Entropie''' ist der mittlere Informationsgehalt eines Folgenelements (Symbols). Diese wichtige informationstheoretische Größe lässt sich als Zeitmittelwert wie folgt ermitteln:
+
$\text{Definition:}$&nbsp; '''Entropy'''&nbsp; is the&nbsp; "average information content"&nbsp; of a sequence element&nbsp; ("symbol").  
 +
*This important information-theoretical quantity can be determined as a time average as follows:
 
:$$H =  \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  I_\nu  =
 
:$$H =  \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  I_\nu  =
   \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  \hspace{0.1cm}{\rm log_2}\hspace{0.05cm} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(Einheit:  bit)}\hspace{0.05cm}.$$
+
   \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  \hspace{0.1cm}{\rm log_2}\hspace{0.05cm} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit:  bit)}\hspace{0.05cm}.$$
Natürlich kann die Entropie auch durch Scharmittelung (über den Symbolvorrat) berechnet werden.}}
+
*Of course,&nbsp; the entropy can also be calculated by ensemble averaging&nbsp; (over the symbol set).}}
  
  
Sind die Folgenelemente &nbsp;$a_\nu$&nbsp; statistisch voneinander unabhängig, so sind die Auftrittswahrscheinlichkeiten &nbsp;$p_{\nu\mu} = p_{\mu}$&nbsp; unabhängig von &nbsp;$\nu$&nbsp; und man erhält in diesem Sonderfall für die Entropie:
+
<u>Note:</u>
 +
*If the sequence elements &nbsp;$a_\nu$&nbsp; are statistically independent of each other,&nbsp; the probabilities &nbsp;$p_{\nu\mu} = p_{\mu}$&nbsp; are independent of &nbsp;$\nu$&nbsp; and we obtain in this special case:
 
:$$H =    \sum_{\mu = 1}^M  p_{ \mu} \cdot {\rm log_2}\hspace{0.1cm} \ (1/p_{\mu})\hspace{0.05cm}.$$
 
:$$H =    \sum_{\mu = 1}^M  p_{ \mu} \cdot {\rm log_2}\hspace{0.1cm} \ (1/p_{\mu})\hspace{0.05cm}.$$
Bestehen dagegen statistische Bindungen zwischen benachbarten Amplitudenkoeffizienten &nbsp;$a_\nu$, so muss zur Entropieberechnung die kompliziertere Gleichung entsprechend obiger Definition herangezogen werden.<br>
+
*If,&nbsp; on the other hand,&nbsp; there are statistical bindings between neighboring amplitude coefficients &nbsp;$a_\nu$,&nbsp; the more complicated equation according to the above definition must be used for entropy calculation.<br>
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp;
  
Der Maximalwert der Entropie ergibt sich immer dann, wenn die &nbsp;$M$&nbsp; Auftrittswahrscheinlichkeiten (der statistisch unabhängigen Symbole) alle gleich sind &nbsp;$(p_{\mu} = 1/M)$:
+
*The maximum value of entropy &nbsp; &rArr; &nbsp; '''decision content'''&nbsp; is obtained whenever the &nbsp;$M$&nbsp; occurrence probabilities&nbsp; (of the statistically independent symbols)&nbsp; are all equal &nbsp;$(p_{\mu} = 1/M)$:
 
:$$H_{\rm max} = \sum_{\mu = 1}^M  \hspace{0.1cm}\frac{1}{M} \cdot {\rm log_2} (M) = {\rm log_2} (M) \cdot \sum_{\mu = 1}^M  \hspace{0.1cm} \frac{1}{M} = {\rm log_2} (M)
 
:$$H_{\rm max} = \sum_{\mu = 1}^M  \hspace{0.1cm}\frac{1}{M} \cdot {\rm log_2} (M) = {\rm log_2} (M) \cdot \sum_{\mu = 1}^M  \hspace{0.1cm} \frac{1}{M} = {\rm log_2} (M)
  \hspace{1cm}\text{(Einheit:  bit)}\hspace{0.05cm}.$$
+
  \hspace{1cm}\text{(unit:  bit)}\hspace{0.05cm}.$$
  
{{BlaueBox|TEXT= 
+
*The&nbsp; '''relative redundancy'''&nbsp; is  then the following quotient:
$\text{Definition:}$&nbsp; Man bezeichnet &nbsp;$H_{\rm max}$&nbsp; als den '''Entscheidungsgehalt''' (bzw. als ''Nachrichtengehalt''&nbsp;) der Quelle und den Quotienten
+
:$$r = \frac{H_{\rm max}-H}{H_{\rm max} }.$$
:$$r = \frac{H_{\rm max}-H}{H_{\rm max} }$$
+
*Since &nbsp;$0 \le H \le  H_{\rm max}$&nbsp; always holds,&nbsp; the relative redundancy can take values between &nbsp;$0$&nbsp; and &nbsp;$1$&nbsp; (including these limits).}}
als die '''relative Redundanz'''. Da stets &nbsp;$0 \le H \le  H_{\rm max}$&nbsp; gilt, kann die relative Redundanz Werte zwischen &nbsp;$0$&nbsp; und &nbsp;$1$&nbsp; (einschließlich dieser Grenzwerte) annehmen.}}
 
  
  
Aus der Herleitung dieser Beschreibungsgrößen ist offensichtlich, dass ein redundanzfreies Digitalsignal &nbsp;$(r=0)$&nbsp; folgende Eigenschaften erfüllen muss:
+
From the derivation of these descriptive quantities,&nbsp; it is obvious that a redundancy-free &nbsp;$(r=0)$&nbsp; digital signal  must satisfy the following properties:
*Die Amplitudenkoeffizienten &nbsp;$a_\nu$&nbsp; sind statistisch unabhängig &nbsp; &rArr; &nbsp;  $p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$&nbsp; ist für alle &nbsp;$\nu$&nbsp; identisch.<br>
+
#The amplitude coefficients &nbsp;$a_\nu$&nbsp; are statistically independent &nbsp; &rArr; &nbsp;  $p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$&nbsp; is identical for all &nbsp;$\nu$.&nbsp; <br>
*Die &nbsp;$M$&nbsp; möglichen Koeffizienten &nbsp;$a_\mu$&nbsp; treten mit gleicher Wahrscheinlichkeit &nbsp;$p_\mu = 1/M$&nbsp; auf.
+
#The &nbsp;$M$&nbsp; possible coefficients &nbsp;$a_\mu$&nbsp; occur with equal probability &nbsp;$p_\mu = 1/M$.&nbsp;  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Analysiert man einen zur Übertragung anstehenden deutschen Text auf der Basis von &nbsp;$M = 32$&nbsp; Zeichen
+
$\text{Example 1:}$&nbsp; If one analyzes a German text on the basis of &nbsp;$M = 32$&nbsp; characters:
:$$\text{(a, ... , z, ä, ö, ü, ß, Leerzeichen, Interpunktion, keine Unterscheidung zwischen Groß&ndash; und Kleinschreibung)},$$  
+
:$$\text{a, ... , z, ä, ö, ü, ß, spaces, punctuation, no distinction between upper and lower case},$$  
so ergibt sich der Entscheidungsgehalt &nbsp;$H_{\rm max} = 5 \ \rm bit/Symbol$. Aufgrund
+
the result is the decision content &nbsp;$H_{\rm max} = 5 \ \rm bit/symbol$.&nbsp; Due to
*der unterschiedlichen Häufigkeiten (beispielsweise tritt &bdquo;e&rdquo; deutlich häufiger auf als &bdquo;u&rdquo;) und<br>
+
*the different frequencies&nbsp; $($for example,&nbsp; "e"&nbsp; occurs significantly more often than&nbsp; "u"$)$,&nbsp; and<br>
*von statistischen Bindungen (zum Beispiel folgt auf &bdquo;q&rdquo; der Buchstabe &bdquo;u&rdquo; viel öfters als &bdquo;e&rdquo;)
+
*statistical ties&nbsp; $($for example&nbsp; "q"&nbsp; is followed by the letter&nbsp; "u"&nbsp; much more often than&nbsp; "e"$)$,
  
  
beträgt nach &nbsp;[https://de.wikipedia.org/wiki/Karl_K%C3%BCpfm%C3%BCller Karl Küpfmüller]&nbsp; die Entropie der deutschen Sprache nur &nbsp;$H = 1.3 \ \rm bit/Zeichen$. Daraus ergibt sich die relative Redundanz zu &nbsp;$r \approx (5 - 1.3)/5 = 74\%$.  
+
according to &nbsp;[https://en.wikipedia.org/wiki/Karl_K%C3%BCpfm%C3%BCller "Karl Küpfmüller"],&nbsp; the entropy of the German language is only &nbsp;$H = 1.3 \ \rm bit/character$.&nbsp; This results in a relative redundancy of &nbsp;$r \approx (5 - 1.3)/5 = 74\%$.  
  
Für englische Texte hat &nbsp;[https://de.wikipedia.org/wiki/Claude_Shannon Claude Shannon]  die Entropie mit &nbsp;$H = 1 \ \rm bit/Zeichen$&nbsp; und die relative Redundanz mit &nbsp;$r \approx 80\%$ angegeben.}}
+
For English texts, &nbsp;[https://en.wikipedia.org/wiki/Claude_Shannon "Claude Shannon"has given the entropy as &nbsp;$H = 1 \ \rm bit/character$&nbsp; and the relative redundancy as &nbsp;$r \approx 80\%$.}}
  
  
== Quellencodierung &ndash; Kanalcodierung &ndash;  Übertragungscodierung ==
+
== Source coding &ndash; Channel coding &ndash;  Line coding ==
 
<br>
 
<br>
Unter ''Codierung''&nbsp; versteht man die Umsetzung der Quellensymbolfolge &nbsp;$\langle q_\nu \rangle$&nbsp; mit dem Symbolumfang &nbsp;$M_q$&nbsp; in eine Codesymbolfolge &nbsp;$\langle c_\nu \rangle$&nbsp; mit dem Symbolumfang &nbsp;$M_c$. Meist wird durch die Codierung die in einem Digitalsignal enthaltene Redundanz manipuliert. Oft &ndash; aber nicht immer &ndash; sind &nbsp;$M_q$&nbsp; und &nbsp;$M_c$&nbsp; verschieden.<br>
+
"Coding"&nbsp; is the conversion of the source symbol sequence &nbsp;$\langle q_\nu \rangle$&nbsp; with symbol set size &nbsp;$M_q$&nbsp; into an encoder symbol sequence &nbsp;$\langle c_\nu \rangle$&nbsp; with symbol set size &nbsp;$M_c$.&nbsp; Usually,&nbsp; coding manipulates the redundancy contained in a digital signal.&nbsp; Often &ndash; but not always &ndash; &nbsp;$M_q$&nbsp; and &nbsp;$M_c$&nbsp; are different.<br>
  
