Difference between revisions of "Applets:Bessel Functions of the First Kind"
(25 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{ | + | {{LntAppletLinkEnDe|besselFuns_en|besselFuns}} |
− | |||
==Applet Description== | ==Applet Description== | ||
<br> | <br> | ||
− | This applet allows the calculation and graphical representation of the Bessel functions of the first kind and n–th order according to the series representation: | + | This applet allows the calculation and graphical representation of the Bessel functions of the first kind and n–th order according to the series representation: |
:$${\rm J}_n (x) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (x/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 | :$${\rm J}_n (x) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (x/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 | ||
− | \hspace{0. | + | \hspace{0.05cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$ |
− | *The functions Jn(x) can be represented graphically for the order n=0 to n=9 in different colors. | + | *The functions Jn(x) can be represented graphically for the order n=0 to n=9 in different colors. |
− | *The left output provides the function values J0(x=x1), ... , J9(x=x1) for a slider-settable value x1 in the range 0≤x1≤15 with increment 0.5. | + | *The left output provides the function values J0(x=x1), ... , J9(x=x1) for a slider-settable value x1 in the range 0≤x1≤15 with increment 0.5. |
− | *The right output provides the function values J0(x=x2), ... , J9(x=x2) for a slider-settable value x2 (same range and value | + | *The right output provides the function values J0(x=x2), ... , J9(x=x2) for a slider-settable value x2 (same range and value increment like on the left). |
− | |||
==Theoretical Background== | ==Theoretical Background== | ||
Line 23: | Line 21: | ||
\cdot {\rm J}_n (x)= 0. $$ | \cdot {\rm J}_n (x)= 0. $$ | ||
− | This is an ordinary second-order linear differential equation. The parameter n is usually integer, also in this program. These mathematical functions, introduced by [https:// | + | This is an ordinary second-order linear differential equation. The parameter n is usually integer, also in this program. These mathematical functions, introduced by [https://en.wikipedia.org/wiki/Friedrich_Bessel "Friedrich Wilhelm Bessel"] in 1844, can also be represented in closed form as integrals: |
:$${\rm J}_n (x) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}[\hspace{0.05cm}x \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha \hspace{0.05cm}]}}\hspace{0.1cm}{\rm d}\alpha | :$${\rm J}_n (x) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}[\hspace{0.05cm}x \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha \hspace{0.05cm}]}}\hspace{0.1cm}{\rm d}\alpha | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | The functions Jn(x) belong to the class of Bessel functions of the first kind | + | The functions Jn(x) belong to the class of Bessel functions of the first kind. The parameter n is called the "order". |
− | '' | + | ''Note:'' There are a number of modifications of the Bessel functions, including the Bessel functions of the second kind named Yn(x). For integer n, Yn(x) can be replaced by Jn(x) functions. However, in this applet, only the first kind Bessel functions Jn(x) are considered. |
<br><br> | <br><br> | ||
Line 36: | Line 34: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | Property (A): If the function values for n=0 and n=1 are known, then the Bessel function for n≥2 can be determined iteratively: | + | Property (A): If the function values for n=0 and n=1 are known, then the Bessel function for n≥2 can be determined iteratively: |
:Jn(x)=2⋅(n−1)/x⋅Jn−1(x)−Jn−2(x). | :Jn(x)=2⋅(n−1)/x⋅Jn−1(x)−Jn−2(x). | ||
}} | }} | ||
