Difference between revisions of "Theory of Stochastic Signals/Markov Chains"

From LNTwww
 
(60 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Wahrscheinlichkeitsrechnung
+
|Untermenü=Probability Calculation
|Vorherige Seite=Statistische Abhängigkeit und Unabhängigkeit
+
|Vorherige Seite=Statistical_Dependence_and_Independence
|Nächste Seite=Wahrscheinlichkeit und relative Häufigkeit
+
|Nächste Seite=From_Random_Experiment_to_Random_Variable
 
}}
 
}}
==Betrachtetes Szenario==
+
==Considered scenario==
Wir betrachten nun abschließend den Fall, dass man ein Experiment fortlaufend durchführt und zu jedem diskreten Zeitpunkt $ν =$ 1, 2, 3, .. ein Ereignis $E_ν$ eintritt. Hierbei soll gelten:
+
<br>
$$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}...\hspace{0.1cm}, E_\mu , \hspace{0.1cm}...\hspace{0.1cm}, E_M \}.$$
+
Finally,&nbsp; we consider the case where one conducts a random experiment continuously and that at each discrete time&nbsp; $(ν = 1, 2, 3, \text{...})$&nbsp; a new event&nbsp; $E_ν$.&nbsp; Here,&nbsp; let hold:
 +
[[File:En_Sto_T_1_4_S1.png |right|frame|Possible events and event sequence]]
  
Diese mathematisch nicht ganz saubere Nomenklatur bedeutet (siehe nachfolgende Grafik):  
+
:$$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_\mu , \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_M \}.$$
*Die $M$ möglichen Ereignisse werden mit dem Laufindex $μ$ durchnummeriert.
 
*Der Index $ν$ benennt die diskreten Zeitpunkte, zu denen Entscheidungen gefällt werden.
 
  
 +
This mathematically not quite proper nomenclature means&nbsp; (see graph):
 +
*The&nbsp; $M$&nbsp; possible events are numbered consecutively with the index&nbsp; $μ$.
  
[[File:P_ID442__Sto_T_1_4_S1_neu.png | Mögliche Ereignisse und Ereignisfolge]]
+
*The index&nbsp; $ν$&nbsp; names the discrete time points at which events occur.
  
  
Zur einfacheren Darstellung beschränken wir uns im Folgenden auf den Fall $M =$ 2 mit der Grundmenge $G$ = { $A, B$}. Wir berücksichtigen, dass die Wahrscheinlichkeit des Ereignisses $E_ν$ durchaus von allen vorherigen Ereignissen also von $E_{ν–1}, E_{ν–2}, E_{ν–3}$, . . . – abhängen kann. Das bedeutet auch, dass wir eine Ereignisfolge mit inneren statistischen Bindungen betrachten.
+
For simplicity,&nbsp; we restrict ourselves in the following to the case&nbsp; $M = 2$&nbsp; with the universal set&nbsp; $G = \{ A, \ B \}$.&nbsp; Let further hold:
 +
*The probability of event&nbsp; $E_ν$&nbsp; may well depend on all previous events&nbsp; that is,&nbsp; on the events&nbsp; $E_{ν\hspace{0.05cm}-1}, \hspace{0.15cm} E_{ν\hspace{0.05cm}-2}, \hspace{0.15cm} E_{ν\hspace{0.05cm}-3}$,&nbsp; and so on.&nbsp;
  
 +
*  This statement also means that in this chapter we consider a&nbsp; &raquo;sequence of events with internal statistical bindings&laquo;.
  
Dieses Szenario ist ein Sonderfall eines zeit- und wertdiskreten Zufallsprozesses. Solche Prozesse werden in  Kapitel 4.4  noch ausführlich behandelt.
 
  
{{Beispiel}}
+
This scenario is a special case of a discrete-time, discrete-value random process, which will be discussed in more detail in the chapter&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Random_processes|&raquo;Random Processes&laquo;]].&nbsp; 
Aus einem Kartenstapel mit 32 Karten (darunter 4 Asse) werden nacheinander Karten gezogen. Mit den Ereignissen $A =$ „die gezogene Karte ist ein Ass” und $B =$ „die gezogene Karte ist kein Ass” lauten die Wahrscheinlichkeiten zum Zeitpunkt $ν =$ 1:
 
$${\rm Pr} (A_{\rm 1})  = \frac{4}{32}= \frac{1}{8}; \hspace{0.5cm}{\rm Pr} (B_{\rm 1}) = \frac{28}{32}= \frac{7}{8}.$$
 
  
Die Wahrscheinlichkeit Pr( $A_2$), dass zur Zeit $ν =$ 2 ein Ass gezogen wird, hängt nun davon ab,
+
{{GraueBox|TEXT= 
*ob zum Zeitpunkt $ν =$ 1 ein Ass gezogen wurde    ⇒  Pr( $A_2$) = 3/31 < 1/8,    oder
+
$\text{Example 1:}$&nbsp;
*ob zum Zeitpunkt $ν =$ 1 kein Ass gezogen wurde ⇒  Pr( $A_2$) = 4/31 > 1/8.
+
Cards are drawn one after the other from a deck of&nbsp; $32$&nbsp; cards&nbsp; $($including four aces$)$.&nbsp; With the events
 +
*$A:=$&nbsp; &raquo;the drawn card is an ace&laquo;,&nbsp;  
 +
*$B = \overline{A}:=$&nbsp; &raquo;the drawn card is not an ace&laquo;,&nbsp;
  
 +
 +
the probabilities at time&nbsp; $ν = 1$:
 +
:$${\rm Pr} (A_{\rm 1})  ={4}/{32}= {1}/{8},\hspace{0.5cm}{\rm Pr} (B_{\rm 1}) = {28}/{32}= {7}/{8}.$$
  
Auch die Wahrscheinlichkeiten Pr( $A_ν$) zu späteren Zeitpunkten $ν$ hängen stets vom Eintreffen bzw. Nichteintreffen aller vorherigen Ereignisse $E_1 ... E_{ν–1}$ ab.
+
The probability&nbsp; ${\rm Pr} (A_{\rm 2})$,&nbsp; that an ace is drawn as the second card&nbsp; $(ν = 2)$&nbsp; now depends on,
{{end}}
+
*whether an ace was drawn at time&nbsp; = 1$&nbsp;&nbsp;  ⇒ &nbsp; ${\rm Pr} (A_{\rm 2})  = 3/31 < 1/8$,&nbsp;
 +
 
 +
*or at time&nbsp; $ν = 1$&nbsp; no ace was drawn &nbsp; ⇒ &nbsp; ${\rm Pr} (A_{\rm 2})  = 4/31 > 1/8$.
  
==Allgemeine Definition einer Markovkette==
 
In Sonderfällen, die allerdings sehr häufig vorkommen, kann das oben beschriebene Szenario durch eine Markovkette beschrieben werden.
 