Man unterscheidet je nach Zielrichtung zwischen verschiedenen Arten von Codierung:
+
A distinction is made between different types of coding depending on the target direction:
*Die Aufgabe der '''Quellencodierung''' ist die Redundanzreduktion zur Datenkomprimierung, wie sie beispielsweise in der Bildcodierung Anwendung findet. Durch Ausnutzung statistischer Bindungen zwischen den einzelnen Punkten eines Bildes bzw. zwischen den Helligkeitswerten eines Punktes zu verschiedenen Zeiten (bei Bewegtbildsequenzen) können Verfahren entwickelt werden, die bei nahezu gleicher (subjektiver) Bildqualität zu einer merklichen Verminderung der Datenmenge (gemessen in &bdquo;bit&rdquo; oder &bdquo;byte&rdquo;) führen. Ein einfaches Beispiel hierfür ist die ''differentielle Pulscodemodulation''&nbsp; (DPCM).<br>
+
*The task of&nbsp; '''source coding'''&nbsp; is redundancy reduction for data compression,&nbsp; as applied for example in image coding.&nbsp; By exploiting statistical ties between the individual points of an image or between the brightness values of a point at different times&nbsp; (in the case of moving image sequences),&nbsp; methods can be developed that lead to a noticeable reduction in the amount of data&nbsp; (measured in&nbsp; "bit"&nbsp; or "byte"),&nbsp; while maintaining virtually the same&nbsp; (subjective)&nbsp; image quality.&nbsp; A simple example of this is "differential pulse code modulation"&nbsp; $\rm (DPCM)$.<br>
  
 +
*On the other hand,&nbsp; with&nbsp; '''channel coding'''&nbsp; a noticeable improvement in the transmission behavior is achieved by using a redundancy specifically added at the transmitter to detect and correct transmission errors at the receiver end.&nbsp; Such codes,&nbsp; the most important of which are block codes,&nbsp; convolutional codes and turbo codes,&nbsp; are particularly important in the case of heavily disturbed channels.&nbsp; The greater the relative redundancy of the encoded signal,&nbsp; the better the correction properties of the code,&nbsp; albeit at a reduced user data rate.
  
*Bei der '''Kanalcodierung''' erzielt man demgegenüber dadurch eine merkliche Verbesserung des Übertragungsverhaltens, dass eine beim Sender gezielt hinzugefügte Redundanz empfangsseitig zur Erkennung und Korrektur von Übertragungsfehlern genutzt wird. Solche Codes, deren wichtigste Vertreter Blockcodes, Faltungscodes und Turbo-Codes sind, haben besonders bei stark gestörten Kanälen eine große Bedeutung. Je größer die relative Redundanz des codierten Signals ist, desto besser sind die Korrektureigenschaften des Codes, allerdings bei verringerter Nutzdatenrate.
+
*'''Line coding'''&nbsp; is used to adapt the transmitted signal to the spectral characteristics of the transmission channel and the receiving equipment by recoding the source symbols.&nbsp; For example,&nbsp; in the case of a channel with the frequency response characteristic &nbsp;$H_{\rm K}(f=0) = 0$,&nbsp; over which consequently no DC signal can be transmitted,&nbsp; transmission coding must ensure that the encoder symbol sequence contains neither a long &nbsp;$\rm L$ sequence nor a long &nbsp;$\rm H$ sequence.<br>
  
  
*Eine '''Übertragungscodierung''' &ndash; häufig auch als ''Leitungscodierung''&nbsp; bezeichnet &ndash; verwendet man, um das Sendesignal durch eine Umcodierung der Quellensymbole an die spektralen Eigenschaften von Übertragungskanal und Empfangseinrichtungen anzupassen. Beispielsweise muss bei einem Kanal mit der Frequenzgangseigenschaft &nbsp;$H_{\rm K}(f=0) = 0$, über den demzufolge kein Gleichsignal übertragen werden kann, durch Übertragungscodierung sichergestellt werden, dass die Codesymbolfolge weder eine lange &nbsp;$\rm L$&ndash; noch eine lange &nbsp;$\rm H$&ndash;Folge beinhaltet.<br>
+
In the current book&nbsp; "Digital Signal Transmission"&nbsp; we deal exclusively with this last,&nbsp; transmission-technical aspect.
 +
*[[Channel_Coding|"Channel Coding"]]&nbsp; has its own book dedicated to it in our learning tutorial.
 +
*Source coding is covered in detail in the book&nbsp; [[Information_Theory|"Information Theory"]]&nbsp; (main chapter 2).
 +
*[[Examples_of_Communication_Systems/Speech_Coding|"Speech coding"]]&nbsp; &ndash; described in the book "Examples of Communication Systems" &ndash;&nbsp; is a special form of source coding.<br>
  
  
Im vorliegenden Buch &bdquo;Digitalsignalübertragung&rdquo; beschäftigen wir uns ausschließlich mit diesem letzten, übertragungstechnischen Aspekt.
+
== System model and description variables ==
*Der &nbsp;[[Kanalcodierung]]&nbsp; ist in unserem Lerntutorial ein eigenes Buch gewidmet.
+
<br>
*Die Quellencodierung wird im Buch [[Informationstheorie]] (Hauptkapitel 2) ausführlich behandelt.
+
In the following we always assume the block diagram sketched on the right and the following agreements:
*Auch die im Buch &bdquo;Beispiele von Nachrichtensystemen&rdquo; beschriebene &nbsp;[[Beispiele_von_Nachrichtensystemen/Sprachcodierung|Sprachcodierung]]&nbsp; ist eine spezielle Form der Quellencodierung.<br>
+
[[File:EN_Dig_T_2_1_S3_v23.png|right|frame|Block diagram for the description of multilevel and coded transmission systems|class=fit]]
 +
*Let the digital source signal &nbsp;$q(t)$&nbsp; be binary &nbsp;$(M_q = 2)$&nbsp; and redundancy-free &nbsp;$(H_q = 1 \ \rm bit/symbol)$.
  
 +
*With the symbol duration &nbsp;$T_q$&nbsp; results for the symbol rate of the source:
 +
:$$R_q = {H_{q}}/{T_q}=  {1}/{T_q}\hspace{0.05cm}.$$
 +
*Because of &nbsp;$M_q = 2$,&nbsp; in the following we also refer to &nbsp;$T_q$&nbsp; as the&nbsp; "bit duration"&nbsp; and &nbsp;$R_q$&nbsp; as the&nbsp; "bit rate".
  
== Systemmodell und Beschreibungsgrößen ==
+
*For the comparison of transmission systems with different coding, &nbsp;$T_q$&nbsp; and &nbsp;$R_q$&nbsp; are always assumed to be constant.&nbsp; Note:&nbsp; In later chapters we use &nbsp;$T_{\rm B}=T_q$&nbsp; and &nbsp;$R_{\rm B}=R_q$ for this purpose.
<br>
 
Im Folgenden gehen wir stets von dem unten skizzierten Blockschaltbild und folgenden Vereinbarungen aus:
 
  
*Das digitale Quellensignal &nbsp;$q(t)$&nbsp; sei binär &nbsp;$(M_q = 2)$&nbsp; und redundanzfrei &nbsp;$(H_q = 1 \ \rm bit/Symbol)$.
+
*The encoded signal &nbsp;$c(t)$&nbsp; and also the transmitted signal &nbsp;$s(t)$&nbsp; after pulse shaping with &nbsp;$g_s(t)$&nbsp; have the level number &nbsp;$M_c$,&nbsp; the symbol duration &nbsp;$T_c$&nbsp; and the symbol rate &nbsp;$1/T_c$.&nbsp; The equivalent bit rate is
*Mit der Symboldauer &nbsp;$T_q$&nbsp; ergibt sich für die Symbolrate der Quelle:
+
:$$R_c = {{\rm log_2} (M_c)}/{T_c} \ge R_q \hspace{0.05cm}.$$
:$$R_q = {H_{q}}/{T_q}=  {1}/{T_q}\hspace{0.05cm}.$$
+
*The equal sign is only valid for the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding#Blockwise_coding_vs._symbolwise_coding|"redundancy-free codes"]]&nbsp; $(r_c = 0)$.&nbsp; <br>Otherwise, we obtain for the relative code redundancy:
*Wegen &nbsp;$M_q = 2$&nbsp; bezeichnen wir im Folgenden &nbsp;$T_q$&nbsp; auch als die Bitdauer und &nbsp;$R_q$&nbsp; als die Bitrate.
 
*Für den Vergleich von Übertragungssystemen mit unterschiedlicher Codierung werden &nbsp;$T_q$&nbsp; und &nbsp;$R_q$&nbsp;  stets als konstant angenommen. <br>''Hinweis:'' In späteren Kapiteln verwenden wir hierfür &nbsp;$T_{\rm B}$&nbsp; und &nbsp;$R_{\rm B}$.<br>
 
*Das Codersignal &nbsp;$c(t)$&nbsp; und auch das Sendesignal &nbsp;$s(t)$&nbsp; nach der Impulsformung mit &nbsp;$g_s(t)$&nbsp; besitzen die Stufenzahl &nbsp;$M_c$, die Symboldauer &nbsp;$T_c$&nbsp; und die Symbolrate &nbsp;$1/T_c$. Die äquivalente Bitrate beträgt
 
:$$R_c = {{\rm log_2} (M_c)}/{T_c} \hspace{0.05cm}.$$
 
*Es gilt stets &nbsp;$R_c \ge R_q$, wobei das Gleichheitszeichen nur bei den &nbsp;[[Digitalsignal%C3%BCbertragung/Redundanzfreie_Codierung#Blockweise_und_symbolweise_Codierung|redundanzfreien Codes]]&nbsp; $(r_c = 0)$&nbsp; gültig ist. Andernfalls erhält man für die relative Coderedundanz:
 
 
:$$r_c =({R_c - R_q})/{R_c} = 1 - R_q/{R_c} \hspace{0.05cm}.$$
 
:$$r_c =({R_c - R_q})/{R_c} = 1 - R_q/{R_c} \hspace{0.05cm}.$$
  
[[File:P_ID3136__Dig_T_2_1_S3_v3.png|center|frame|Blockschaltbild zur Beschreibung mehrstufiger und codierter Übertragungssysteme|class=fit]]
 
  
<i>Hinweise zur Nomenklatur:</i>
+
Notes on nomenclature:  
*Im Zusammenhang mit den Übertragungscodes gibt &nbsp;$R_c$&nbsp; in unserem Lerntutorial stets die äquivalente Bitrate des Codersignals hat ebenso wie die Quellenbitrate &nbsp;$R_q$&nbsp; die Einheit &bdquo;bit/s&rdquo;.
+
#In the context of transmission codes, &nbsp;$R_c$&nbsp; always indicates in our tutorial the equivalent bit rate of the encoded signal with unit&nbsp; "bit/s".&nbsp;  
*Insbesondere in der Literatur zur Kanalcodierung bezeichnet man dagegen mit &nbsp;$R_c$&nbsp; oft die dimensionslose Coderate &nbsp;$1 - r_c$&nbsp;. $R_c = 1 $&nbsp; gibt dann einen redundanzfreien Code an, während &nbsp;$R_c = 1/3 $&nbsp; einen Code mit der relativen Redundanz &nbsp;$r_c = 2/3 $&nbsp; kennzeichnet.
+
#In the literature on channel coding,&nbsp; $R_c$&nbsp; is often used to denote the dimensionless code rate &nbsp;$1 - r_c$&nbsp;.  
 +
#$R_c = 1 $&nbsp; then indicates a redundancy-free code,&nbsp; while &nbsp;$R_c = 1/3 $&nbsp; indicates a code with the relative redundancy &nbsp;$r_c = 2/3 $.&nbsp;
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Bei den so genannten 4B3T&ndash;Codes werden jeweils vier Binärsymbole &nbsp;$(m_q = 4, \ M_q= 2)$&nbsp; durch drei Ternärsymbole &nbsp;$(m_c = 3, \ M_c= 3)$&nbsp; dargestellt. Wegen &nbsp;$4 \cdot T_q = 3 \cdot T_c$&nbsp; gilt:
+
$\text{Example 2:}$&nbsp; In the so-called&nbsp; "4B3T codes",
 +
*four binary symbols &nbsp;$(m_q = 4, \ M_q= 2)$&nbsp; are each represented by
 +
*three ternary symbols &nbsp;$(m_c = 3, \ M_c= 3)$.&nbsp;  
 +
 