Line 42: | Line 40: | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | Example (A): Let J0(x=2)=0.22389 and J1(x=2)=0.57672. From this it can be calculated iteratively: | + | Example (A): Let J0(x=2)=0.22389 and J1(x=2)=0.57672. From this it can be calculated iteratively: |
:J2(x=2)=2⋅1/2⋅J1(x=2)−J0(x=2)=0.57672−0.22389=0.35283_, | :J2(x=2)=2⋅1/2⋅J1(x=2)−J0(x=2)=0.57672−0.22389=0.35283_, | ||
:J3(x=2)=2⋅2/2⋅J2(x=2)−J1(x=2)=2⋅0.35283−0.57672=0.12894_, | :J3(x=2)=2⋅2/2⋅J2(x=2)−J1(x=2)=2⋅0.35283−0.57672=0.12894_, | ||
Line 50: | Line 48: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | Property (B): The symmetry relationship applies J–n(x)=(–1)n·Jn(x): | + | Property (B): The symmetry relationship applies J–n(x)=(–1)n·Jn(x): |
:J−1(x)=−J1(x),J−2(x)=J2(x),J−3(x)=−J3(x). | :J−1(x)=−J1(x),J−2(x)=J2(x),J−3(x)=−J3(x). | ||
}} | }} | ||
Line 56: | Line 54: | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | Example (B): For the spectrum of the analytic signal, the following applies to | + | Example (B): For the spectrum of the analytic signal, the following applies to the case "phase modulation of a sinusoidal signal": |
− | [[File:Mod_T_3_1_S4_version2.png|right|frame|Spectrum of the | + | [[File:Mod_T_3_1_S4_version2.png|right|frame|Phase Modulation: Spectrum of the Analytic Signal]] |
:S+(f)=AT⋅+∞∑n=−∞Jn(η)⋅δ[f−(fT+n⋅fN)]. | :S+(f)=AT⋅+∞∑n=−∞Jn(η)⋅δ[f−(fT+n⋅fN)]. | ||
Denote this | Denote this | ||
− | *fT the carrier frequency, | + | *fT the carrier frequency (German: Trägerfrequenz), |
− | *fN the | + | *fN the frequency of the source signal (German: Nachrichtenfrequenz), |
− | * AT the carrier amplitude. | + | * AT the carrier amplitude (German: Trägeramplitude). |
− | + | Parameter of the Bessel functions in this application is the modulation index η. | |
Based on the graphic, the following statements are possible: | Based on the graphic, the following statements are possible: | ||
− | *S+(f) consists here of | + | *S+(f) consists here of an infinite number of discrete lines at a distance of fN. |
− | * | + | *Thus the sectrum is in principle infinitely extended. |
− | *The weights of the spectral lines at fT+n·fN ( | + | *The weights of the spectral lines at $f_{\rm T} + n · f_{\rm N}$ (n integer$)$ are determined by the modulation index η over the Bessel functions Jn(η). |
− | *The spectral lines are real in the case of a sinusoidal source signal and a cosinusoidal carrier and symmetrical about fT for even n. | + | *The spectral lines are real in the case of a sinusoidal source signal and a cosinusoidal carrier and symmetrical about fT for even n. |
− | *In the case of odd n, a change of sign corresponding to Property (B) must be taken into account. | + | *In the case of odd n, a change of sign corresponding to Property (B) must be taken into account. |
*The phase modulation of another phase oscillation of source and / or carrier signal provides the same magnitude spectrum.}} | *The phase modulation of another phase oscillation of source and / or carrier signal provides the same magnitude spectrum.}} | ||
<br><br> | <br><br> | ||
Line 78: | Line 76: | ||
===Applications of the Bessel Functions=== | ===Applications of the Bessel Functions=== | ||
− | The applications of the Bessel functions in nature | + | The applications of the Bessel functions in nature and engineering are diverse and play an important role in physics, for example: |
− | * | + | * Electromagnetic waves in a cylindrical waveguide, |
− | * | + | * Solutions to the radial Schroedinger equation, |
− | * | + | * Pressure amplitudes of inviscid rotational flows, |
− | * Heat conduction in cylindrical | + | * Heat conduction in a cylindrical object, |
− | * | + | * Diffusion problems on a lattice, |
− | * Dynamics of | + | * Dynamics of floating bodies, |
+ | *Frequency-dependent friction in circular pipelines, | ||
* Angular resolution. | * Angular resolution. | ||
− | |||
− | + | The Bessel functions belong to the "Special Functions" because of their many applications in mathematical physics. | |