  
{{Definition}}
+
Also,&nbsp; the probabilities&nbsp; ${\rm Pr} (A_{\nu})$&nbsp; at later times&nbsp; $ν$&nbsp; always depend on the occurrence or non-occurrence of all previous events&nbsp; $E_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} ,E_{ν\hspace{0.05cm}–1}$&nbsp;.}}
Eine Markovkette $k$-ter Ordnung (englisch: ''Markov Chain'') dient als Modell für zeit- und wertdiskrete Vorgänge, bei denen die Ereigniswahrscheinlichkeiten zur Zeit $ν$ von den vorherigen Ereignissen $E_{ν–1}, ... , E_{ν–k}$ abhängen und durch $M^{k+1}$ bedingte Wahrscheinlichkeiten ausgedrückt werden können. Für $M =$ 2 gibt es deshalb $2^{k+1}$ solcher Wahrscheinlichkeiten:
 
$${\rm Pr} ( E_\nu \hspace {0.05cm}| \hspace {0.05cm}E_{\nu {\rm -1 }},\hspace {0.1cm} ...\hspace {0.1cm}, E_{\nu { -k }}) \hspace {0.5cm} {\rm mit}\hspace {0.5cm} E_{\nu }\in \{ A, B \}, \hspace {0.1cm}...\hspace {0.1cm}, E_{\nu { -k }} \in \{ A, B \}.$$
 
{{end}}
 
  
 +
==General definition of a Markov chain==
 +
<br>
 +
In special cases,&nbsp; which however occur very frequently,&nbsp; the scenario described above can be described by a Markov chain.
  
Das nachfolgende Bild verdeutlicht diesen Sachverhalt am Beispiel $k =$ 2.
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
A&nbsp; $k$-th order&nbsp; &raquo;'''Markov Chain'''&laquo;&nbsp; serves as a model for time and value-discrete processes,&nbsp; where the event probabilities at time&nbsp; $ν$
 +
*&nbsp;&nbsp; depend on the previous events &nbsp; $E_{ν\hspace{0.05cm}–1}, \hspace{0.15cm}\text{...}\hspace{0.15cm}, E_{ν\hspace{0.05cm}–k}$,&nbsp;  and
 +
 +
*&nbsp; can be expressed by&nbsp; $M^{k+1}$&nbsp; conditional probabilities.}}
  
[[File:P_ID444__Sto_T_1_4_S2a_neu.png | Markovkette zweiter Ordnung]]
 
  
 +
[[File:EN_Sto_T_1_4_S2a.png |right|frame| Second order Markov chain]]
 +
The diagram illustrates this issue using&nbsp; $k = 2$&nbsp; as an example.&nbsp;
  
{{Beispiel}}
+
*For&nbsp; $M = 2$&nbsp; there are&nbsp; $2^{k+1}$&nbsp; such conditional probabilities:&nbsp;
Natürliche Sprachen sind oft durch Markovketten beschreibbar, wobei allerdings die Ordnung $k$ gegen Unendlich strebt. Nähert man einen Text durch eine Markovkette 2. Ordnung an, so ergibt sich zwar kein sinnvoller Inhalt, aber die Struktur der Sprache ist erkennbar.
 
  
Das untere Bild zeigt links einen Text, der ausgehend von einer deutschen Buchvorlage mit Bindungen bis zu zweiter Ordnung synthetisch erzeugt wurde. Beim rechten Text wurde eine englische Vorlage verwendet. Man erkennt trotz der Beschränkung $k =$ 2 viele (kurze) deutsche bzw. englische Wörter und auch, dass deutsche Wörter im Mittel länger sind als englische.
+
:$${\rm Pr} ( E_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}E_{\nu {\rm -1 } },\hspace {0.15cm}\text{...}\hspace {0.15cm}, E_{\nu { -k } }).$$
  
[[File:P_ID506__Sto_T_1_4_S2b_neu.png | Synthetisch erzeugte Textdatei (deutsch und englisch)]]
+
*With&nbsp; $E_{\nu }\in \{ A, B \}, \hspace {0.15cm}\text{...}\hspace {0.15cm}, E_{\nu { -k } } \in \{ A, B \}$&nbsp; these are:
{{end}}
+
:$${\rm Pr} ( A_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}A_{\nu {\rm -1 } }, A_{\nu { -2 } }),\hspace {0.5cm} {\rm Pr} ( B_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}A_{\nu {\rm -1 } }, A_{\nu { -2 } }),$$
 +
:$${\rm Pr} ( A_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}A_{\nu {\rm -1 } },B_{\nu { -2 } }),\hspace {0.5cm}{\rm Pr} ( B_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}A_{\nu {\rm -1 } }, B_{\nu { -2 } }),$$
 +
:$${\rm Pr} ( A_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}B_{\nu {\rm -1 } }, A_{\nu { -2 } }),\hspace {0.5cm}{\rm Pr} ( B_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}B_{\nu {\rm -1 } }, A_{\nu { -2 } }),$$
 +
:$${\rm Pr} ( A_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}B_{\nu {\rm -1 } }, B_{\nu { -2 } }),\hspace {0.5cm}{\rm Pr} ( B_\nu  \hspace {0.05cm}\vert  \hspace {0.05cm}B_{\nu {\rm -1 } }, B_{\nu { -2 } }).$$
  
==Markovkette erster Ordnung==
+
{{GraueBox|TEXT=
Im Folgenden beschränken wir uns stets auf den Sonderfall $k =$ 1.
+
$\text{Example 2:}$&nbsp; Natural languages are often describable by Markov chains,&nbsp; although the order&nbsp; $k$&nbsp; tends here to infinity.&nbsp;
  
{{Definition}}
+
In this example,&nbsp; however,&nbsp; texts are only approximated by second order Markov chains.
Bei einer  Markovkette erster Ordnung (englisch: ''First Order Markov Chain'') werden lediglich die statistische Bindung zum letzten Ereignis berücksichtigt, die in der Praxis meist auch am stärksten ist.  
+
[[File:EN_Sto_T_1_4_S2c.png |right|frame| Synthetically generated texts&nbsp; based on German or English book template]]
 +
The graphic shows two synthetically generated texts:
 +
*The left text was synthetically generated starting from a German book template with bindings up to second order.
  
Eine binäre Markovkette  ⇒  Grundmenge $G$ = { $A, B$ } weist folgende Wahrscheinlichkeiten auf:
+
*For the right text,&nbsp; an English book template was used.
$${\rm Pr}(A_\nu) = {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
 
$${\rm Pr}(B_\nu) = {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) .$$
 
{{end}}
 
  
  
Hierzu ist anzumerken:
+
One recognizes despite the restriction to&nbsp; $k = 2$&nbsp; 
*Pr( $A_ν$) steht als Abkürzung für die Wahrscheinlichkeit, dass $E_ν = A$ ist.
+
#many $($short$)$ German words on the left,
*Zu jedem beliebigen Zeitpunkt $ν$ gilt: Pr( $B_ν$) = 1 – Pr( $A_ν$). 
+
#many $($short$)$ English words on the right,
*Es gibt zu jedem Zeitpunkt vier Übergangswahrscheinlichkeiten Pr( $E_ν | E_{ν–1}$), von denen jedoch nur zwei unabhängig sind, denn es gilt:
+
#German words are on the average longer than English words.&nbsp;
$${\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) = 1 - {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}), \hspace{0.5cm}{\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) = 1 - {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}).$$
 
*Durch Verallgemeinerung dieser letzten Aussage gelangt man zu dem Ergebnis, dass es bei einer Markovkette mit $M$ Ereignissen zu jedem Zeitpunkt $ν$ genau $M · (M – 1)$ voneinander unabhängige Übergangswahrscheinlichkeiten gibt.
 