 +
 
 +
Because of &nbsp;$4 \cdot T_q = 3 \cdot T_c$&nbsp; holds:
 
:$$R_q = {1}/{T_q}, \hspace{0.1cm} R_c = { {\rm log_2} (3)} \hspace{-0.05cm} /{T_c}
 
:$$R_q = {1}/{T_q}, \hspace{0.1cm} R_c = { {\rm log_2} (3)} \hspace{-0.05cm} /{T_c}
  = {3/4 \cdot {\rm log_2} (3)} \hspace{-0.05cm}/{T_q}\hspace{0.3cm}\Rightarrow
+
  = {3/4 \cdot {\rm log_2} (3)} \hspace{-0.05cm}/{T_q}$$
 +
:$$\Rightarrow
 
  \hspace{0.3cm}r_c =3/4\cdot {\rm log_2} (3) \hspace{-0.05cm}- \hspace{-0.05cm}1 \approx 15.9\, \%
 
  \hspace{0.3cm}r_c =3/4\cdot {\rm log_2} (3) \hspace{-0.05cm}- \hspace{-0.05cm}1 \approx 15.9\, \%
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Genauere Informationen zu den 4B3T-Codes finden Sie im &nbsp;[[Digitalsignalübertragung/Blockweise_Codierung_mit_4B3T-Codes|gleichnamigen Kapitel ]].}}<br>
+
Detailed information about the 4B3T codes can be found in the &nbsp;[[Digital_Signal_Transmission/Blockweise_Codierung_mit_4B3T-Codes|"chapter of the same name"]].}}<br>
  
  
== AKF–Berechnung eines Digitalsignals ==
+
== ACF calculation of a digital signal ==
 
<br>
 
<br>
Zur Vereinfachung der Schreibweise wird im Folgenden &nbsp;$M_c = M$&nbsp; und &nbsp;$T_c = T$&nbsp; gesetzt. Damit kann für das Sendesignal &nbsp;$s(t)$&nbsp; bei einer zeitlich unbegrenzten Nachrichtenfolge mit &nbsp;$a_\nu \in \{ a_1,$ ... , $a_M\}$&nbsp; geschrieben werden:
+
To simplify the notation, &nbsp;$M_c = M$&nbsp; and &nbsp;$T_c = T$&nbsp; is set in the following.&nbsp; Thus,&nbsp; for the transmitted signal &nbsp;$s(t)$&nbsp; in the case of an unlimited-time sybol sequence with &nbsp;$a_\nu \in \{ a_1,$ ... , $a_M\}$&nbsp; can be written:
 +
[[File:P_ID1305__Dig_T_2_1_S4_v2.png|right|frame|Two different binary bipolar transmitted signals|class=fit]]
 +
 
 
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$
 
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$
Diese Signaldarstellung  beinhaltet sowohl die Quellenstatistik $($Amplitudenkoeffizienten &nbsp;$a_\nu$)&nbsp; als auch die Sendeimpulsform &nbsp;$g_s(t)$. Die Grafik zeigt zwei binäre bipolare Sendesignale &nbsp;$s_{\rm G}(t)$&nbsp; und &nbsp;$s_{\rm R}(t)$&nbsp; mit gleichen Amplitudenkoeffizienten &nbsp;$a_\nu$, die sich somit  lediglich durch den Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; unterscheiden.
+
This signal representation includes both the source statistics $($amplitude coefficients &nbsp;$a_\nu$)&nbsp; and the transmission pulse shape &nbsp;$g_s(t)$.&nbsp; The diagram shows two binary bipolar transmitted signals &nbsp;$s_{\rm G}(t)$&nbsp; and &nbsp;$s_{\rm R}(t)$&nbsp; with the same amplitude coefficients &nbsp;$a_\nu$,&nbsp; which thus differ only by the basic transmission pulse &nbsp;$g_s(t)$.&nbsp;
  
[[File:P_ID1305__Dig_T_2_1_S4_v2.png|right|frame|Zwei verschiedene binäre bipolare Sendesignale|class=fit]]
+
It can be seen from this figure that a digital signal is generally non-stationary:
 +
*For the transmitted signal &nbsp;$s_{\rm G}(t)$&nbsp; with narrow Gaussian pulses,&nbsp; the &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Stationary_random_processes|"non-stationarity"]]&nbsp; is obvious,&nbsp; since,&nbsp; for example,&nbsp; at multiples of &nbsp;$T$&nbsp; the variance is &nbsp;$\sigma_s^2 = s_0^2$,&nbsp; while exactly in between &nbsp; $\sigma_s^2 \approx 0$&nbsp; holds.<br>
  
Man erkennt aus dieser Darstellung, dass ein Digitalsignal im Allgemeinen nichtstationär ist:
+
*Also the signal &nbsp;$s_{\rm R}(t)$&nbsp; with NRZ rectangular pulses is non&ndash;stationary in a strict sense,&nbsp; because here the moments at the bit boundaries differ with respect to all other instants.&nbsp; For example, &nbsp;$s_{\rm R}(t = \pm T/2)=0$.
*Beim Sendesignal &nbsp;$s_{\rm G}(t)$&nbsp; mit schmalen Gaußimpulsen ist die &nbsp;[[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Station.C3.A4re_Zufallsprozesse|Nichtstationarität]]&nbsp; offensichtlich, da zum Beispiel bei Vielfachen von &nbsp;$T$&nbsp; die Varianz &nbsp;$\sigma_s^2 = s_0^2$&nbsp; ist, während genau dazwischen &nbsp; $\sigma_s^2 \approx 0$&nbsp; gilt.<br>
 
 
 
 
 
*Auch das Signal &nbsp;$s_{\rm R}(t)$&nbsp; mit NRZ&ndash;rechteckförmigen Impulsen ist im strengen Sinne nichtstationär, da sich hier die Momente an den Bitgrenzen gegenüber allen anderen Zeitpunkten unterscheiden. Beispielsweise gilt &nbsp;$s_{\rm R}(t = \pm T/2)=0$.
 
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Einen Zufallsprozess, dessen Momente &nbsp;$m_k(t) =  m_k(t+ \nu \cdot T)$&nbsp; sich periodisch mit &nbsp;$T$&nbsp; wiederholen, bezeichnet man als '''zyklostationär'''; &nbsp;$k$&nbsp; und &nbsp;$\nu$&nbsp; besitzen bei dieser impliziten Definition ganzzahlige Zahlenwerte.}}
+
$\text{Definition:}$&nbsp;  
 +
*A random process whose moments &nbsp;$m_k(t) =  m_k(t+ \nu \cdot T)$&nbsp; repeat periodically with &nbsp;$T$&nbsp; is called&nbsp; '''cyclostationary'''.
 +
*In this implicit definition, &nbsp;$k$&nbsp; and &nbsp;$\nu$&nbsp; have integer values .}}
  
  
Viele der für &nbsp;[[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Ergodische_Zufallsprozesse |ergodische Prozesse]]&nbsp; gültigen Regeln kann man mit nur geringen Einschränkungen auch auf ''zykloergodische''&nbsp; (und damit auf ''zyklostationäre''&nbsp;) Prozesse anwenden.  
+
Many of the rules valid for &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Ergodic_random_processes|"ergodic processes"]]&nbsp; can also be applied to&nbsp; "cycloergodic"&nbsp; (and hence to&nbsp; "cyclostationary")&nbsp; processes with only minor restrictions.
  
Insbesondere gilt für die &nbsp;[[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Zufallsprozesse_.281.29|Autokorrelationsfunktion]]&nbsp; (AKF) solcher Zufallsprozesse mit Mustersignal &nbsp;$s(t)$:
+
*In particular,&nbsp; for the &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Random_processes|"auto-correlation function"]]&nbsp; $\rm (ACF)$&nbsp; of such random processes with sample signal &nbsp;$s(t)$ holds:
 
:$$\varphi_s(\tau) = {\rm E}\big [s(t) \cdot s(t + \tau)\big ] \hspace{0.05cm}.$$
 
:$$\varphi_s(\tau) = {\rm E}\big [s(t) \cdot s(t + \tau)\big ] \hspace{0.05cm}.$$
Mit obiger Gleichung des Sendesignals kann die AKF als Zeitmittelwert auch wie folgt geschrieben werden:
+
*With the above equation of the transmitted signal,&nbsp; the ACF as a time average can also be written as follows:
 
:$$\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}\frac{1}{T}
 
:$$\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}\frac{1}{T}
 
\cdot  \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu =
 
\cdot  \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu =
Line 163: Line 166:
 
\lambda \cdot T)\,{\rm d} t \hspace{0.05cm}.$$
 
\lambda \cdot T)\,{\rm d} t \hspace{0.05cm}.$$
  
Da die Grenzwert&ndash;, Integral&ndash; und Summenbildung miteinander vertauscht werden darf, kann mit den Substitutionen &nbsp;$N = T_{\rm M}/(2T)$, &nbsp;$\lambda = \kappa- \nu$&nbsp; und &nbsp;$t - \nu \cdot T \to T$&nbsp; hierfür auch geschrieben werden:
+
*Since the limit,&nbsp; integral and sum may be interchanged,&nbsp; with the substitutions
 +
:$$N = T_{\rm M}/(2T), \hspace{0.5cm}\lambda = \kappa- \nu,\hspace{0.5cm}t - \nu \cdot T \to T$$
 +
:for this can also be written:
 
:$$\varphi_s(\tau) = \lim_{T_{\rm M} \to \infty}\frac{1}{T_{\rm M}}
 
:$$\varphi_s(\tau) = \lim_{T_{\rm M} \to \infty}\frac{1}{T_{\rm M}}
 
   \cdot
 
   \cdot
Line 171: Line 176:
 
a_\kappa \cdot  g_s ( t + \tau - \kappa \cdot T )  
 
a_\kappa \cdot  g_s ( t + \tau - \kappa \cdot T )  
 