− | + | In the following, we restrict ourselves to a few areas that are addressed in our tutorial LNTwww. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{Example (C):} \hspace{0.5cm} \text{Use in | + | $\text{Example (C):} \hspace{0.5cm} \text{Use in Spectral Analysis} \ \Rightarrow \ \text{Kaiser-Bessel filter}$ |
− | The ''' | + | The '''Spectral Leakage Effect''' is the falsification of the spectrum of a periodic and thereby time unlimited signal due to the implicit time limitation of the discrete Fourier transform (DFT). This will be done, for example, by a spectrum analyzer |
* in the time signal not existing frequency components simulated, and/or | * in the time signal not existing frequency components simulated, and/or | ||
* actually existing spectral components are obscured by sidelobes. | * actually existing spectral components are obscured by sidelobes. | ||
− | |||
− | Such a window function provides, for example, the Kaiser–Bessel | + | The task of the [[Signal_Representation/Spectrum_Analysis|"Spectrum Analysis"]] is to limit the influence of the spectral leakage effect by providing suitable window functions. |
+ | |||
+ | Such a window function provides, for example, the Kaiser–Bessel window ⇒ see section [[Signal_Representation/Spectrum_Analysis#Special_window_functions|"Special Window Functions"]]. Its time-discrete window function with the Bessel function zero order ⇒ J0(x), the parameter α=3.5 and the window length N: | ||
:wν=J0(π⋅α⋅√1−(2ν/N)2)J0(π⋅α). | :wν=J0(π⋅α⋅√1−(2ν/N)2)J0(π⋅α). | ||
− | + | In the section [[Signal_Representation/Spectrum_Analysis#Quality_criteria_of_window_functions|"Quality Criteria of Window Functions"]] the parameters of the Kaiser-Bessel window are given. | |
− | * | + | *The large "Minimum Distance between the main lobe and side lobes" and the desired small "maximum Scaling Error" are favourable. |
− | *Due to the very large | + | *Due to the very large "Equivalent Noise Width" the Kaiser-Bessel window cuts in the most important comparison criterion "Maximum Process Loss" but worse than the established Hamming and Hanning windows.}} |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{Example (D):} \hspace{0.5cm} \text{Rice | + | $\text{Example (D):} \hspace{0.5cm} \text{Rice Fading Channel Model}$ |
− | The [[ | + | The [[Mobile_Communications/Probability_Density_of_Rayleigh_Fading#A_very_general_description_of_the_mobile_communication_channel| "Rayleigh distribution"]] describes the mobile channel on the assumption that there is no direct path and thus the multiplicative factor z(t)=x(t)+j⋅y(t) is composed solely of diffusely scattered components. |
− | In the case of a direct component ( | + | In the case of a direct component (<i>Line of Sight</i>, LoS) one has to add in the model DC components x0 and/or y0 for the zero mean Gaussian processes x(t) and y(t) : |
− | [[File: | + | [[File:EN_Mob_T_1_4_S1.png|right|frame|Rice fading channel model|class=fit]] |
− | $$ | + | :$$x(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} x(t) +x_0 \hspace{0.05cm}, $$ |
+ | :$$y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} y(t) +y_0\hspace{0.05cm},$$ | ||
− | $$ | + | :$$z(t) = x(t) + {\rm j} \cdot y(t)\hspace{0.1cm}\Rightarrow \hspace{0.1cm} z(t) +z_0 \hspace{0.05cm},$$ |
− | z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.$$ | + | :$$ z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.$$ |
− | The graph shows the | + | The graph shows the Rice fading channel model. It can be summarized as follows: |
− | *The real part x(t) is | + | *The real part x(t) is Gaussian with mean x0 and variance σ2. |
− | *The imaginary part y(t) is also Gaussian (mean y0, equal variance σ2 | + | *The imaginary part y(t) is also Gaussian $($mean y0, equal variance $\sigma ^2)$ and independent of x(t).<br> |