  
  
{{Beispiel}}
+
There is no meaningful content,&nbsp; but the structure of the respective language is recognizable. }}
Mit den vorgegebenen Übergangswahrscheinlichkeiten Pr( $A_ν | A_{ν–1}$) = 0.2 und Pr( $B_ν | B_{ν–1}$) = 0.4 sind auch die beiden anderen Übergangswahrscheinlichkeiten festgelegt: Pr( $B_ν | A_{ν–1}$) = 0.8 und Pr( $A_ν | B_{ν–1}$) = 0.6.
 
{{end}}
 
  
==Homogene Markovketten==
+
==First order Markov chain==
Eine Anwendbarkeit der Markovketten auf praktische Probleme ist meist nicht gegeben, wenn nicht weitere einschränkende Voraussetzungen getroffen werden.
+
<br>
{{Definition}}
+
In the following, we always restrict ourselves to the special case&nbsp; $k =1$.
Sind alle Übergangswahrscheinlichkeiten unabhängig vom betrachteten Zeitpunkt $ν$, so bezeichnet man die Markovkette als homogen (englisch: ''homogeneous''). Im Fall $M =$ 2 verwenden wir hierfür folgende Abkürzungen:
 
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) = {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) = {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) ,$$
 
$${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) = {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) .$$
 
{{end}}
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
  
Damit lauten die beiden Ereigniswahrscheinlichkeiten einer binären homogenen Markovkette, die im Gegensatz zu den bedingten Übergangswahrscheinlichkeiten absolute Wahrscheinlichkeiten darstellen:
+
$(1)$&nbsp; In a&nbsp; &raquo;'''first order Markov chain'''&laquo;&nbsp; only the statistical binding to the last event is considered,&nbsp; which in practice is usually the strongest.
$${\rm Pr}(A_\nu) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
 
$${\rm Pr}(B_\nu) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) .$$
 
Diesen Zusammenhang kann man auch aus dem nachfolgend dargestellten Markovdiagramm ablesen. Die Summe der abgehenden Pfeile eines Ereignisses ( $A_ν$ bzw. $B_ν$) ergibt sich stets zu 1.
 
  
[[File:P_ID1444__Sto_T_1_4_S4_neu.png | Homogene Markovkette erster Ordnung]]
+
$(2)$&nbsp; For example:&nbsp; A&nbsp; &raquo;'''binary first order Markov chain'''&laquo;&nbsp;  ⇒  &nbsp; universal set&nbsp; $G = \{ A, \ B \}$&nbsp; has the following event probabilities at time&nbsp; $\nu$:
 +
:$${\rm Pr}(A_\nu) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
 +
:$${\rm Pr}(B_\nu) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) .$$}}
  
Sie können das „Einschwingverhalten” der Ereigniswahrscheinlichkeiten einer solchen binären Markovkette mit dem folgenden Interaktionsmodul berechnen und anzeigen lassen:
 
  
==Stationäre Wahrscheinlichkeiten==
+
Regarding these equations,&nbsp; we note:
Wichtige Eigenschaften von Zufallsprozessen sind  Stationarität  und Ergodizität  (Näheres hierzu im Kapitel 4.4). Hier werden diese Begriffe vorausgreifend auf Markovketten angewandt.
+
*${\rm Pr}(A_\nu)$&nbsp; is shorthand for the probability that at time&nbsp; $ν$&nbsp; the event &nbsp; $E_ν = A = \overline{B}$&nbsp; occurs,&nbsp; and it    holds:
 +
:$${\rm Pr}(B_\nu) = 1 - {\rm Pr}(A_\nu).$$
 +
*At each time there are four transition probabilities&nbsp; ${\rm Pr}(E_ν\hspace{0.05cm} |\hspace{0.05cm} E_{ν–1})$,&nbsp; but only two of them are independent,&nbsp; because it holds:
 +
:$${\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) = 1 - {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}),$$
 +
:$${\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) = 1 - {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}).$$
 +
*Generalizing this last statement:&nbsp; For a Markov chain with&nbsp; $M$ events,&nbsp;  there are exactly&nbsp; $M · (M – 1)$&nbsp; independent transition probabilities at each time&nbsp; $ν$.
  
{{Definition}}
 
Sind bei einer Markovkette neben den Übergangswahrscheinlichkeiten auch alle Ereigniswahrscheinlichkeiten unabhängig vom Zeitpunkt $ν$, so bezeichnet man sie als stationär (englisch: ''stationary''). Man verzichtet dann auf den Index $ν$ und schreibt im binären Fall:
 
$${\rm Pr}(A_\nu ) = {\rm Pr}(A )  \hspace{0.5 cm} {\rm bzw.} \hspace{0.5 cm} {\rm Pr}(B_\nu ) = {\rm Pr}(B).$$
 
Diese Größen nennt man auch die ergodischen Wahrscheinlichkeiten der Markovkette.
 
{{end}}
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; With the given transition probabilities
 +
:$${\rm Pr}(A_ν\hspace{0.05cm}\vert\hspace{0.05cm} A_{ν–1}) = 0.2, \hspace{0.5cm}  {\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 0.4,$$
 +
the other two transition probabilities are also uniquely specified:
 +
:$${\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} A_{ν–1}) = 1- 0.2 = 0.8, \hspace{0.5cm}
 +
{\rm Pr}(A_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 1- 0.4 = 0.6.$$}}
  
Stationäre Markovketten weisen die nachfolgend genannten Besonderheiten auf:
+
==Homogeneous Markov chains==
*Zur Berechnung der ergodischen Wahrscheinlichkeiten einer binären Markovkette ( $M =$ 2) kann man folgende Gleichungen verwenden:
+
<br>
$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) ,$$
+
Applicability of Markov chains to practical problems is usually only given with further restrictive conditions.
$${\rm Pr}(B) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) .$$
 
*Da diese Gleichungen linear voneinander abhängen, darf man nur eine davon benutzen. Als zweite Bestimmungsgleichung kann man beispielsweise Pr( $A$) + Pr( $B$) = 1 verwenden.
 
*Aus diesen Gleichungen ergeben sich die ergodischen Wahrscheinlichkeiten zu
 
$${\rm Pr}(A) = \frac {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)  + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }\hspace{0.1cm}, \hspace{0.5cm}{\rm Pr}(B) = \frac {{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)  + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }.$$
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
 +
$(1)$&nbsp; If all transition probabilities are independent of time&nbsp; $ν$,&nbsp; the Markov chain is&nbsp; &raquo;'''homogeneous'''&laquo;.
  