\,{\rm d} t \hspace{0.05cm}.$$
 
\,{\rm d} t \hspace{0.05cm}.$$
Nun werden zur Abkürzung folgende Größen eingeführt:
+
Now the following quantities are introduced for abbreviation:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die '''diskrete AKF der Amplitudenkoeffizienten''' liefert Aussagen über die linearen statistischen Bindungen der Amplitudenkoeffizienten &nbsp;$a_{\nu}$&nbsp; und &nbsp;$a_{\nu + \lambda}$&nbsp; und besitzt keine Einheit:
+
$\text{Definitions:}$&nbsp;  
 +
*The&nbsp; '''discrete ACF of the amplitude coefficients'''&nbsp; provides statements about the linear statistical bonds of the amplitude coefficients &nbsp;$a_{\nu}$&nbsp; and &nbsp;$a_{\nu + \lambda}$&nbsp; and has no unit:
 
:$$\varphi_a(\lambda) =  \lim_{N \to \infty} \frac{1}{2N +1} \cdot
 
:$$\varphi_a(\lambda) =  \lim_{N \to \infty} \frac{1}{2N +1} \cdot
 
\sum_{\nu = -\infty}^{+\infty} a_\nu \cdot a_{\nu + \lambda}
 
\sum_{\nu = -\infty}^{+\infty} a_\nu \cdot a_{\nu + \lambda}
\hspace{0.05cm}.$$}}
+
\hspace{0.05cm}.$$
 
 
  
{{BlaueBox|TEXT= 
+
*The&nbsp; '''energy ACF'''&nbsp; of the basic transmission pulse is defined similarly to the general&nbsp; (power)&nbsp; auto-correlation function.&nbsp; It is marked with a dot:
$\text{Definition:}$&nbsp; Die '''Energie&ndash;AKF''' des Grundimpulses ist ähnlich definiert wie die allgemeine (Leistungs&ndash;)AKF. Sie wird mit einem Punkt gekennzeichnet. Da &nbsp;$g_s(t)$&nbsp; [[Signaldarstellung/Klassifizierung_von_Signalen#Energiebegrenzte_und_leistungsbegrenzte_Signale| energiebegrenzt]]&nbsp; ist, kann auf die Division durch &nbsp;$T_{\rm M}$&nbsp; und den Grenzübergang verzichtet werden:
 
 
:$$\varphi^{^{\bullet} }_{gs}(\tau) =
 
:$$\varphi^{^{\bullet} }_{gs}(\tau) =
 
\int_{-\infty}^{+\infty} g_s ( t ) \cdot  g_s ( t +
 
\int_{-\infty}^{+\infty} g_s ( t ) \cdot  g_s ( t +
\tau)\,{\rm d} t \hspace{0.05cm}.$$}}
+
\tau)\,{\rm d} t \hspace{0.05cm}.$$
 
+
:&rArr; &nbsp; Since &nbsp;$g_s(t)$ is &nbsp; [[Signal_Representation/Signal_classification#Energy.E2.80.93Limited_and_Power.E2.80.93Limited_Signals|"energy-limited"]],&nbsp; the division by &nbsp;$T_{\rm M}$&nbsp; and the boundary transition can be omitted.
  
{{BlaueBox|TEXT= 
+
*For the&nbsp; '''auto-correlation function of a digital signal''' &nbsp;$s(t)$&nbsp; holds in general:
$\text{Definition:}$&nbsp; Für die '''Autokorrelationsfunktion eines Digitalsignals''' &nbsp;$s(t)$&nbsp; gilt allgemein:
 
 
:$$\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T}
 
:$$\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T}
 
\cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet} }_{gs}(\tau -
 
\cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet} }_{gs}(\tau -
 
\lambda \cdot T)\hspace{0.05cm}.$$
 
\lambda \cdot T)\hspace{0.05cm}.$$
Das Signal &nbsp;$s(t)$&nbsp; kann dabei binär oder mehrstufig, unipolar oder bipolar sowie redundanzfrei oder redundant (leitungscodiert) sein. Die Impulsform wird durch die Energie&ndash;AKF berücksichtigt.}}
+
:&rArr; &nbsp; $s(t)$&nbsp; can be binary or multilevel,&nbsp; unipolar or bipolar,&nbsp; redundancy-free or redundant (line-coded). The pulse shape is taken into account by the energy ACF.}}
  
  
Beschreibt das Digitalsignal &nbsp;$s(t)$&nbsp; einen Spannungsverlauf, so hat die Energie&ndash;AKF des Grundimpulses &nbsp;$g_s(t)$&nbsp; die Einheit &nbsp;$\rm V^2s$&nbsp; und &nbsp;$\varphi_s(\tau)$&nbsp; die Einheit &nbsp;$\rm V^2$, jeweils bezogen auf den Widerstand &nbsp;$1 \ \rm \Omega$.
+
:<u>Note:</u>
 +
:*If the digital signal &nbsp;$s(t)$&nbsp; describes a voltage waveform,  
 +
::*the energy ACF of the basic transmission pulse &nbsp;$g_s(t)$&nbsp; has the unit &nbsp;$\rm V^2s$,
 +
::*the auto-correlation function &nbsp;$\varphi_s(\tau)$&nbsp; of the digital signal &nbsp;$s(t)$&nbsp; has the unit &nbsp;$\rm V^2$&nbsp; $($each related to the resistor &nbsp;$1 \ \rm \Omega)$.
  
 
+
:*In the strict sense of system theory,&nbsp; one would have to define the ACF of the amplitude coefficients as follows:
<i>Anmerkung:</i> &nbsp; Im strengen Sinne der Systemtheorie müsste man die AKF der Amplitudenkoeffizienten wie folgt definieren:
+
::$$\varphi_{a , \hspace{0.08cm}\delta}(\tau) =  \sum_{\lambda = -\infty}^{+\infty}
:$$\varphi_{a , \hspace{0.08cm}\delta}(\tau) =  \sum_{\lambda = -\infty}^{+\infty}
 
 
\varphi_a(\lambda)\cdot \delta(\tau - \lambda \cdot
 
\varphi_a(\lambda)\cdot \delta(\tau - \lambda \cdot
 
T)\hspace{0.05cm}.$$
 
T)\hspace{0.05cm}.$$
Damit würde sich die obige Gleichung wie folgt darstellen:
+
::&rArr; &nbsp; Thus,&nbsp; the above equation would be as follows:
:$$\varphi_s(\tau) ={1}/{T} \cdot \varphi_{a , \hspace{0.08cm}
+
::$$\varphi_s(\tau) ={1}/{T} \cdot \varphi_{a , \hspace{0.08cm}
 
\delta}(\tau)\star \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot
 
\delta}(\tau)\star \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot
 
T) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot
 
T) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot
 
\varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda
 
\varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda
 
\cdot T)\hspace{0.05cm}.$$
 
\cdot T)\hspace{0.05cm}.$$
Zur einfacheren Darstellung wird im Folgenden die diskrete AKF der Amplitudenkoeffizienten
+
::&rArr; &nbsp; For simplicity,&nbsp; the discrete ACF of amplitude coefficients &nbsp; &#8658; &nbsp; $\varphi_a(\lambda)$&nbsp; is written&nbsp; '''without these Dirac delta functions in the following'''.<br>
&nbsp; &#8658; &nbsp; $\varphi_a(\lambda)$&nbsp;
 
ohne diese Diracfunktionen geschrieben.<br>
 
  
  
== LDS–Berechnung eines Digitalsignals ==
+
== PSD calculation of a digital signal ==
 
<br>
 
<br>
Die Entsprechungsgröße zur Autokorrelationsfunktion (AKF) eines Zufallssignals &nbsp; &rArr; &nbsp; $\varphi_s(\tau)$&nbsp; ist im Frequenzbereich das [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|Leistungsdichtespektrum]]&nbsp; (LDS) &nbsp; &rArr; &nbsp; ${\it \Phi}_s(f)$, das mit der AKF über das Fourierintegral in einem festen Bezug steht:<br>
+
The corresponding quantity to the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; of a random signal &nbsp; &rArr; &nbsp; $\varphi_s(\tau)$&nbsp; in the frequency domain is the&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Wiener-Khintchine_Theorem|"power-spectral density"]]&nbsp; $\rm (PSD)$ &nbsp; &rArr; &nbsp; ${\it \Phi}_s(f)$,&nbsp; which is in a fixed relation with the ACF via the Fourier integral:<br>
 
:$$\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
:$$\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
   {\it \Phi}_s(f)  =  \int_{-\infty}^{+\infty} \varphi_s(\tau) \cdot
 
   {\it \Phi}_s(f)  =  \int_{-\infty}^{+\infty} \varphi_s(\tau) \cdot
 
   {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \tau}
 
   {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \tau}
 
   \,{\rm d} \tau  \hspace{0.05cm}.$$
 
   \,{\rm d} \tau  \hspace{0.05cm}.$$
Berücksichtigt man den Zusammenhang zwischen Energie&ndash;AKF und Energiespektrum,
+
*Considering the relation between energy ACF and energy spectrum,
 
:$$\varphi^{^{\hspace{0.05cm}\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
:$$\varphi^{^{\hspace{0.05cm}\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
   {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{gs}(f)  = |G_s(f)|^2
 
   {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{gs}(f)  = |G_s(f)|^2
 
   \hspace{0.05cm},$$
 
   \hspace{0.05cm},$$
sowie den &nbsp;[[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz]], so kann das Leistungsdichtespektrum des Digitalsignals &nbsp;$s(t)$&nbsp; in folgender Weise dargestellt werden:
+
:and the &nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|"shifting theorem"]],&nbsp; the&nbsp; '''power-spectral density of the digital signal''' &nbsp;$s(t)$&nbsp; can be represented in the following way:
 
:$${\it \Phi}_s(f)  =    \sum_{\lambda =
 
:$${\it \Phi}_s(f)  =    \sum_{\lambda =
 
-\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot {\it
 
-\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot {\it
Line 231: Line 234:
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot \cos (
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot \cos (
 
2 \pi  f \lambda  T)\hspace{0.05cm}.$$
 
2 \pi  f \lambda  T)\hspace{0.05cm}.$$
Hierbei ist berücksichtigt, dass &nbsp;${\it \Phi}_s(f)$&nbsp; und &nbsp;$|G_s(f)|^2$&nbsp; reellwertig sind und gleichzeitig &nbsp;$\varphi_a(-\lambda) =\varphi_a(+\lambda)$&nbsp; gilt.<br><br>
+
:Here it is considered that &nbsp;${\it \Phi}_s(f)$&nbsp; and &nbsp;$|G_s(f)|^2$&nbsp; are real-valued and at the same time &nbsp;$\varphi_a(-\lambda) =\varphi_a(+\lambda)$&nbsp; holds.<br><br>
Definiert man nun die '''spektrale Leistungsdichte der Amplitudenkoeffizienten''' zu
+
*If we now define the&nbsp; '''spectral power density of the amplitude coefficients'''&nbsp; to be
 
:$${\it \Phi}_a(f) =  \sum_{\lambda =
 
:$${\it \Phi}_a(f) =  \sum_{\lambda =
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm
Line 239: Line 242:
 
1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi  f  
 
1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi  f  
 
\lambda T) \hspace{0.05cm},$$
 
\lambda T) \hspace{0.05cm},$$
so erhält man den folgenden Ausdruck:
+
:then the following expression is obtained:
 