− | *For z0≠0, the | + | *For z0≠0, the magnitude |z(t)| is Rice distributed, from which the term "Rice Fading</i>" arises. |
− | *To simplify the notation, we set |z(t)|=a(t). For a<0 , the | + | *To simplify the notation, we set |z(t)|=a(t). For a<0 , the pdf is fa(a)≡0, for a≥0 the following equation holds, where I0(x) is the modified Bessel function of zero order: |
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm e}^{ - (a^2 + \vert z_0 \vert ^2)/(2\sigma^2)} \cdot {\rm I}_0 \left [ \frac{a \cdot \vert z_0 \vert}{\sigma^2} \right ] \hspace{0.5cm}\text{with}\hspace{0.5cm}{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) = | :$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm e}^{ - (a^2 + \vert z_0 \vert ^2)/(2\sigma^2)} \cdot {\rm I}_0 \left [ \frac{a \cdot \vert z_0 \vert}{\sigma^2} \right ] \hspace{0.5cm}\text{with}\hspace{0.5cm}{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) = | ||
\sum_{k = 0}^{\infty} \frac{ (u/2)^{2k} }{k! \cdot \Gamma (k+1)} | \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k} }{k! \cdot \Gamma (k+1)} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *Between the modified Bessel function and the traditional Bessel function I0(x) & | + | *Between the modified Bessel function J0(x) and the traditional Bessel function I0(x) of first kind the following relation exists: I0(u)=J0(j⋅u).}} |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{Example (E):} \hspace{0.5cm} \text{Analysis of the | + | $\text{Example (E):} \hspace{0.5cm} \text{Analysis of the Frequency Spectrum of Frequency Modulated Signals}$ |
− | Example (B) has already shown that the angle modulation of a harmonic oscillation of the frequency fN leads to a line spectrum. The spectral lines are around the carrier frequency fT | + | Example (B) has already been shown that the angle modulation of a harmonic oscillation of the frequency fN leads to a line spectrum. The spectral lines are around the carrier frequency fT at fT+n⋅fN with n∈{ ...,−2,−1, 0,+1,+2,... }. The weights of the Dirac delta lines are Jn(η), depending on the modulation index η. |
− | + | The graph shows the magnitude spectrum |S+(f)| of the analytic signal in phase modulation (PM) and frequency modulation (FM), two different forms of angle modulation. Bessel lines with values less than 0.03 are neglected in both cases. | |
− | + | [[File:P_ID1095__Mod_T_3_2_S4_neu.png|right|frame|Discrete spectra with phase modulation (left) and frequency modulation (right)]] | |
− | For the upper half of the | + | For the upper half of the graphic, the modulator parameters are chosen so that for each fN=5 kHz here is a Bessel spectrum with the modulation index η=1.5. Disregarding the phase relationships, the same spectra and the same signals result for both systems. |
− | The lower graphics | + | The lower graphics apply with otherwise identical settings for the same message frequency fN=3 kHz. One notices: |
− | *In phase modulation, the spectral function is narrower than fN=5 kHz, because the distance of the Bessel lines is now only 3 kHz. Since the modulation index | + | *In phase modulation, the spectral function is narrower than fN=5 kHz, because the distance of the Bessel lines is now only 3 kHz. Since the PN modulation index is independent of fN, the same bessel weights result as in fN=5 kHz. |
− | *Also in the frequency modulation, the Bessel lines now | + | *Also in the frequency modulation, the Bessel lines now occur at a distance of 3 kHz. However, since FM has a modulation index inversely proportional to fN, there are now significantly more Bessel lines at the bottom due to the larger modulation index η=2.5 than in the upper right chart $($for η=1.5 valid$)$.}} |
− | |||
− | |||
==Applet Manual== | ==Applet Manual== | ||
[[File:Bessel_abzug3.png|left|600px]] | [[File:Bessel_abzug3.png|left|600px]] | ||