Bei einer stationären Markovkette treten sehr lange nach Einschalten der Kette ( $ν → ∞$) stets die ergodischen Wahrscheinlichkeiten auf, unabhängig von den Startbedingungen Pr( $A_0$) und Pr( $B_0$).
+
$(2)$&nbsp; In the case&nbsp; $M = 2$&nbsp; we use the following abbreviations:
 +
:$${\rm Pr}(A \hspace{0.05cm} \vert \hspace{0.05cm}A) = {\rm Pr}(A_\nu \hspace{0.05cm}\vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(A \hspace{0.05cm} \vert\hspace{0.05cm}B) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) ,$$
 +
:$${\rm Pr}(B \hspace{0.05cm} \vert\hspace{0.05cm}A) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm}B) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) .$$}}
  
{{Beispiel}}
 
Wir betrachten eine binäre Markovkette mit den beiden Ereignissen $A$ und $B$ und den Übergangswahrscheinlichkeiten Pr( $A | A$) = 0.4 und Pr( $B | B$) = 0.8. Weiterhin setzen wir voraus, dass jede Realisierung dieser Kette zum Startzeitpunkt $ν$ = 0 mit dem Ereignis $A$ beginnt. Man erhält dann die nachfolgend aufgelisteten Ereigniswahrscheinlichkeiten:
 
  
[[File:P_ID642__Sto_T_1_4_S5_neu.png | Zum Einschwingen der Ereigniswahrscheinlichkeiten]]
+
[[File:P_ID1444__Sto_T_1_4_S4_neu.png|right|frame| First order homogeneous Markov chain]]
 +
Thus,&nbsp; the event probabilities of a binary homogeneous Markov chain:
 +
:$${\rm Pr}(A_\nu) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
 +
:$${\rm Pr}(B_\nu) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) .$$
  
 +
These are absolute probabilities in contrast to the conditional transition probabilities.
  
Es handelt sich hier im strengen Sinne um eine nichtstationäre Markovkette, die jedoch bereits nach sehr kurzer Zeit (nahezu) eingeschwungen ist. Zu späteren Zeitpunkten ( $ν >$ 5) werden die Ereigniswahrscheinlichkeiten Pr( $A_ν$) 1/4 und Pr( $B_ν$) ≈ 3/4 nicht mehr gravierend verändert.
+
We can also read from the Markov diagram:
 +
*The sum of the&nbsp; &raquo;'''outgoing arrows'''&laquo;&nbsp; of an event is always one:
 +
:$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) =1,$$
 +
:$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) =1.$$
  
''Anmerkung:'' Aus der Angabe Pr( $A_ν=5$) = 0.250 bzw. Pr( $B_ν=5$) = 0.750 sollte nicht geschlossen werden, dass die Markovkette zum Zeitpunkt $ν$ = 5 schon vollkommen eingeschwungen ist. Die exakten Werte sind Pr( $A_ν=5$) = 0.25024 und Pr( $B_ν=5$) = 0.74976.
+
*For the sums of the&nbsp; &raquo;'''incoming arrows'''&laquo;&nbsp; this restriction does not apply:
{{end}}
+
:$$  0 < {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)  + {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)< 2,$$
 +
:$$0 < {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)  + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B)< 2.$$
  
==Matrix-Vektordarstellung (1)==
+
==Stationary probabilities==
Homogene Markovketten können mit Vektoren und Matrizen sehr kompakt dargestellt werden. Dies empfiehlt sich insbesondere, wenn mehr als zwei Ereignisse betrachtet werden:
+
<br>
$$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}...\hspace{0.1cm}, E_\mu , \hspace{0.1cm}...\hspace{0.1cm}, E_M \}.$$
+
Important properties of random processes are&nbsp;  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)#Stationary_random_processes|&raquo;$\text{stationarity}$&laquo;]]&nbsp;  and&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)#Ergodic_random_processes|&raquo;$\text{ergodicity}$&laquo;]].&nbsp; Although these terms are not defined until the fourth main chapter&nbsp; &raquo;Random Variables with Statistical Dependence&laquo;,&nbsp; we apply them here already in advance to Markov chains.
Für die Matrix-Vektorendarstellung verwenden wir folgende Nomenklatur:
 
*Die $M$ Wahrscheinlichkeiten zum Zeitpunkt $ν$ fasst man zu einem Spaltenvektor zusammen:
 
$${\mathbf{p}^{(\nu)}} = \left[ \begin{array}{c} {p_{\rm 1}}^{(\nu)} \\ \multicolumn{1}{c} \dotfill \\ {p_{M}}^{(\nu)} \end{array} \right] \hspace{0.5cm}{\rm mit} \hspace{0.5cm} {p_{\mu}}^{(\nu)} = {\rm Pr}(E_\nu = E_\mu ).$$
 
*Die Übergangswahrscheinlichkeiten werden durch eine $M$ x $M$-Matrix ausgedrückt:
 
$${\mathbf{P}} =\left( p_{ij} \right) = \left[ \begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1M} \\ p_{21} & p_{22}& \cdots & p_{2M} \\ \multicolumn{4}{c} \dotfill \\ p_{M1} & p_{M2} & \cdots & p_{MM}  \end{array} \right] \hspace{0.5cm}{\rm mit} \hspace{0.5cm} {p_{ij}} = {\rm Pr}(E_{\nu +1 } = E_j \hspace{0.05cm}| \hspace{0.05cm} E_{\nu } = E_i).$$
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
 +
$(1)$&nbsp; If,&nbsp; in addition to the transition probabilities,&nbsp; all event probabilities of a Markov chain are independent of time&nbsp; $ν$,&nbsp; then the Markov chain is called&nbsp; &raquo;'''stationary'''&laquo;.&nbsp;
  
 +
$(2)$&nbsp; One then omits the index&nbsp; $ν$&nbsp; and writes in the binary case:
 +
:$${\rm Pr}(A_\nu ) = {\rm Pr}(A ),  \hspace{0.5 cm}  {\rm Pr}(B_\nu ) = {\rm Pr}(B).$$
 +
$(3)$&nbsp; These quantities are also called&nbsp; &raquo;'''ergodic probabilities'''&laquo;&nbsp; of the Markov chain.}}
  
[[File:P_ID448__Sto_T_1_4_S6_neu.png  |Zur Bezeichnung der Übergangswahrscheinlichkeiten |links]]
 
Die nebenstehende Abbildung verdeutlicht diese Nomenklatur am Beispiel $M =$ 2.
 