:$${\it \Phi}_s(f) =  {\it \Phi}_a(f) \cdot  {1}/{T} \cdot
 
:$${\it \Phi}_s(f) =  {\it \Phi}_a(f) \cdot  {1}/{T} \cdot
 
|G_s(f)|^2 \hspace{0.05cm}.$$
 
|G_s(f)|^2 \hspace{0.05cm}.$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Das Leistungsdichtespektrum &nbsp;${\it \Phi}_s(f)$&nbsp; eines Digitalsignals &nbsp;$s(t)$&nbsp; kann als Produkt zweier Funktionen dargestellt werden::
+
$\text{Conclusion:}$&nbsp; The power-spectral density &nbsp;${\it \Phi}_s(f)$&nbsp; of a digital signal &nbsp;$s(t)$&nbsp; can be represented as the product of two functions:
*Der erste Term &nbsp;${\it \Phi}_a(f)$&nbsp; ist dimensionslos und beschreibt die spektrale Formung des Sendesignals durch ''die statistischen Bindungen der Quelle''.<br>
+
#The first term &nbsp;${\it \Phi}_a(f)$&nbsp; is dimensionless and describes the spectral shaping of the transmitted signal by&nbsp; <u>the statistical constraints of the source</u>.<br>
*Dagegen berücksichtigt &nbsp;$\vert G_s(f) \vert^2$&nbsp; die ''spektrale Formung durch den Sendegrundimpuls'' &nbsp;$g_s(t)$. Je schmaler dieser ist, desto breiter ist &nbsp;$\vert G_s(f) \vert^2$&nbsp; und um so größer ist damit der Bandbreitenbedarf.<br>
+
#In contrast, &nbsp;$\vert G_s(f) \vert^2$&nbsp; takes into account the&nbsp; <u>spectral shaping by the basic transmission pulse</u> &nbsp;$g_s(t)$.
*Das Energiespektrum hat die Einheit &nbsp;$\rm V^2s/Hz$&nbsp; und  das Leistungsdichtespektrum &ndash; aufgrund der Division durch den Symbolabstand &nbsp;$T$&nbsp; &ndash; die Einheit &nbsp;$\rm V^2/Hz$. Beide Angaben gelten wieder nur  für den Widerstand &nbsp;$1 \ \rm \Omega$.}}
+
#The narrower &nbsp;$g_s(t)$&nbsp; is,&nbsp; the broader is the energy spectrum&nbsp; $\vert G_s(f) \vert^2$&nbsp; and thus the larger is the bandwidth requirement.<br>
 +
#The energy spectrum&nbsp; $\vert G_s(f) \vert^2$&nbsp; has the unit &nbsp;$\rm V^2s/Hz$&nbsp; and the power-spectral density&nbsp;${\it \Phi}_s(f)$&nbsp; &ndash; due to the division by symbol duration &nbsp;$T$&nbsp; &ndash; the unit &nbsp;$\rm V^2/Hz$.  
 +
#Both specifications are again only valid for the resistor &nbsp;$1 \ \rm \Omega$.}}
  
  
== AKF und LDS bei bipolaren Binärsignalen ==
+
== ACF and PSD for bipolar binary signals ==
 
<br>
 
<br>
Die bisherigen Ergebnisse werden nun an Beispielen verdeutlicht. Ausgehend von <i>binären bipolaren Amplitudenkoeffizienten</i> &nbsp;$a_\nu \in \{-1, +1\}$&nbsp; erhält man, falls keine  Bindungen zwischen den einzelnen Amplitudenkoeffizienten &nbsp;$a_\nu$&nbsp; bestehen:<br>
+
The previous results are now illustrated by examples.&nbsp; Starting from binary bipolar amplitude coefficients  &nbsp;$a_\nu \in \{-1, +1\}$,&nbsp; if there are no bonds between the individual amplitude coefficients &nbsp;$a_\nu$,&nbsp; we obtain:<br>
 +
[[File:P_ID1306__Dig_T_2_1_S6_v2.png|right|frame|Signal section&nbsp; ACF and PSD for binary bipolar signaling|class=fit]]
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} 1   
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} 1   
 
  \\ 0 \\  \end{array} \right.\quad
 
  \\ 0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c}\lambda = 0, \\  \lambda \ne 0 \\
 
\begin{array}{*{20}c}\lambda = 0, \\  \lambda \ne 0 \\
 
\end{array}
 
\end{array}
Line 261: Line 267:
 
{1}/{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau)\hspace{0.05cm}.$$
 
{1}/{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau)\hspace{0.05cm}.$$
  
Die Grafik zeigt zwei Signalausschnitte jeweils mit Rechteckimpulsen &nbsp;$g_s(t)$, die dementsprechend zu einer dreieckförmigen AKF und zu einem &nbsp;$\rm si^2$&ndash;förmigen Leistungsdichtespektrum (LDS) führen.
+
The graph shows two signal sections each with rectangular pulses &nbsp;$g_s(t)$,&nbsp; which accordingly lead to a triangular auto-correlation function&nbsp; $\rm (ACF)$&nbsp; and to a &nbsp;$\rm sinc^2$&ndash;shaped power-spectral density&nbsp; $\rm (PSD)$.
[[File:P_ID1306__Dig_T_2_1_S6_v2.png|right|frame|Signalausschnitt, AKF und LDS bei binärer bipolarer Signalisierung|class=fit]]
+
*The left pictures describe NRZ signaling &nbsp; &rArr; &nbsp; the width &nbsp;$T_{\rm S}$&nbsp; of the basic pulse is equal to the distance &nbsp;$T$&nbsp; of two transmitted pulses&nbsp; (source symbols).  
*Die linken Bilder beschreiben eine NRZ&ndash;Signalisierung.  Das heißt: &nbsp; Die Breite &nbsp;$T_{\rm S}$&nbsp; des Grundimpulses ist gleich dem Abstand &nbsp;$T$&nbsp; zweier Sendeimpulse (Quellensymbole).  
+
*In contrast,&nbsp; the right pictures apply to an RZ pulse with the duty cycle &nbsp;$T_{\rm S}/T = 0.5$.  
*Dagegen gelten die rechten Bilder für einen RZ&ndash;Impuls mit dem Tastverhältnis &nbsp;$T_{\rm S}/T = 0.5$.  
 
  
  
Man erkennt aus diesen Darstellungen:
+
One can see from the left representation&nbsp; $\rm (NRZ)$:
  
*Bei NRZ&ndash;Rechteckimpulsen ergibt sich für die (auf den Widerstand &nbsp;$1 \ \rm \Omega$&nbsp; bezogene) Sendeleistung &nbsp;$P_{\rm S} = \varphi_s(\tau = 0) = s_0^2$&nbsp; und die dreieckförmige AKF ist auf den Bereich &nbsp;$|\tau| \le T_{\rm S}= T$&nbsp; beschränkt.<br>
+
#For NRZ rectangular pulses,&nbsp; the transmit power&nbsp; (reference: &nbsp;$1 \ \rm \Omega$&nbsp; resistor)&nbsp; is &nbsp;$P_{\rm S} = \varphi_s(\tau = 0) = s_0^2$.<br>
 +
#The triangular ACF is limited to the range &nbsp;$|\tau| \le T_{\rm S}= T$.&nbsp; <br>
 +
#The PSD &nbsp;${\it \Phi}_s(f)$&nbsp; as the Fourier transform of &nbsp;$\varphi_s(\tau)$&nbsp; is &nbsp;$\rm sinc^2$&ndash;shaped with equidistant zeros at distance &nbsp;$1/T$.<br>
 +
# The area under the PSD curve again gives the transmit power &nbsp;$P_{\rm S} = s_0^2$.<br>
  
  
*Das LDS &nbsp;${\it \Phi}_s(f)$&nbsp; als die Fouriertransformierte von &nbsp;$\varphi_s(\tau)$&nbsp; ist &nbsp;$\rm si^2$&ndash;förmig mit äquidistanten Nullstellen im Abstand &nbsp;$1/T$. Die Fläche unter der LDS&ndash;Kurve ergibt wiederum die Sendeleistung &nbsp;$P_{\rm S} = s_0^2$.<br>
+
In the case of RZ signaling&nbsp; (right column),&nbsp; the triangular ACF is smaller in height and width by a factor of &nbsp;$T_{\rm S}/T = 0.5$,&nbsp; resp.,&nbsp; compared to the left image.<br>
 
 
 
 
*Im Fall der RZ&ndash;Signalisierung (rechte Rubrik) ist die dreieckförmige AKF gegenüber dem linken Bild in Höhe und Breite jeweils um den Faktor &nbsp;$T_{\rm S}/T = 0.5$&nbsp; kleiner.<br>
 
 
<br clear=all>
 
<br clear=all>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Vergleicht man die beiden Leistungsdichtespektren (untere Bilder), so erkennt man für &nbsp;$T_{\rm S}/T = 0.5$&nbsp; (RZ&ndash;Impuls) gegenüber &nbsp;$T_{\rm S}/T = 1$&nbsp; (NRZ&ndash;Impuls) eine Verkleinerung in der Höhe um den Faktor &nbsp;$4$&nbsp; und eine Verbreiterung um den Faktor &nbsp;$2$. Die Fläche (Leistung) ist somit halb so groß, da in der Hälfte der Zeit &nbsp;$s(t) = 0$&nbsp; gilt.}}
+
$\text{Conclusion:}$&nbsp; If one compares the two power-spectral densities&nbsp; $($lower pictures$)$,&nbsp; one recognizes for &nbsp;$T_{\rm S}/T = 0.5$&nbsp; $($RZ pulse$)$&nbsp; compared to &nbsp;$T_{\rm S}/T = 1$&nbsp; $($NRZ pulse$)$&nbsp;
 +
* a reduction in height by a factor of &nbsp;$4$,&nbsp;
 +
*a broadening by a factor of &nbsp;$2$.&nbsp;
 +
 
 +
:&rArr; &nbsp; The area&nbsp; $($power$)$&nbsp; in the right sketch is thus half as large,&nbsp; since in half the time &nbsp;$s(t) = 0$.&nbsp; }}
  
  
== AKF und LDS bei unipolaren Binärsignalen ==
+
== ACF and PSD for unipolar binary signals ==
 
<br>
 
<br>
Wir gehen weiterhin von NRZ&ndash; bzw. RZ&ndash;Rechteckimpulsen aus. Die binären Amplitudenkoeffizienten seien aber nun unipolar: &nbsp; $a_\nu \in \{0, 1\}$. <br>Dann gilt für die diskrete AKF der Amplitudenkoeffizienten:
+
We continue to assume NRZ or RZ rectangular pulses. But let the binary amplitude coefficients now be unipolar: &nbsp; $a_\nu \in \{0, 1\}$.&nbsp; Then for the discrete ACF of the amplitude coefficients holds:
 +
[[File:EN_Dig_T_2_1_S7_2.png|right|frame|Signal section,&nbsp; ACF and PSD with binary unipolar signaling|class=fit]]
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} m_2 = 0.5  \\
 
