Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.10: Mutual Information at the BSC"

From LNTwww
 
(31 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[http://www.example.com Link-Text]
+
{{quiz-Header|Buchseite=Information_Theory/Application_to_Digital_Signal_Transmission
{{quiz-Header|Buchseite=Informationstheorie/Anwendung auf die Digitalsignalübertragung
 
 
}}
 
}}
  
[[File:P_ID2787__Inf_A_3_9.png|right|]]
+
[[File:P_ID2787__Inf_A_3_9.png|right|frame|BSC model considered]]
Wir betrachten den $\text{Binary Symmetric Channel}$ (BSC). Für die gesamte Aufgabe gelten die  Parameterwerte:  
+
We consider the  [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|Binary Symmetric Channel]]  $\rm (BSC)$. The parameter values are valid for the whole exercise:
:* Verfälschungswahrscheinlichkeit: $\epsilon = 0.1$
+
* Crossover probability:   $\varepsilon = 0.1$,
:* Wahrscheinlichkeit für 0:   p0=0.2,
+
* Probability for  0:    p0=0.2,
:* Wahrscheinlichkeit für 1:   p1=0.8.
+
* Probability for  1:    p1=0.8.
  
Damit lautet die Wahrscheinlichkeitsfunktion der Quelle:
 
  
PX(X)=(0.2,0.8)
+
Thus the probability mass function of the source is:   $P_X(X)= (0.2 , \ 0.8)$  and for the source entropy applies:
 +
:$$H(X) = p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_0} + p_1\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_1} = H_{\rm bin}(0.2)={ 0.7219\,{\rm bit}} \hspace{0.05cm}.$$
  
und für die Quellenentropie gilt:
+
The task is to determine:
 +
* the probability function of the sink:
 +
:$$P_Y(Y) = (\hspace{0.05cm}P_Y(0)\hspace{0.05cm}, \ \hspace{0.05cm} P_Y(1)\hspace{0.05cm})
 +
\hspace{0.05cm},$$
 +
* the joint probability function:
 +
:$$P_{XY}(X, Y) = \begin{pmatrix}
 +
p_{00}  & p_{01}\\
 +
p_{10}  & p_{11}
 +
\end{pmatrix}  \hspace{0.05cm},$$
 +
* the mutual information:
 +
:$$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)}
 +
{P_{X}(X) \cdot P_{Y}(Y) }\right ]  \hspace{0.05cm},$$
 +
*the equivocation:
 +
:H(XY)=E[log21PXY(XY)],
 +
*the irrelevance:
 +
:H(YX)=E[log21PYX(YX)].
  
H(X)=p0log21p0+p1log21p1=Hbin(0.2)=0.7219(bit)
 
  
In der Aufgabe sollen ermittelt werden:
 
:* die Wahrscheinlichkeitsfunktion der Sinke:
 
  
PY(Y)=(PY(0),PY(1)),
 
:* die Verbundwahrscheinlichkeitsfunktion :
 
PXY(X,Y)=(p00p01p10p11)
 
:* die Transinformation
 
  
I(X;Y)=E[log2PXY(X,Y)PX(X).PY(Y)],
 
:*die Äquivokation:
 
  
H(XY)=E[log21PXY(XY)],
 
:*die Irrelevanz:
 
  
H(YX)=E[log21PYX(YX)]
 
  
'''Hinwies:''' Die Aufgabe gehört zu [http://en.lntwww.de/Informationstheorie/Anwendung_auf_die_Digitalsignal%C3%BCbertragung Kapitel 3.3.] In der [http://en.lntwww.de/Aufgaben:3.09Z_BSC%E2%80%93Kanalkapazit%C3%A4t Aufgabe Z3.9] wird die [http://en.lntwww.de/Informationstheorie/Anwendung_auf_die_Digitalsignal%C3%BCbertragung#Kanalkapazit.C3.A4t_eines_Bin.C3.A4rkanals Kanalkapazität] CBSC des $BSC$–Modells berechnet. Diese ergibt sich als die maximale Transinformation I(X;Y) durch Maximierung bezüglich der Symbolwahrscheinlichkeiten p0 bzw. $p_1 = 1 p_0$.
+
Hints:
 +
*The exercise belongs to the chapter  [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung|Application to Digital Signal Transmission]].
 +
*Reference is made in particular to the page     [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Calculation_of_the_mutual_information_for_the_binary_channel|Mutual information calculation for the binary channel]].
 +
*In  [[Aufgaben:Aufgabe_3.10Z:_BSC–Kanalkapazität|Exercise 3.10Z]]  the channel capacity  $C_{\rm BSC }$  of the BSC model is calculated.
 +
*This results as the maximum mutual information  $I(X;\ Y)$   by maximization with respect to the probabilities  p0  or  $p_1 = 1 - p_0$.
 +
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Verbundwahrscheinlichkeiten PXY(X,Y)
+
{Calculate the joint probabilities&nbsp; PXY(X,Y)
 
|type="{}"}
 
|type="{}"}
PXY(0,0) = { 0.18 3% }
+
$P_{ XY }(0, 0) \ = \ $ { 0.18 3% }
PXY(0,1) = { 0.02 3% }
+
$P_{ XY }(0, 1) \ = \ $ { 0.02 3% }
PXY(1,0) = { 0.08 3% }
+
$P_{ XY }(1, 0) \ = \ $ { 0.08 3% }
PXY(1,1) = { 0.72 3% }
+
$P_{ XY }(1, 1) \ = \ $ { 0.72 3% }
  
{Wie lautet die Wahrscheinlichkeitsfunktion PY(Y)?
+
{What is the probability mass function&nbsp; PY(Y)&nbsp; of the sink?
 