  
 +
Stationary Markov chains have the special features mentioned below:
 +
*To calculate the ergodic probabilities of a binary Markov chain&nbsp; $(M =2)$&nbsp; one can use the following equations:
 +
:$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) ,$$
 +
:$${\rm Pr}(B) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) .$$
 +
*Since these equations depend linearly on each other,&nbsp; one may use only one of them.&nbsp;  As the second equation of determination one may use:
 +
:$${\rm Pr}(A) +  {\rm Pr}(B)  = 1.$$
  
 +
*The ergodic probabilities result from it to
 +
:$${\rm Pr}(A) = \frac {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)  + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }\hspace{0.1cm}, $$
 +
:$${\rm Pr}(B) = \frac {{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)  + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }.$$
  
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; We consider a stationary and binary Markov chain with events&nbsp; $A$&nbsp; and $B$&nbsp; and transition probabilities&nbsp; ${\rm Pr}(A \hspace{0.05cm} \vert\hspace{0.05cm}A) = 0.4$&nbsp; and&nbsp;  ${\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm}B) = 0.8$.
 +
[[File:P_ID642__Sto_T_1_4_S5_neu.png |right|frame| Transient response of the event probabilities $($three decimal places$)$]]
 +
 +
Furthermore,&nbsp; we assume that each realization starts with event&nbsp; $A$&nbsp; at starting time&nbsp; $ν = 0$.&nbsp; We then obtain the event probabilities listed on the right:
  
 +
In a strict sense,&nbsp; this is a non-stationary Markov chain,&nbsp; but it is&nbsp; $($nearly$)$&nbsp; settled after a short time:
 +
#At later times&nbsp; $(ν > 5),$&nbsp; the event probabilities&nbsp; ${\rm Pr}(A_ν) \approx 1/4$,&nbsp;  ${\rm Pr}(B_ν) \approx 3/4$&nbsp; are no longer seriously changed.
 +
#However,&nbsp; from&nbsp; ${\rm Pr}(A_{ν=5}) = 0.250$&nbsp; and&nbsp;  ${\rm Pr}(B_{ν=5}) = 0.750$&nbsp; it should not be concluded that the Markov chain is already perfectly steady at time &nbsp; $ν = 5$.
 +
#Indeed,&nbsp; the exact values are:&nbsp;
 +
::$${\rm Pr}(A_{ν=5}) = 0.25024,\hspace{0.5cm}{\rm Pr}(B_{ν=5}) = 0.74976.$$}}
  
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; For a stationary Markov chain, the ergodic probabilities always occur with good approximation very long after the chain is switched on &nbsp; $(ν → ∞)$&nbsp;, regardless of the initial conditions&nbsp; ${\rm Pr}(A_0)$&nbsp; and&nbsp; ${\rm Pr}(B_0) = 1 - {\rm Pr}(A_0)$.
 +
}}
 +
 +
==Matrix vector representation==
 +
<br>
 +
Homogeneous Markov chains can be represented very compactly with vectors and matrices.&nbsp; This is especially recommended for more than two events:
 +
 +
:$$E_\nu \in G = \{ E_{\rm 1},\ E_{\rm 2}, \hspace{0.1cm}\text{...}\hspace{0.1cm},\ E_\mu , \hspace{0.1cm}\text{...}\hspace{0.1cm},\ E_M \}.$$
 +
For the matrix-vector representation,&nbsp; we use the following nomenclature:
 +
*We summarize the&nbsp; $M$&nbsp; probabilities at time&nbsp; $ν$&nbsp; in a column vector:
 +
:$${\mathbf{p}^{(\nu)}} = \left[ \begin{array}{c} {p_{\rm 1}}^{(\nu)} \\ \dots \\ {p_{M}}^{(\nu)} \end{array} \right] \hspace{0.5cm}{\rm with} \hspace{0.5cm} {p_{\mu}}^{(\nu)} = {\rm Pr}(E_\nu = E_\mu ).$$
 +
*The transition probabilities are expressed by an&nbsp; $M \times M$ matrix:
 +
:$${\mathbf{P}} =\left( p_{ij} \right) = \left[ \begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1M} \\ p_{21} & p_{22}& \cdots & p_{2M} \\ \dots & \dots & \dots & \dots \\ p_{M1} & p_{M2} & \cdots & p_{MM}  \end{array} \right] \hspace{0.5cm}{\rm with} \hspace{0.5cm} {p_{ij}} = {\rm Pr}(E_{\nu +1 } = E_j \hspace{0.05cm}| \hspace{0.05cm} E_{\nu } = E_i).$$
 +
 +
The accompanying figure illustrates this nomenclature using the example&nbsp; $M = 2$.&nbsp; The new event probability vector after one step is:
 +
[[File:P_ID448__Sto_T_1_4_S6_neu.png  |frame|To denote the transition probabilities |right]]
 +
:$${\mathbf{p}^{(\nu + 1)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(\nu )}} .$$
 +
 +
Here,&nbsp; ${\mathbf{P}^{\rm T}}$&nbsp; denotes the&nbsp; &raquo;transposed matrix&raquo;&nbsp; to&nbsp; $\mathbf{P}$.&nbsp; Thus,&nbsp; after&nbsp; $n$&nbsp; steps,&nbsp; the result is
 +
:$${\mathbf{p}^{(\nu +{\it n})}} = \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} .$$
 +
 +
In the limit transition&nbsp; $(n → ∞)$&nbsp; one then always achieves stationarity of the Markov chain:
 +
:$$\lim_{n \to\infty}\hspace{0.1cm}{\mathbf{p}^{(\nu + n)}} = \lim_{n \to\infty} \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}}  = {\mathbf{p}}_{\rm erg}= \left[ \begin{array}{c} {p_{\rm 1}} \\ \dots \\ {p_{M}} \end{array} \right] .$$
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Multiplying the transition matrix&nbsp; ${\mathbf{P} }$&nbsp; infinitely many times by itself and denoting the result by&nbsp; ${\mathbf{P} }_{\rm erg}$,&nbsp; the resulting matrix consists of&nbsp; $M$&nbsp; equal rows:
 +
:$${\mathbf{P} }_{\rm erg} = \lim_{n \to\infty}  {\mathbf{P} }^n = \left[ \begin{array}{cccc} p_{1} & p_{2} & \cdots & p_{M} \\ p_{1} & p_{2}& \cdots & p_{M} \\ \dots & \dots & \dots & \dots \\ p_{1} & p_{2} & \cdots & p_{M}  \end{array} \right] .$$
 +
The probabilities&nbsp; $p_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, p_M$&nbsp; in each of these lines are called the&nbsp; &raquo;'''ergodic probabilities'''&laquo;. }}
 +
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 5:}$&nbsp; We consider a Markov chain with the events&nbsp; $E_1,&nbsp; E_2$&nbsp; and&nbsp; $E_3$ &nbsp; &rArr; &nbsp; $M=3$.&nbsp; The graph shows
 +
[[File:P_ID1445__Sto_T_1_4_S6c_neu.png | right|frame|Markov diagram with three events]]
 +
*on the left the Markov diagram,
 +
*on the upper right the transition matrix&nbsp; $\mathbf{P}$,
 +
*below their powers&nbsp; $\mathbf{P}^2$&nbsp; and&nbsp; $\mathbf{P}^3$.
 +
 +
 +
In the Markov diagram,&nbsp; all transition probabilities with the numerical value&nbsp; $1/2$&nbsp; are shown in blue; &nbsp; green indicates the probability&nbsp; $1/4$.
 +
*At the start&nbsp; $(ν =0)$&nbsp; all events are equally probable.&nbsp; For&nbsp; $ν = 1$&nbsp; then holds:
 +
:$${\mathbf{p}^{(1)} } = {\mathbf{P} }^{\rm T} \cdot {\mathbf{p}^{(0 )} }= \left[ \begin{array}{ccc} 1/2 & 1/2&  1/2 \\ 1/4 & 0 & 1/2  \\ 1/4& 1/2& 0  \end{array} \right] \left[ \begin{array}{c} 1/3 \\ 1/3  \\ 1/3  \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4  \\ 1/4  \end{array} \right] .$$
 +
:From this it can be seen that we get from the matrix&nbsp;  $\mathbf{P}$&nbsp; to the transposed matrix&nbsp; ${\mathbf{P}^{\rm T} }$&nbsp; by exchanging rows and columns.
 +
 +
*At time&nbsp; $ν =2$&nbsp; $($and also at all later times$)$&nbsp; the same probabilities result:
 +
:$${\mathbf{p}^{(2)} } = {\mathbf{P} }^{\rm T} \cdot {\mathbf{p}^{(1 )} }= \left[ \begin{array}{ccc} 1/2 & 1/2&  1/2 \\ 1/4 & 0 & 1/2  \\ 1/4& 1/2& 0  \end{array} \right] \left[ \begin{array}{c} 1/2 \\ 1/4  \\ 1/4  \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4  \\ 1/4  \end{array} \right] .$$
 +
:This means:&nbsp; The ergodic probabilities of the three events are&nbsp;  $1/2$&nbsp; $($for&nbsp; $E_1)$,&nbsp; $1/4$&nbsp; $($for&nbsp; $E_2)$,&nbsp; and $1/4$&nbsp; $($for&nbsp; $E_3)$.
 +
*This result could have been read directly from the ergodic matrix:
 +
:$${\mathbf{P} }_{\rm erg} = \lim_{n \to\infty}  {\mathbf{P} }^n = \left[ \begin{array}{ccc} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4  \\ 1/2 & 1/4 & 1/4  \end{array} \right] .$$
  