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} m_2 = 0.5  \\
 
  \\ m_1^2 = 0.25 \\  \end{array} \right.\quad
 
  \\ m_1^2 = 0.25 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\ {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  \\ {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c}\lambda = 0, \\ \\  \lambda \ne 0 \hspace{0.05cm}.\\
 
\begin{array}{*{20}c}\lambda = 0, \\ \\  \lambda \ne 0 \hspace{0.05cm}.\\
 
\end{array}$$
 
\end{array}$$
  
Vorausgesetzt sind hier gleichwahrscheinliche Amplitudenkoeffizienten &nbsp; &#8658; &nbsp; ${\rm Pr}(a_\nu =0) = {\rm Pr}(a_\nu =1) = 0.5$&nbsp; ohne statistische Bindungen, so dass sowohl der &nbsp;[[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße#Quadratischer_Mittelwert_.E2.80.93_Varianz_.E2.80.93_Streuung|quadratische Mittelwert]]&nbsp; $m_2$ (Leistung) als auch der &nbsp;[[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße#Linearer_Mittelwert_-_Gleichanteil|lineare Mittelwert]]&nbsp; $m_1$&nbsp; (Gleichanteil) jeweils &nbsp;$0.5$&nbsp; sind.<br>
+
Assumed here are equal probability amplitude coefficients &nbsp; &#8658; &nbsp; ${\rm Pr}(a_\nu =0) = {\rm Pr}(a_\nu =1) = 0.5$&nbsp; with no statistical ties, so that both the &nbsp;[[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#Second_order_moment_.E2.80.93_power_.E2.80.93_variance_.E2.80.93_standard_deviation|"power"]]&nbsp; $m_2$ and the &nbsp;[[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#First_order_moment_.E2.80.93_linear_mean_.E2.80.93_DC_component|"linear mean"]]&nbsp; $m_1$&nbsp; $($DC component$)$&nbsp; are &nbsp;$0.5$,&nbsp; respectively.<br>
  
Die Grafik zeigt einen Signalausschnitt, die AKF und das LDS mit unipolaren Amplitudenkoeffizienten,
+
The graph shows a signal section, the ACF and the PSD with unipolar amplitude coefficients,
[[File:P_ID1307__Dig_T_2_1_S7_100.png|right|frame|Signalausschnitt, AKF und LDS bei binärer unipolarer Signalisierung|class=fit]]
+
*left for rectangular NRZ pulses &nbsp;$(T_{\rm S}/T = 1)$,&nbsp; and<br>
*links für rechteckförmige NRZ&ndash;Impulse &nbsp;$(T_{\rm S}/T = 1)$&nbsp;, und<br>
+
*right for RZ pulses with duty cycle &nbsp;$T_{\rm S}/T = 0.5$.
*rechts für RZ&ndash;Impulse mit dem Tastverhältnis &nbsp;$T_{\rm S}/T = 0.5$.
 
  
  
Es gibt folgende Unterschiede gegenüber  &nbsp;[[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung#AKF_und_LDS_bei_bipolaren_Bin.C3.A4rsignalen|bipolarer Signalisierung]]:
+
There are the following differences compared to &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#ACF_and_PSD_for_bipolar_binary_signals|"bipolar signaling"]]:
*Durch die Addition der unendlich vielen Dreieckfunktionen im Abstand &nbsp;$T$, alle mit gleicher Höhe, ergibt sich für die AKF in der linken Grafik (NRZ) ein konstanter Gleichanteil &nbsp;$s_0^2/4$.
+
*Adding the infinite number of triangular functions at distance &nbsp;$T$&nbsp; (all with the same height)&nbsp; results in a constant DC component &nbsp;$s_0^2/4$&nbsp; for the ACF in the left graph&nbsp; (NRZ).
  
*Daneben verbleibt im Bereich &nbsp;$|\tau| \le T_{\rm S}$&nbsp; ein einzelnes Dreieck ebenfalls mit Höhe &nbsp;$s_0^2/4$, das im Leistungsdichtespektrum (LDS) zum &nbsp;$\rm si^2$&ndash;förmigen Verlauf führt (blaue Kurve).<br>
+
*In addition,&nbsp; a single triangle also with height &nbsp;$s_0^2/4$ remains in the region &nbsp;$|\tau| \le T_{\rm S}$,&nbsp; which leads to the &nbsp;$\rm sinc^2$&ndash;shaped blue curve in the power-spectral density (PSD).<br>
  
*Der Gleichanteil in der AKF hat im LDS eine Diracfunktion bei der Frequenz &nbsp;$f = 0$&nbsp; mit dem Gewicht &nbsp;$s_0^2/4$ zur Folge. Dadurch wird der LDS&ndash;Wert &nbsp;${\it \Phi}_s(f=0)$&nbsp; unendlich groß.<br>
+
*The DC component in the ACF results in a Dirac delta function at frequency &nbsp;$f = 0$&nbsp; with weight &nbsp;$s_0^2/4$ in the PSD. Thus the PSD value &nbsp;${\it \Phi}_s(f=0)$&nbsp; becomes infinitely large.<br>
  
  
Aus der rechten Grafik &ndash; gültig für &nbsp;$T_{\rm S}/T = 0.5$ &ndash; erkennt man, dass sich nun die AKF aus einem periodischen Dreiecksverlauf (im mittleren Bereich gestrichelt eingezeichnet) und zusätzlich noch aus einem einmaligen Dreieck im Bereich &nbsp;$|\tau| \le T_{\rm S} = T/2$&nbsp; mit Höhe &nbsp;$s_0^2/8$&nbsp; zusammensetzt.
+
From the right graph &ndash; valid for &nbsp;$T_{\rm S}/T = 0.5$ &ndash; it can be seen that now the ACF is composed of a periodic triangular function&nbsp; (drawn dashed in the middle region)&nbsp; and additionally of a unique triangle in the region &nbsp;$|\tau| \le T_{\rm S} = T/2$&nbsp; with height &nbsp;$s_0^2/8$.&nbsp;
  
*Diese einmalige Dreieckfunktion führt zum kontinuierlichen, &nbsp;$\rm si^2$&ndash;förmigen Anteil (blaue Kurve) von &nbsp;${\it \Phi}_s(f)$&nbsp; mit der ersten Nullstelle bei &nbsp;$1/T_{\rm S} = 2/T$.
+
*This unique triangle function leads to the continuous &nbsp;$\rm sinc^2$&ndash;shaped component (blue curve) of &nbsp;${\it \Phi}_s(f)$&nbsp; with the first zero at &nbsp;$1/T_{\rm S} = 2/T$.
 
   
 
   
*Dagegen führt die periodische Dreieckfunktion nach den Gesetzmäßigkeiten der &nbsp;[[Signaldarstellung/Fourierreihe#Allgemeine_Beschreibung| Fourierreihe]]&nbsp; zu einer unendlichen Summe von Diracfunktionen mit unterschiedlichen Gewichten im Abstand &nbsp;$1/T$&nbsp; (rot gezeichnet).<br>
+
*In contrast,&nbsp; the periodic triangular function leads to an infinite sum of Dirac delta functions with different weights at the distance &nbsp;$1/T$&nbsp; (drawn in red)&nbsp; according to the laws of the &nbsp;[[Signal_Representation/Fourier_Series#General_description|"Fourier series"]].&nbsp;<br>
  
*Die Gewichte der Diracfunktionen sind proportional zum kontinuierlichen (blauen) LDS&ndash;Anteil. Das maximale Gewicht &nbsp;$s_0^2/8$&nbsp; besitzt die Diraclinie bei &nbsp;$f = 0$. Dagegen sind die Diraclinien bei &nbsp;$\pm 2/T$&nbsp; und Vielfachen davon nicht vorhanden bzw. besitzen jeweils das Gewicht &nbsp;$0$, da hier auch der kontinuierliche LDS&ndash;Anteil Nullstellen besitzt.<br>
+
*The weights of the Dirac delta functions are proportional to the continuous (blue) PSD component.&nbsp; The Dirac delta line at &nbsp;$f = 0$ has the maximum weight &nbsp;$s_0^2/8$.&nbsp; In contrast,&nbsp; the Dirac delta lines at &nbsp;$\pm 2/T$&nbsp; and multiples thereof do not exist or have the weight &nbsp;$0$ in each case,&nbsp; since the continuous PSD component also has zeros here.<br>
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Hinweis:}$&nbsp;   
+
$\text{Note:}$&nbsp;   
*Unipolare Amplitudenkoeffizienten treten zum Beispiel bei <i>optischen Übertragungssystemen</i>&nbsp; auf.
+
*Unipolar amplitude coefficients occur for example in optical transmission systems.&nbsp;
*In späteren Kapiteln  beschränken wir uns aber meist auf die bipolare Signalisierung.}}
+
*In later chapters, however, we mostly restrict ourselves to bipolar signaling.}}
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:2.1 AKF und LDS nach Codierung|Aufgabe 2.1: AKF und LDS nach Codierung]]
+
[[Aufgaben:Exercise_2.1:_ACF_and_PSD_with_Coding|Exercise 2.1: ACF and PSD with Coding]]
  
[[Aufgaben:2.1Z Zur äquivalenten Bitrate|Aufgabe 2.1Z: Zur äquivalenten Bitrate]]
+
[[Aufgaben:Exercise_2.1Z:_About_the_Equivalent_Bitrate|Exercise 2.1Z: About the Equivalent Bitrate]]
  
[[Aufgaben:2.2 Binäre bipolare Rechtecke|Aufgabe: 2.2 Binäre bipolare Rechtecke]]
+
[[Aufgaben:Exercise_2.2:_Binary_Bipolar_Rectangles|Exercise 2.2: Binary Bipolar Rectangles]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:53, 23 March 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


The second main chapter deals with so-called  transmission coding,  which is sometimes also referred to as  "line coding"  in literature.  In this process,  an adaptation of the digital transmitted signal to the characteristics of the transmission channel is achieved through the targeted addition of redundancy.  In detail,  the following are dealt with:

  1.   Some basic concepts of information theory such as  »information content«  and  »entropy«,
  2.   the  »auto-correlation function«  and the  »power-spectral densities«  of digital signals,
  3.   the  »redundancy-free coding«  which leads to a non-binary transmitted signal,
  4.   the calculation of  »symbol and bit error probability«  for  »multilevel systems« ,
  5.   the so-called  »4B3T codes«  as an important example of  »block-wise coding«,  and
  6.   the  »pseudo-ternary codes«,  each of which realizes symbol-wise coding.


The description is in baseband throughout and some simplifying assumptions  (among others:  no intersymbol interfering)  are still made.

Information content – Entropy – Redundancy


We assume an  $M$–level digital source that outputs the following source signal:

$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm}a_\nu \in \{ a_1, \text{...} \ , a_\mu , \text{...} \ , a_{ M}\}.$$
  • The source symbol sequence  $\langle q_\nu \rangle$  is thus mapped to the sequence  $\langle a_\nu \rangle$  of the dimensionless amplitude coefficients.
  • Simplifying,  first for the time indexing variable  $\nu = 1$, ... , $N$  is set,  while the ensemble indexing variable  $\mu$  can assume values between  $1$  and level number  $M$.