− | '''(A)''' Sum formula of the Bessel functions Jn(x) | + | '''(A)''' Sum formula of the Bessel functions Jn(x) |
− | '''(B)''' Selection of the order n for the graphical representation | + | '''(B)''' Selection of the order n for the graphical representation |
− | '''(C)''' Plot of the Bessel functions | + | '''(C)''' Plot area of the Bessel functions |
'''(D)''' Variation of the graphic representation | '''(D)''' Variation of the graphic representation | ||
− | + | "+" (Enlarge), | |
− | + | "−" (Decrease) | |
− | + | "o" (Reset to default) | |
− | + | "←" (pushed to the left), usw. | |
− | '''(E)''' Selection of the abscissa value x1 for the left numeric output | + | '''(E)''' Selection of the abscissa value x1 for the left numeric output |
− | '''(F)''' Numerical output of the Bessel function values Jn(x1) | + | '''(F)''' Numerical output of the Bessel function values Jn(x1) |
− | '''(G)''' Selection of the abscissa value x2 for the right numeric output | + | '''(G)''' Selection of the abscissa value x2 for the right numeric output |
− | '''(F)''' Numerical output of the Bessel function values Jn(x2) | + | '''(F)''' Numerical output of the Bessel function values Jn(x2) |
<br clear=all> | <br clear=all> | ||
==About the Authors== | ==About the Authors== | ||
− | This interactive | + | This interactive applet was designed and realized at the [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering] at the [https://www.tum.de/en Technical University of Munich]. |
− | *The original version was created in 2005 by [[ | + | |
− | *In 2018 this Applet was redesigned and updated to | + | *The original version was created in 2005 by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Markus_Elsberger_.28Diplomarbeit_LB_2006.29|Markus Elsberger]] and [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Slim_Lamine_.28Studienarbeit_EI_2006.29|Slim Lamine]] as part of thesis using "FlashMX–Actionscript" (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]). |
+ | *In 2018 this Applet was redesigned and updated to "HTML5" by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]] as part of her Bachelor's thesis (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]). | ||
− | == | + | ==Once again: Open Applet in new Tab== |
− | {{ | + | {{LntAppletLinkEnDe|besselFuns_en|besselFuns}} |
Latest revision as of 22:20, 26 March 2023
Open Applet in new Tab Deutsche Version Öffnen
Contents
Applet Description
This applet allows the calculation and graphical representation of the Bessel functions of the first kind and n–th order according to the series representation:
- Jn(x)=∞∑k=0(−1)k⋅(x/2)n+2⋅kk!⋅(n+k)!.
- The functions Jn(x) can be represented graphically for the order n=0 to n=9 in different colors.
- The left output provides the function values J0(x=x1), ... , J9(x=x1) for a slider-settable value x1 in the range 0≤x1≤15 with increment 0.5.
- The right output provides the function values J0(x=x2), ... , J9(x=x2) for a slider-settable value x2 (same range and value increment like on the left).
Theoretical Background
General Information about the Bessel Functions
Bessel functions (or cylinder functions) are solutions of the Bessel differential equation of the form
- x2⋅d2dx2 Jn(x) + x⋅ddx Jn(x) + (x2−n2)⋅Jn(x)=0.
This is an ordinary second-order linear differential equation. The parameter n is usually integer, also in this program. These mathematical functions, introduced by "Friedrich Wilhelm Bessel" in 1844, can also be represented in closed form as integrals:
- Jn(x)=12π⋅∫+π−πej⋅[x⋅sin(α)−n⋅α]dα.
The functions Jn(x) belong to the class of Bessel functions of the first kind. The parameter n is called the "order".
Note: There are a number of modifications of the Bessel functions, including the Bessel functions of the second kind named Yn(x). For integer n, Yn(x) can be replaced by Jn(x) functions. However, in this applet, only the first kind Bessel functions Jn(x) are considered.