Der neue Ereigniswahrscheinlichkeitsvektor nach einem Schritt lautet:  
+
:This is obtained by continuously multiplying the transition matrix by itself.
$${\mathbf{p}^{(\nu + 1)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(\nu )}} .$$
+
*In the figure above the powers&nbsp;  $\mathbf{P}^2$&nbsp; and&nbsp; $\mathbf{P}^3$&nbsp; are given,&nbsp; which approximate the matrix&nbsp; $\mathbf{P}_{\rm erg}$.}}
  
''' $P^T$ ''' bezeichnet hierbei die ''transponierte'' Matrix zu '''P'''. Nach $n$ Schritten ergibt sich somit
+
==Exercises for the chapter==
$${\mathbf{p}^{(\nu +{\it n})}} = \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} .$$
 
  
Im Grenzübergang ( $n → ∞$) erreicht man dann stets die Stationarität der Markovkette:
+
[[Aufgaben:Exercise_1.6:_Transition_Probabilities|Exercise 1.6: Transition Probabilities]]
$$\lim_{n \to\infty}\hspace{0.1cm}{\mathbf{p}^{(\nu + n)}} = \lim_{n \to\infty} \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}}  = {\mathbf{p}}_{\rm erg}= \left[ \begin{array}{c} {p_{\rm 1}} \\ \multicolumn{1}{c} \dotfill \\ {p_{M}} \end{array} \right] .$$
 
  
Die Wahrscheinlichkeiten $p_1, ... , p_M$ werden als die ergodischen Wahrscheinlichkeiten bezeichnet. Multipliziert man die Übergangsmatrix unendlich oft mit sich selbst und benennt das Ergebnis mit $'''P_{\rm {erg}}$, so besteht die resultierende Matrix aus $M$ gleichen Spalten:
+
[[Aufgaben:Exercise_1.6Z:_Ergodic_Probabilities|Exercise 1.6Z: Ergodic Probabilities]]
$${\mathbf{P}}_{\rm erg} = \lim_{n \to\infty}  {\mathbf{P}}^n = \left[ \begin{array}{cccc} p_{1} & p_{2} & \cdots & p_{M} \\ p_{1} & p_{2}& \cdots & p_{M} \\ \multicolumn{4}{c} \dotfill \\ p_{1} & p_{2} & \cdots & p_{M}  \end{array} \right] .$$
 
  
 +
[[Aufgaben:Exercise_1.7:_Ternary_Markov_Chain|Exercise 1.7: Ternary Markov Chain]]
  
 +
[[Aufgaben:Exercise_1.7Z:_BARBARA_Generator|Exercise 1.7Z: BARBARA Generator]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 12:51, 6 February 2024

Considered scenario


Finally,  we consider the case where one conducts a random experiment continuously and that at each discrete time  $(ν = 1, 2, 3, \text{...})$  a new event  $E_ν$.  Here,  let hold:

Possible events and event sequence
$$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_\mu , \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_M \}.$$

This mathematically not quite proper nomenclature means  (see graph):

  • The  $M$  possible events are numbered consecutively with the index  $μ$.
  • The index  $ν$  names the discrete time points at which events occur.


For simplicity,  we restrict ourselves in the following to the case  $M = 2$  with the universal set  $G = \{ A, \ B \}$.  Let further hold:

  • The probability of event  $E_ν$  may well depend on all previous events  – that is,  on the events  $E_{ν\hspace{0.05cm}-1}, \hspace{0.15cm} E_{ν\hspace{0.05cm}-2}, \hspace{0.15cm} E_{ν\hspace{0.05cm}-3}$,  and so on. 
  • This statement also means that in this chapter we consider a  »sequence of events with internal statistical bindings«.


This scenario is a special case of a discrete-time, discrete-value random process, which will be discussed in more detail in the chapter  »Random Processes«.  

$\text{Example 1:}$  Cards are drawn one after the other from a deck of  $32$  cards  $($including four aces$)$.  With the events

  • $A:=$  »the drawn card is an ace«, 
  • $B = \overline{A}:=$  »the drawn card is not an ace«, 


the probabilities at time  $ν = 1$:

$${\rm Pr} (A_{\rm 1}) ={4}/{32}= {1}/{8},\hspace{0.5cm}{\rm Pr} (B_{\rm 1}) = {28}/{32}= {7}/{8}.$$

The probability  ${\rm Pr} (A_{\rm 2})$,  that an ace is drawn as the second card  $(ν = 2)$  now depends on,

  • whether an ace was drawn at time  $ν = 1$   ⇒   ${\rm Pr} (A_{\rm 2}) = 3/31 < 1/8$, 
  • or at time  $ν = 1$  no ace was drawn   ⇒   ${\rm Pr} (A_{\rm 2}) = 4/31 > 1/8$.