If the  $\nu$–th sequence element is equal to  $a_\mu$, its  information content  can be calculated with probability  $p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$  as follows:

$$I_\nu = \log_2 \ (1/p_{\nu \mu})= {\rm ld} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit: bit)}\hspace{0.05cm}.$$

The logarithm to the base 2   ⇒   $\log_2(x)$ is often also called  ${\rm ld}(x)$   ⇒   "logarithm dualis".  With the numerical evaluation the reference unit "bit" (from:  "binary digit" ) is added.  With the tens logarithm  $\lg(x)$  and the natural logarithm  $\ln(x)$  applies:

$${\rm log_2}(x) = \frac{{\rm lg}(x)}{{\rm lg}(2)}= \frac{{\rm ln}(x)}{{\rm ln}(2)}\hspace{0.05cm}.$$

According to this definition,  which goes back to  "Claude E. Shannon",  the smaller the probability of occurrence of a symbol,  the greater its information content.

$\text{Definition:}$  Entropy  is the  "average information content"  of a sequence element  ("symbol").

  • This important information-theoretical quantity can be determined as a time average as follows:
$$H = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N I_\nu = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N \hspace{0.1cm}{\rm log_2}\hspace{0.05cm} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit: bit)}\hspace{0.05cm}.$$
  • Of course,  the entropy can also be calculated by ensemble averaging  (over the symbol set).


Note:

  • If the sequence elements  $a_\nu$  are statistically independent of each other,  the probabilities  $p_{\nu\mu} = p_{\mu}$  are independent of  $\nu$  and we obtain in this special case:
$$H = \sum_{\mu = 1}^M p_{ \mu} \cdot {\rm log_2}\hspace{0.1cm} \ (1/p_{\mu})\hspace{0.05cm}.$$
  • If,  on the other hand,  there are statistical bindings between neighboring amplitude coefficients  $a_\nu$,  the more complicated equation according to the above definition must be used for entropy calculation.


$\text{Definitions:}$ 

  • The maximum value of entropy   ⇒   decision content  is obtained whenever the  $M$  occurrence probabilities  (of the statistically independent symbols)  are all equal  $(p_{\mu} = 1/M)$:
$$H_{\rm max} = \sum_{\mu = 1}^M \hspace{0.1cm}\frac{1}{M} \cdot {\rm log_2} (M) = {\rm log_2} (M) \cdot \sum_{\mu = 1}^M \hspace{0.1cm} \frac{1}{M} = {\rm log_2} (M) \hspace{1cm}\text{(unit: bit)}\hspace{0.05cm}.$$
  • The  relative redundancy  is then the following quotient:
$$r = \frac{H_{\rm max}-H}{H_{\rm max} }.$$
  • Since  $0 \le H \le H_{\rm max}$  always holds,  the relative redundancy can take values between  $0$  and  $1$  (including these limits).


From the derivation of these descriptive quantities,  it is obvious that a redundancy-free  $(r=0)$  digital signal must satisfy the following properties:

  1. The amplitude coefficients  $a_\nu$  are statistically independent   ⇒   $p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$  is identical for all  $\nu$. 
  2. The  $M$  possible coefficients  $a_\mu$  occur with equal probability  $p_\mu = 1/M$. 


$\text{Example 1:}$  If one analyzes a German text on the basis of  $M = 32$  characters:

$$\text{a, ... , z, ä, ö, ü, ß, spaces, punctuation, no distinction between upper and lower case},$$

the result is the decision content  $H_{\rm max} = 5 \ \rm bit/symbol$.  Due to

  • the different frequencies  $($for example,  "e"  occurs significantly more often than  "u"$)$,  and
  • statistical ties  $($for example  "q"  is followed by the letter  "u"  much more often than  "e"$)$,


according to  "Karl Küpfmüller",  the entropy of the German language is only  $H = 1.3 \ \rm bit/character$.  This results in a relative redundancy of  $r \approx (5 - 1.3)/5 = 74\%$.

For English texts,  "Claude Shannon" has given the entropy as  $H = 1 \ \rm bit/character$  and the relative redundancy as  $r \approx 80\%$.


Source coding – Channel coding – Line coding


"Coding"  is the conversion of the source symbol sequence  $\langle q_\nu \rangle$  with symbol set size  $M_q$  into an encoder symbol sequence  $\langle c_\nu \rangle$  with symbol set size  $M_c$.  Usually,  coding manipulates the redundancy contained in a digital signal.  Often – but not always –  $M_q$  and  $M_c$  are different.

A distinction is made between different types of coding depending on the target direction:

  • The task of  source coding  is redundancy reduction for data compression,  as applied for example in image coding.  By exploiting statistical ties between the individual points of an image or between the brightness values of a point at different times  (in the case of moving image sequences),  methods can be developed that lead to a noticeable reduction in the amount of data  (measured in  "bit"  or "byte"),  while maintaining virtually the same  (subjective)  image quality.  A simple example of this is "differential pulse code modulation"  $\rm (DPCM)$.
  • On the other hand,  with  channel coding  a noticeable improvement in the transmission behavior is achieved by using a redundancy specifically added at the transmitter to detect and correct transmission errors at the receiver end.  Such codes,  the most important of which are block codes,  convolutional codes and turbo codes,  are particularly important in the case of heavily disturbed channels.  The greater the relative redundancy of the encoded signal,  the better the correction properties of the code,  albeit at a reduced user data rate.
  • Line coding  is used to adapt the transmitted signal to the spectral characteristics of the transmission channel and the receiving equipment by recoding the source symbols.  For example,  in the case of a channel with the frequency response characteristic  $H_{\rm K}(f=0) = 0$,  over which consequently no DC signal can be transmitted,  transmission coding must ensure that the encoder symbol sequence contains neither a long  $\rm L$ sequence nor a long  $\rm H$ sequence.


In the current book  "Digital Signal Transmission"  we deal exclusively with this last,  transmission-technical aspect.

  • "Channel Coding"  has its own book dedicated to it in our learning tutorial.
  • Source coding is covered in detail in the book  "Information Theory"  (main chapter 2).
  • "Speech coding"  – described in the book "Examples of Communication Systems" –  is a special form of source coding.


System model and description variables


In the following we always assume the block diagram sketched on the right and the following agreements:

Block diagram for the description of multilevel and coded transmission systems
  • Let the digital source signal  $q(t)$  be binary  $(M_q = 2)$  and redundancy-free  $(H_q = 1 \ \rm bit/symbol)$.
  • With the symbol duration  $T_q$  results for the symbol rate of the source:
$$R_q = {H_{q}}/{T_q}= {1}/{T_q}\hspace{0.05cm}.$$
  • Because of  $M_q = 2$,  in the following we also refer to  $T_q$  as the  "bit duration"  and  $R_q$  as the  "bit rate".
  • For the comparison of transmission systems with different coding,  $T_q$  and  $R_q$  are always assumed to be constant.  Note:  In later chapters we use  $T_{\rm B}=T_q$  and  $R_{\rm B}=R_q$ for this purpose.
  • The encoded signal  $c(t)$  and also the transmitted signal  $s(t)$  after pulse shaping with  $g_s(t)$  have the level number  $M_c$,  the symbol duration  $T_c$  and the symbol rate  $1/T_c$.  The equivalent bit rate is
$$R_c = {{\rm log_2} (M_c)}/{T_c} \ge R_q \hspace{0.05cm}.$$
  • The equal sign is only valid for the  "redundancy-free codes"  $(r_c = 0)$. 
    Otherwise, we obtain for the relative code redundancy:
$$r_c =({R_c - R_q})/{R_c} = 1 - R_q/{R_c} \hspace{0.05cm}.$$


Notes on nomenclature:

  1. In the context of transmission codes,  $R_c$  always indicates in our tutorial the equivalent bit rate of the encoded signal with unit  "bit/s". 
  2. In the literature on channel coding,  $R_c$  is often used to denote the dimensionless code rate  $1 - r_c$ .
  3. $R_c = 1 $  then indicates a redundancy-free code,  while  $R_c = 1/3 $  indicates a code with the relative redundancy  $r_c = 2/3 $. 


$\text{Example 2:}$  In the so-called  "4B3T codes",

  • four binary symbols  $(m_q = 4, \ M_q= 2)$  are each represented by
  • three ternary symbols  $(m_c = 3, \ M_c= 3)$. 


Because of  $4 \cdot T_q = 3 \cdot T_c$  holds:

$$R_q = {1}/{T_q}, \hspace{0.1cm} R_c = { {\rm log_2} (3)} \hspace{-0.05cm} /{T_c} = {3/4 \cdot {\rm log_2} (3)} \hspace{-0.05cm}/{T_q}$$
$$\Rightarrow \hspace{0.3cm}r_c =3/4\cdot {\rm log_2} (3) \hspace{-0.05cm}- \hspace{-0.05cm}1 \approx 15.9\, \% \hspace{0.05cm}.$$

Detailed information about the 4B3T codes can be found in the  "chapter of the same name".



ACF calculation of a digital signal


To simplify the notation,  $M_c = M$  and  $T_c = T$  is set in the following.  Thus,  for the transmitted signal  $s(t)$  in the case of an unlimited-time sybol sequence with  $a_\nu \in \{ a_1,$ ... , $a_M\}$  can be written:

Two different binary bipolar transmitted signals
$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$

This signal representation includes both the source statistics $($amplitude coefficients  $a_\nu$)  and the transmission pulse shape  $g_s(t)$.  The diagram shows two binary bipolar transmitted signals  $s_{\rm G}(t)$  and  $s_{\rm R}(t)$  with the same amplitude coefficients  $a_\nu$,  which thus differ only by the basic transmission pulse  $g_s(t)$. 

It can be seen from this figure that a digital signal is generally non-stationary:

  • For the transmitted signal  $s_{\rm G}(t)$  with narrow Gaussian pulses,  the  "non-stationarity"  is obvious,  since,  for example,  at multiples of  $T$  the variance is  $\sigma_s^2 = s_0^2$,  while exactly in between   $\sigma_s^2 \approx 0$  holds.
  • Also the signal  $s_{\rm R}(t)$  with NRZ rectangular pulses is non–stationary in a strict sense,  because here the moments at the bit boundaries differ with respect to all other instants.  For example,  $s_{\rm R}(t = \pm T/2)=0$.


$\text{Definition:}$ 

  • A random process whose moments  $m_k(t) = m_k(t+ \nu \cdot T)$  repeat periodically with  $T$  is called  cyclostationary.
  • In this implicit definition,  $k$  and  $\nu$  have integer values .