Properties of the Bessel Functions
Property (A): If the function values for n=0 and n=1 are known, then the Bessel function for n≥2 can be determined iteratively:
- Jn(x)=2⋅(n−1)/x⋅Jn−1(x)−Jn−2(x).
Example (A): Let J0(x=2)=0.22389 and J1(x=2)=0.57672. From this it can be calculated iteratively:
- J2(x=2)=2⋅1/2⋅J1(x=2)−J0(x=2)=0.57672−0.22389=0.35283_,
- J3(x=2)=2⋅2/2⋅J2(x=2)−J1(x=2)=2⋅0.35283−0.57672=0.12894_,
- J4(x=2)=2⋅3/2⋅J3(x=2)−J2(x=2)=3⋅0.12894−0.35283=0.03400_.
Property (B): The symmetry relationship applies J–n(x)=(–1)n·Jn(x):
- J−1(x)=−J1(x),J−2(x)=J2(x),J−3(x)=−J3(x).
Example (B): For the spectrum of the analytic signal, the following applies to the case "phase modulation of a sinusoidal signal":
- S+(f)=AT⋅+∞∑n=−∞Jn(η)⋅δ[f−(fT+n⋅fN)].
Denote this
- fT the carrier frequency (German: Trägerfrequenz),
- fN the frequency of the source signal (German: Nachrichtenfrequenz),
- AT the carrier amplitude (German: Trägeramplitude).
Parameter of the Bessel functions in this application is the modulation index η.
Based on the graphic, the following statements are possible:
- S+(f) consists here of an infinite number of discrete lines at a distance of fN.
- Thus the sectrum is in principle infinitely extended.
- The weights of the spectral lines at fT+n·fN (n integer) are determined by the modulation index η over the Bessel functions Jn(η).
- The spectral lines are real in the case of a sinusoidal source signal and a cosinusoidal carrier and symmetrical about fT for even n.
- In the case of odd n, a change of sign corresponding to Property (B) must be taken into account.
- The phase modulation of another phase oscillation of source and / or carrier signal provides the same magnitude spectrum.
Applications of the Bessel Functions
The applications of the Bessel functions in nature and engineering are diverse and play an important role in physics, for example:
- Electromagnetic waves in a cylindrical waveguide,
- Solutions to the radial Schroedinger equation,
- Pressure amplitudes of inviscid rotational flows,
- Heat conduction in a cylindrical object,
- Diffusion problems on a lattice,
- Dynamics of floating bodies,
- Frequency-dependent friction in circular pipelines,
- Angular resolution.
The Bessel functions belong to the "Special Functions" because of their many applications in mathematical physics.
In the following, we restrict ourselves to a few areas that are addressed in our tutorial LNTwww.
Example (C):Use in Spectral Analysis ⇒ Kaiser-Bessel filter
The Spectral Leakage Effect is the falsification of the spectrum of a periodic and thereby time unlimited signal due to the implicit time limitation of the discrete Fourier transform (DFT). This will be done, for example, by a spectrum analyzer
- in the time signal not existing frequency components simulated, and/or
- actually existing spectral components are obscured by sidelobes.
The task of the "Spectrum Analysis" is to limit the influence of the spectral leakage effect by providing suitable window functions.
Such a window function provides, for example, the Kaiser–Bessel window ⇒ see section "Special Window Functions". Its time-discrete window function with the Bessel function zero order ⇒ J0(x), the parameter α=3.5 and the window length N:
- wν=J0(π⋅α⋅√1−(2ν/N)2)J0(π⋅α).
In the section "Quality Criteria of Window Functions" the parameters of the Kaiser-Bessel window are given.
- The large "Minimum Distance between the main lobe and side lobes" and the desired small "maximum Scaling Error" are favourable.
- Due to the very large "Equivalent Noise Width" the Kaiser-Bessel window cuts in the most important comparison criterion "Maximum Process Loss" but worse than the established Hamming and Hanning windows.