Also,  the probabilities  ${\rm Pr} (A_{\nu})$  at later times  $ν$  always depend on the occurrence or non-occurrence of all previous events  $E_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} ,E_{ν\hspace{0.05cm}–1}$ .

General definition of a Markov chain


In special cases,  which however occur very frequently,  the scenario described above can be described by a Markov chain.

$\text{Definition:}$  A  $k$-th order  »Markov Chain«  serves as a model for time and value-discrete processes,  where the event probabilities at time  $ν$

  •    depend on the previous events   $E_{ν\hspace{0.05cm}–1}, \hspace{0.15cm}\text{...}\hspace{0.15cm}, E_{ν\hspace{0.05cm}–k}$,  and
  •   can be expressed by  $M^{k+1}$  conditional probabilities.


Second order Markov chain

The diagram illustrates this issue using  $k = 2$  as an example. 

  • For  $M = 2$  there are  $2^{k+1}$  such conditional probabilities: 
$${\rm Pr} ( E_\nu \hspace {0.05cm}\vert \hspace {0.05cm}E_{\nu {\rm -1 } },\hspace {0.15cm}\text{...}\hspace {0.15cm}, E_{\nu { -k } }).$$
  • With  $E_{\nu }\in \{ A, B \}, \hspace {0.15cm}\text{...}\hspace {0.15cm}, E_{\nu { -k } } \in \{ A, B \}$  these are:
$${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } }, A_{\nu { -2 } }),\hspace {0.5cm} {\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } }, A_{\nu { -2 } }),$$
$${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } },B_{\nu { -2 } }),\hspace {0.5cm}{\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } }, B_{\nu { -2 } }),$$
$${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, A_{\nu { -2 } }),\hspace {0.5cm}{\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, A_{\nu { -2 } }),$$
$${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, B_{\nu { -2 } }),\hspace {0.5cm}{\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, B_{\nu { -2 } }).$$

$\text{Example 2:}$  Natural languages are often describable by Markov chains,  although the order  $k$  tends here to infinity. 

In this example,  however,  texts are only approximated by second order Markov chains.

Synthetically generated texts  based on German or English book template

The graphic shows two synthetically generated texts:

  • The left text was synthetically generated starting from a German book template with bindings up to second order.
  • For the right text,  an English book template was used.


One recognizes despite the restriction to  $k = 2$ 

  1. many $($short$)$ German words on the left,
  2. many $($short$)$ English words on the right,
  3. German words are on the average longer than English words. 


There is no meaningful content,  but the structure of the respective language is recognizable.

First order Markov chain


In the following, we always restrict ourselves to the special case  $k =1$.

$\text{Definition:}$ 

$(1)$  In a  »first order Markov chain«  only the statistical binding to the last event is considered,  which in practice is usually the strongest.

$(2)$  For example:  A  »binary first order Markov chain«  ⇒   universal set  $G = \{ A, \ B \}$  has the following event probabilities at time  $\nu$:

$${\rm Pr}(A_\nu) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
$${\rm Pr}(B_\nu) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) .$$


Regarding these equations,  we note:

  • ${\rm Pr}(A_\nu)$  is shorthand for the probability that at time  $ν$  the event   $E_ν = A = \overline{B}$  occurs,  and it holds:
$${\rm Pr}(B_\nu) = 1 - {\rm Pr}(A_\nu).$$
  • At each time there are four transition probabilities  ${\rm Pr}(E_ν\hspace{0.05cm} |\hspace{0.05cm} E_{ν–1})$,  but only two of them are independent,  because it holds:
$${\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) = 1 - {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}),$$
$${\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) = 1 - {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}).$$
  • Generalizing this last statement:  For a Markov chain with  $M$ events,  there are exactly  $M · (M – 1)$  independent transition probabilities at each time  $ν$.


$\text{Example 3:}$  With the given transition probabilities

$${\rm Pr}(A_ν\hspace{0.05cm}\vert\hspace{0.05cm} A_{ν–1}) = 0.2, \hspace{0.5cm} {\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 0.4,$$

the other two transition probabilities are also uniquely specified:

$${\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} A_{ν–1}) = 1- 0.2 = 0.8, \hspace{0.5cm} {\rm Pr}(A_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 1- 0.4 = 0.6.$$

Homogeneous Markov chains


Applicability of Markov chains to practical problems is usually only given with further restrictive conditions.

$\text{Definition:}$ 

$(1)$  If all transition probabilities are independent of time  $ν$,  the Markov chain is  »homogeneous«.

$(2)$  In the case  $M = 2$  we use the following abbreviations:

$${\rm Pr}(A \hspace{0.05cm} \vert \hspace{0.05cm}A) = {\rm Pr}(A_\nu \hspace{0.05cm}\vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(A \hspace{0.05cm} \vert\hspace{0.05cm}B) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) ,$$
$${\rm Pr}(B \hspace{0.05cm} \vert\hspace{0.05cm}A) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm}B) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) .$$


First order homogeneous Markov chain

Thus,  the event probabilities of a binary homogeneous Markov chain:

$${\rm Pr}(A_\nu) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
$${\rm Pr}(B_\nu) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) .$$

These are absolute probabilities in contrast to the conditional transition probabilities.

We can also read from the Markov diagram:

  • The sum of the  »outgoing arrows«  of an event is always one:
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) =1,$$
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) =1.$$
  • For the sums of the  »incoming arrows«  this restriction does not apply:
$$ 0 < {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)< 2,$$
$$0 < {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B)< 2.$$

Stationary probabilities


Important properties of random processes are  »$\text{stationarity}$«  and  »$\text{ergodicity}$«.  Although these terms are not defined until the fourth main chapter  »Random Variables with Statistical Dependence«,  we apply them here already in advance to Markov chains.

$\text{Definition:}$ 

$(1)$  If,  in addition to the transition probabilities,  all event probabilities of a Markov chain are independent of time  $ν$,  then the Markov chain is called  »stationary«. 

$(2)$  One then omits the index  $ν$  and writes in the binary case:

$${\rm Pr}(A_\nu ) = {\rm Pr}(A ), \hspace{0.5 cm} {\rm Pr}(B_\nu ) = {\rm Pr}(B).$$

$(3)$  These quantities are also called  »ergodic probabilities«  of the Markov chain.


Stationary Markov chains have the special features mentioned below:

  • To calculate the ergodic probabilities of a binary Markov chain  $(M =2)$  one can use the following equations:
$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) ,$$
$${\rm Pr}(B) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) .$$
  • Since these equations depend linearly on each other,  one may use only one of them.  As the second equation of determination one may use:
$${\rm Pr}(A) + {\rm Pr}(B) = 1.$$
  • The ergodic probabilities result from it to
$${\rm Pr}(A) = \frac {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }\hspace{0.1cm}, $$
$${\rm Pr}(B) = \frac {{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }.$$

$\text{Example 4:}$  We consider a stationary and binary Markov chain with events  $A$  and $B$  and transition probabilities  ${\rm Pr}(A \hspace{0.05cm} \vert\hspace{0.05cm}A) = 0.4$  and  ${\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm}B) = 0.8$.