Many of the rules valid for  "ergodic processes"  can also be applied to  "cycloergodic"  (and hence to  "cyclostationary")  processes with only minor restrictions.

$$\varphi_s(\tau) = {\rm E}\big [s(t) \cdot s(t + \tau)\big ] \hspace{0.05cm}.$$
  • With the above equation of the transmitted signal,  the ACF as a time average can also be written as follows:
$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}\frac{1}{T} \cdot \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu = -N}^{+N} a_\nu \cdot a_{\nu + \lambda} \cdot \int_{-\infty}^{+\infty} g_s ( t ) \cdot g_s ( t + \tau - \lambda \cdot T)\,{\rm d} t \hspace{0.05cm}.$$
  • Since the limit,  integral and sum may be interchanged,  with the substitutions
$$N = T_{\rm M}/(2T), \hspace{0.5cm}\lambda = \kappa- \nu,\hspace{0.5cm}t - \nu \cdot T \to T$$
for this can also be written:
$$\varphi_s(\tau) = \lim_{T_{\rm M} \to \infty}\frac{1}{T_{\rm M}} \cdot \int_{-T_{\rm M}/2}^{+T_{\rm M}/2} \sum_{\nu = -\infty}^{+\infty} \sum_{\kappa = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T ) \cdot a_\kappa \cdot g_s ( t + \tau - \kappa \cdot T ) \,{\rm d} t \hspace{0.05cm}.$$

Now the following quantities are introduced for abbreviation:

$\text{Definitions:}$ 

  • The  discrete ACF of the amplitude coefficients  provides statements about the linear statistical bonds of the amplitude coefficients  $a_{\nu}$  and  $a_{\nu + \lambda}$  and has no unit:
$$\varphi_a(\lambda) = \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot a_{\nu + \lambda} \hspace{0.05cm}.$$
  • The  energy ACF  of the basic transmission pulse is defined similarly to the general  (power)  auto-correlation function.  It is marked with a dot:
$$\varphi^{^{\bullet} }_{gs}(\tau) = \int_{-\infty}^{+\infty} g_s ( t ) \cdot g_s ( t + \tau)\,{\rm d} t \hspace{0.05cm}.$$
⇒   Since  $g_s(t)$ is   "energy-limited",  the division by  $T_{\rm M}$  and the boundary transition can be omitted.
  • For the  auto-correlation function of a digital signal  $s(t)$  holds in general:
$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet} }_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
⇒   $s(t)$  can be binary or multilevel,  unipolar or bipolar,  redundancy-free or redundant (line-coded). The pulse shape is taken into account by the energy ACF.


Note:
  • If the digital signal  $s(t)$  describes a voltage waveform,
  • the energy ACF of the basic transmission pulse  $g_s(t)$  has the unit  $\rm V^2s$,
  • the auto-correlation function  $\varphi_s(\tau)$  of the digital signal  $s(t)$  has the unit  $\rm V^2$  $($each related to the resistor  $1 \ \rm \Omega)$.
  • In the strict sense of system theory,  one would have to define the ACF of the amplitude coefficients as follows:
$$\varphi_{a , \hspace{0.08cm}\delta}(\tau) = \sum_{\lambda = -\infty}^{+\infty} \varphi_a(\lambda)\cdot \delta(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
⇒   Thus,  the above equation would be as follows:
$$\varphi_s(\tau) ={1}/{T} \cdot \varphi_{a , \hspace{0.08cm} \delta}(\tau)\star \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
⇒   For simplicity,  the discrete ACF of amplitude coefficients   ⇒   $\varphi_a(\lambda)$  is written  without these Dirac delta functions in the following.


PSD calculation of a digital signal


The corresponding quantity to the auto-correlation function  $\rm (ACF)$  of a random signal   ⇒   $\varphi_s(\tau)$  in the frequency domain is the  "power-spectral density"  $\rm (PSD)$   ⇒   ${\it \Phi}_s(f)$,  which is in a fixed relation with the ACF via the Fourier integral:

$$\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} {\it \Phi}_s(f) = \int_{-\infty}^{+\infty} \varphi_s(\tau) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \tau} \,{\rm d} \tau \hspace{0.05cm}.$$
  • Considering the relation between energy ACF and energy spectrum,
$$\varphi^{^{\hspace{0.05cm}\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{gs}(f) = |G_s(f)|^2 \hspace{0.05cm},$$
and the   "shifting theorem",  the  power-spectral density of the digital signal  $s(t)$  can be represented in the following way:
$${\it \Phi}_s(f) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot {\it \Phi}^{^{\hspace{0.05cm}\bullet}}_{gs}(f) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} = {1}/{T} \cdot |G_s(f)|^2 \cdot \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot \cos ( 2 \pi f \lambda T)\hspace{0.05cm}.$$
Here it is considered that  ${\it \Phi}_s(f)$  and  $|G_s(f)|^2$  are real-valued and at the same time  $\varphi_a(-\lambda) =\varphi_a(+\lambda)$  holds.

  • If we now define the  spectral power density of the amplitude coefficients  to be
$${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda \hspace{0.02cm}T} = \varphi_a(0) + 2 \cdot \sum_{\lambda = 1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi f \lambda T) \hspace{0.05cm},$$
then the following expression is obtained:
$${\it \Phi}_s(f) = {\it \Phi}_a(f) \cdot {1}/{T} \cdot |G_s(f)|^2 \hspace{0.05cm}.$$

$\text{Conclusion:}$  The power-spectral density  ${\it \Phi}_s(f)$  of a digital signal  $s(t)$  can be represented as the product of two functions:

  1. The first term  ${\it \Phi}_a(f)$  is dimensionless and describes the spectral shaping of the transmitted signal by  the statistical constraints of the source.
  2. In contrast,  $\vert G_s(f) \vert^2$  takes into account the  spectral shaping by the basic transmission pulse  $g_s(t)$.
  3. The narrower  $g_s(t)$  is,  the broader is the energy spectrum  $\vert G_s(f) \vert^2$  and thus the larger is the bandwidth requirement.
  4. The energy spectrum  $\vert G_s(f) \vert^2$  has the unit  $\rm V^2s/Hz$  and the power-spectral density ${\it \Phi}_s(f)$  – due to the division by symbol duration  $T$  – the unit  $\rm V^2/Hz$.
  5. Both specifications are again only valid for the resistor  $1 \ \rm \Omega$.


ACF and PSD for bipolar binary signals


The previous results are now illustrated by examples.  Starting from binary bipolar amplitude coefficients  $a_\nu \in \{-1, +1\}$,  if there are no bonds between the individual amplitude coefficients  $a_\nu$,  we obtain:

Signal section  ACF and PSD for binary bipolar signaling
$$\varphi_a(\lambda) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \\ \end{array} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varphi_s(\tau)= {1}/{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau)\hspace{0.05cm}.$$

The graph shows two signal sections each with rectangular pulses  $g_s(t)$,  which accordingly lead to a triangular auto-correlation function  $\rm (ACF)$  and to a  $\rm sinc^2$–shaped power-spectral density  $\rm (PSD)$.

  • The left pictures describe NRZ signaling   ⇒   the width  $T_{\rm S}$  of the basic pulse is equal to the distance  $T$  of two transmitted pulses  (source symbols).
  • In contrast,  the right pictures apply to an RZ pulse with the duty cycle  $T_{\rm S}/T = 0.5$.


One can see from the left representation  $\rm (NRZ)$:

  1. For NRZ rectangular pulses,  the transmit power  (reference:  $1 \ \rm \Omega$  resistor)  is  $P_{\rm S} = \varphi_s(\tau = 0) = s_0^2$.
  2. The triangular ACF is limited to the range  $|\tau| \le T_{\rm S}= T$. 
  3. The PSD  ${\it \Phi}_s(f)$  as the Fourier transform of  $\varphi_s(\tau)$  is  $\rm sinc^2$–shaped with equidistant zeros at distance  $1/T$.
  4. The area under the PSD curve again gives the transmit power  $P_{\rm S} = s_0^2$.


In the case of RZ signaling  (right column),  the triangular ACF is smaller in height and width by a factor of  $T_{\rm S}/T = 0.5$,  resp.,  compared to the left image.

$\text{Conclusion:}$  If one compares the two power-spectral densities  $($lower pictures$)$,  one recognizes for  $T_{\rm S}/T = 0.5$  $($RZ pulse$)$  compared to  $T_{\rm S}/T = 1$  $($NRZ pulse$)$ 

  • a reduction in height by a factor of  $4$, 
  • a broadening by a factor of  $2$. 
⇒   The area  $($power$)$  in the right sketch is thus half as large,  since in half the time  $s(t) = 0$. 


ACF and PSD for unipolar binary signals


We continue to assume NRZ or RZ rectangular pulses. But let the binary amplitude coefficients now be unipolar:   $a_\nu \in \{0, 1\}$.  Then for the discrete ACF of the amplitude coefficients holds:

Signal section,  ACF and PSD with binary unipolar signaling
$$\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 = 0.5 \\ \\ m_1^2 = 0.25 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}$$

Assumed here are equal probability amplitude coefficients   ⇒   ${\rm Pr}(a_\nu =0) = {\rm Pr}(a_\nu =1) = 0.5$  with no statistical ties, so that both the  "power"  $m_2$ and the  "linear mean"  $m_1$  $($DC component$)$  are  $0.5$,  respectively.

The graph shows a signal section, the ACF and the PSD with unipolar amplitude coefficients,

  • left for rectangular NRZ pulses  $(T_{\rm S}/T = 1)$,  and
  • right for RZ pulses with duty cycle  $T_{\rm S}/T = 0.5$.


There are the following differences compared to  "bipolar signaling":

  • Adding the infinite number of triangular functions at distance  $T$  (all with the same height)  results in a constant DC component  $s_0^2/4$  for the ACF in the left graph  (NRZ).
  • In addition,  a single triangle also with height  $s_0^2/4$ remains in the region  $|\tau| \le T_{\rm S}$,  which leads to the  $\rm sinc^2$–shaped blue curve in the power-spectral density (PSD).
  • The DC component in the ACF results in a Dirac delta function at frequency  $f = 0$  with weight  $s_0^2/4$ in the PSD. Thus the PSD value  ${\it \Phi}_s(f=0)$  becomes infinitely large.


From the right graph – valid for  $T_{\rm S}/T = 0.5$ – it can be seen that now the ACF is composed of a periodic triangular function  (drawn dashed in the middle region)  and additionally of a unique triangle in the region  $|\tau| \le T_{\rm S} = T/2$  with height  $s_0^2/8$. 

  • This unique triangle function leads to the continuous  $\rm sinc^2$–shaped component (blue curve) of  ${\it \Phi}_s(f)$  with the first zero at  $1/T_{\rm S} = 2/T$.
  • In contrast,  the periodic triangular function leads to an infinite sum of Dirac delta functions with different weights at the distance  $1/T$  (drawn in red)  according to the laws of the  "Fourier series"
  • The weights of the Dirac delta functions are proportional to the continuous (blue) PSD component.  The Dirac delta line at  $f = 0$ has the maximum weight  $s_0^2/8$.  In contrast,  the Dirac delta lines at  $\pm 2/T$  and multiples thereof do not exist or have the weight  $0$ in each case,  since the continuous PSD component also has zeros here.


$\text{Note:}$ 

  • Unipolar amplitude coefficients occur for example in optical transmission systems. 
  • In later chapters, however, we mostly restrict ourselves to bipolar signaling.


Exercises for the chapter


Exercise 2.1: ACF and PSD with Coding

Exercise 2.1Z: About the Equivalent Bitrate

Exercise 2.2: Binary Bipolar Rectangles