Example (D):Rice Fading Channel Model
The "Rayleigh distribution" describes the mobile channel on the assumption that there is no direct path and thus the multiplicative factor z(t)=x(t)+j⋅y(t) is composed solely of diffusely scattered components.
In the case of a direct component (Line of Sight, LoS) one has to add in the model DC components x0 and/or y0 for the zero mean Gaussian processes x(t) and y(t) :
- x(t)⇒x(t)+x0,
- y(t)⇒y(t)+y0,
- z(t)=x(t)+j⋅y(t)⇒z(t)+z0,
- z0=x0+j⋅y0.
The graph shows the Rice fading channel model. It can be summarized as follows:
- The real part x(t) is Gaussian with mean x0 and variance σ2.
- The imaginary part y(t) is also Gaussian (mean y0, equal variance σ2) and independent of x(t).
- For z0≠0, the magnitude |z(t)| is Rice distributed, from which the term "Rice Fading" arises.
- To simplify the notation, we set |z(t)|=a(t). For a<0 , the pdf is fa(a)≡0, for a≥0 the following equation holds, where I0(x) is the modified Bessel function of zero order:
- fa(a)=aσ2⋅e−(a2+|z0|2)/(2σ2)⋅I0[a⋅|z0|σ2]withI0(u)=J0(j⋅u)=∞∑k=0(u/2)2kk!⋅Γ(k+1).
- Between the modified Bessel function J0(x) and the traditional Bessel function I0(x) of first kind the following relation exists: I0(u)=J0(j⋅u).
Example (E):Analysis of the Frequency Spectrum of Frequency Modulated Signals
Example (B) has already been shown that the angle modulation of a harmonic oscillation of the frequency fN leads to a line spectrum. The spectral lines are around the carrier frequency fT at fT+n⋅fN with n∈{ ...,−2,−1, 0,+1,+2,... }. The weights of the Dirac delta lines are Jn(η), depending on the modulation index η.
The graph shows the magnitude spectrum |S+(f)| of the analytic signal in phase modulation (PM) and frequency modulation (FM), two different forms of angle modulation. Bessel lines with values less than 0.03 are neglected in both cases.
For the upper half of the graphic, the modulator parameters are chosen so that for each fN=5 kHz here is a Bessel spectrum with the modulation index η=1.5. Disregarding the phase relationships, the same spectra and the same signals result for both systems.
The lower graphics apply with otherwise identical settings for the same message frequency fN=3 kHz. One notices:
- In phase modulation, the spectral function is narrower than fN=5 kHz, because the distance of the Bessel lines is now only 3 kHz. Since the PN modulation index is independent of fN, the same bessel weights result as in fN=5 kHz.
- Also in the frequency modulation, the Bessel lines now occur at a distance of 3 kHz. However, since FM has a modulation index inversely proportional to fN, there are now significantly more Bessel lines at the bottom due to the larger modulation index η=2.5 than in the upper right chart (for η=1.5 valid).
Applet Manual
(A) Sum formula of the Bessel functions Jn(x)
(B) Selection of the order n for the graphical representation
(C) Plot area of the Bessel functions
(D) Variation of the graphic representation
"+" (Enlarge),
"−" (Decrease)
"o" (Reset to default)
"←" (pushed to the left), usw.
(E) Selection of the abscissa value x1 for the left numeric output
(F) Numerical output of the Bessel function values Jn(x1)
(G) Selection of the abscissa value x2 for the right numeric output
(F) Numerical output of the Bessel function values Jn(x2)
About the Authors
This interactive applet was designed and realized at the Institute for Communications Engineering at the Technical University of Munich.
- The original version was created in 2005 by Markus Elsberger and Slim Lamine as part of thesis using "FlashMX–Actionscript" (Supervisor: Günter Söder).
- In 2018 this Applet was redesigned and updated to "HTML5" by Xiaohan Liu as part of her Bachelor's thesis (Supervisor: Tasnád Kernetzky).