Transient response of the event probabilities $($three decimal places$)$

Furthermore,  we assume that each realization starts with event  $A$  at starting time  $ν = 0$.  We then obtain the event probabilities listed on the right:

In a strict sense,  this is a non-stationary Markov chain,  but it is  $($nearly$)$  settled after a short time:

  1. At later times  $(ν > 5),$  the event probabilities  ${\rm Pr}(A_ν) \approx 1/4$,  ${\rm Pr}(B_ν) \approx 3/4$  are no longer seriously changed.
  2. However,  from  ${\rm Pr}(A_{ν=5}) = 0.250$  and  ${\rm Pr}(B_{ν=5}) = 0.750$  it should not be concluded that the Markov chain is already perfectly steady at time   $ν = 5$.
  3. Indeed,  the exact values are: 
$${\rm Pr}(A_{ν=5}) = 0.25024,\hspace{0.5cm}{\rm Pr}(B_{ν=5}) = 0.74976.$$


$\text{Conclusion:}$  For a stationary Markov chain, the ergodic probabilities always occur with good approximation very long after the chain is switched on   $(ν → ∞)$ , regardless of the initial conditions  ${\rm Pr}(A_0)$  and  ${\rm Pr}(B_0) = 1 - {\rm Pr}(A_0)$.

Matrix vector representation


Homogeneous Markov chains can be represented very compactly with vectors and matrices.  This is especially recommended for more than two events:

$$E_\nu \in G = \{ E_{\rm 1},\ E_{\rm 2}, \hspace{0.1cm}\text{...}\hspace{0.1cm},\ E_\mu , \hspace{0.1cm}\text{...}\hspace{0.1cm},\ E_M \}.$$

For the matrix-vector representation,  we use the following nomenclature:

  • We summarize the  $M$  probabilities at time  $ν$  in a column vector:
$${\mathbf{p}^{(\nu)}} = \left[ \begin{array}{c} {p_{\rm 1}}^{(\nu)} \\ \dots \\ {p_{M}}^{(\nu)} \end{array} \right] \hspace{0.5cm}{\rm with} \hspace{0.5cm} {p_{\mu}}^{(\nu)} = {\rm Pr}(E_\nu = E_\mu ).$$
  • The transition probabilities are expressed by an  $M \times M$ matrix:
$${\mathbf{P}} =\left( p_{ij} \right) = \left[ \begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1M} \\ p_{21} & p_{22}& \cdots & p_{2M} \\ \dots & \dots & \dots & \dots \\ p_{M1} & p_{M2} & \cdots & p_{MM} \end{array} \right] \hspace{0.5cm}{\rm with} \hspace{0.5cm} {p_{ij}} = {\rm Pr}(E_{\nu +1 } = E_j \hspace{0.05cm}| \hspace{0.05cm} E_{\nu } = E_i).$$

The accompanying figure illustrates this nomenclature using the example  $M = 2$.  The new event probability vector after one step is:

To denote the transition probabilities
$${\mathbf{p}^{(\nu + 1)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(\nu )}} .$$

Here,  ${\mathbf{P}^{\rm T}}$  denotes the  »transposed matrix»  to  $\mathbf{P}$.  Thus,  after  $n$  steps,  the result is

$${\mathbf{p}^{(\nu +{\it n})}} = \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} .$$

In the limit transition  $(n → ∞)$  one then always achieves stationarity of the Markov chain:

$$\lim_{n \to\infty}\hspace{0.1cm}{\mathbf{p}^{(\nu + n)}} = \lim_{n \to\infty} \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} = {\mathbf{p}}_{\rm erg}= \left[ \begin{array}{c} {p_{\rm 1}} \\ \dots \\ {p_{M}} \end{array} \right] .$$

$\text{Definition:}$  Multiplying the transition matrix  ${\mathbf{P} }$  infinitely many times by itself and denoting the result by  ${\mathbf{P} }_{\rm erg}$,  the resulting matrix consists of  $M$  equal rows:

$${\mathbf{P} }_{\rm erg} = \lim_{n \to\infty} {\mathbf{P} }^n = \left[ \begin{array}{cccc} p_{1} & p_{2} & \cdots & p_{M} \\ p_{1} & p_{2}& \cdots & p_{M} \\ \dots & \dots & \dots & \dots \\ p_{1} & p_{2} & \cdots & p_{M} \end{array} \right] .$$

The probabilities  $p_1, \hspace{0.15cm}\text{...}\hspace{0.15cm}, p_M$  in each of these lines are called the  »ergodic probabilities«.


$\text{Example 5:}$  We consider a Markov chain with the events  $E_1,  E_2$  and  $E_3$   ⇒   $M=3$.  The graph shows

Markov diagram with three events
  • on the left the Markov diagram,
  • on the upper right the transition matrix  $\mathbf{P}$,
  • below their powers  $\mathbf{P}^2$  and  $\mathbf{P}^3$.


In the Markov diagram,  all transition probabilities with the numerical value  $1/2$  are shown in blue;   green indicates the probability  $1/4$.

  • At the start  $(ν =0)$  all events are equally probable.  For  $ν = 1$  then holds:
$${\mathbf{p}^{(1)} } = {\mathbf{P} }^{\rm T} \cdot {\mathbf{p}^{(0 )} }= \left[ \begin{array}{ccc} 1/2 & 1/2& 1/2 \\ 1/4 & 0 & 1/2 \\ 1/4& 1/2& 0 \end{array} \right] \left[ \begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] .$$
From this it can be seen that we get from the matrix  $\mathbf{P}$  to the transposed matrix  ${\mathbf{P}^{\rm T} }$  by exchanging rows and columns.
  • At time  $ν =2$  $($and also at all later times$)$  the same probabilities result:
$${\mathbf{p}^{(2)} } = {\mathbf{P} }^{\rm T} \cdot {\mathbf{p}^{(1 )} }= \left[ \begin{array}{ccc} 1/2 & 1/2& 1/2 \\ 1/4 & 0 & 1/2 \\ 1/4& 1/2& 0 \end{array} \right] \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] .$$
This means:  The ergodic probabilities of the three events are  $1/2$  $($for  $E_1)$,  $1/4$  $($for  $E_2)$,  and $1/4$  $($for  $E_3)$.
  • This result could have been read directly from the ergodic matrix:
$${\mathbf{P} }_{\rm erg} = \lim_{n \to\infty} {\mathbf{P} }^n = \left[ \begin{array}{ccc} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \end{array} \right] .$$
This is obtained by continuously multiplying the transition matrix by itself.
  • In the figure above the powers  $\mathbf{P}^2$  and  $\mathbf{P}^3$  are given,  which approximate the matrix  $\mathbf{P}_{\rm erg}$.

Exercises for the chapter

Exercise 1.6: Transition Probabilities

Exercise 1.6Z: Ergodic Probabilities

Exercise 1.7: Ternary Markov Chain

Exercise 1.7Z: BARBARA Generator