|type="{}"}
 
|type="{}"}
PY(0) = { 0.26 3% }
+
$P_Y(0)\ = \ $ { 0.26 3% }
PY(1) = { 0.74 3% }
+
$P_Y(1) \ = \ $ { 0.74 3% }
  
{Welcher Wert ergibt sich für die Transinformation?
+
{What is the value of the mutual information&nbsp; $I(X;\
 +
Y)$?
 
|type="{}"}
 
|type="{}"}
I(X;Y) = { 0.3578 3% }
+
$I(X; Y)\ = \ $ { 0.3578 3% }  bit
  
{Welcher Wert ergibt sich für die Äquivokation?
+
{Which value results for the equivocation&nbsp; H(X|Y)?
 
|type="{}"}
 
|type="{}"}
H(X|Y) = {  0.3642 3% }  
+
$H(X|Y) \ = \ $ {  0.3642 3% }  bit
  
  
{Welche Aussage trifft für die Sinkenentropie H(Y) zu?
+
{Which statement is true for the sink entropy&nbsp; H(Y)&nbsp;?
 
|type="[]"}
 
|type="[]"}
- H(Y) ist nie größer als H(X).
+
- H(Y)&nbsp; is never greater than&nbsp; H(X).
+ H(Y) ist nie kleiner als H(X).
+
+ H(Y)&nbsp; is never smaller than&nbsp; H(X).
  
{Welche Aussage trifft für die Irrelevanz H(Y|X) zu?
+
{Which statement is true for the irrelevance&nbsp; H(Y|X)&nbsp;?
 
|type="[]"}
 
|type="[]"}
- H(Y|X) ist nie größer als die Äquivokation H(X|Y).
+
- H(Y|X)&nbsp; is never larger than the equivocation&nbsp; H(X|Y).
+ H(Y|X) ist nie kleiner als die Äquivokation H(X|Y).
+
+ H(Y|X)&nbsp; is never smaller than the equivocation&nbsp; H(X|Y).
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Für die gesuchten Größen gilt allgemein bzw. mit den Zahlenwerten p0=0.2 und $ε = 0.1$:
+
'''(1)'''&nbsp; The following applies in general or with the numerical values&nbsp; p0=0.2&nbsp; and&nbsp; $\varepsilon = 0.1$ for the quantities sought:
 +
:$$P_{XY}(0, 0) = p_0 \cdot (1 - \varepsilon)
 +
\hspace{0.15cm} \underline {=0.18} \hspace{0.05cm}, \hspace{0.5cm}
 +
P_{XY}(0, 1) = p_0 \cdot \varepsilon
 +
\hspace{0.15cm} \underline {=0.02} \hspace{0.05cm},$$
 +
:$$P_{XY}(1, 0) = p_1 \cdot \varepsilon
 +
\hspace{0.15cm} \underline {=0.08} \hspace{0.05cm}, \hspace{1.55cm}
 +
P_{XY}(1, 1) = p_1 \cdot (1 - \varepsilon)
 +
\hspace{0.15cm} \underline {=0.72} \hspace{0.05cm}.$$
  
PXY(0,0)=p0.(1ε)=0.18 , PXY(0,1)=p0.ε=0.02,
 
  
PXY(1,0)=p1.ε=0.08PXY(1,1)=p1.(1ε)=0.72.
 
  
 +
'''(2)'''&nbsp; In general:
 +
:PY(Y)=[Pr(Y=0),Pr(Y=1)]=(p0,p1)(1εεε1ε).
 +
This gives the following numerical values:
 +
:Pr(Y=0)=p0(1ε)+p1ε=0.20.9+0.80.1=0.26_,
 +
:Pr(Y=1)=p0ε+p1(1ε)=0.20.1+0.80.9=0.74_.
  
'''2.''' Es gilt:
 
  
PY(Y)=(Pr(Y=0),Pr(Y=1))=(p0,p1)(1εεε1ε)
 
  
$$\Rightarrow \hspace{0.3cm} {\rm Pr}( Y = 0)\hspace{-0.15cm} \hspace{-0.15cm} p_0 \cdot (1 - \varepsilon) + p_1 \cdot \varepsilon = 0.2 \cdot 0.9 + 0.8 \cdot 0.1 \hspace{0.15cm} \underline {=0.26} \hspace{0.05cm},\\ {\rm Pr}( Y = 1)\hspace{-0.15cm} = \hspace{-0.15cm} p_0 \cdot \varepsilon + p_1 \cdot (1 - \varepsilon) = 0.2 \cdot 0.1 + 0.8 \cdot 0.9 \hspace{0.15cm} \underline {=0.74} \hspace{0.05cm}$$
+
'''(3)'''&nbsp; For the mutual information, according to the definition with&nbsp; p0=0.2,&nbsp; p1=0.8&nbsp; and&nbsp; ε=0.1:
 +
:$$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \hspace{-0.05cm}\cdot \hspace{-0.05cm} P_{Y}(Y) }\right ] \hspace{0.3cm} \Rightarrow$$
 +
:$$I(X;Y) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.18}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.02 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.02}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74}
 +
+ 0.08 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.08}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.72 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.72}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74} \hspace{0.15cm} \underline {=0.3578\,{\rm bit}} \hspace{0.05cm}.$$
  
'''3.'''  Für die Transinformation gilt gemäß der Definition mit p0=0.2 , p1=0.8 und ε = 0.1
 
  
I(X;Y) \hspace{-0.2cm}  =  \hspace{-0.2cm} {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \hspace{-0.05cm}\cdot \hspace{-0.05cm} P_{Y}(Y) }\right ] = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.18}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.02 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.02}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74} +
 
\hspace{-0.2cm} 0.08 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.08}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.72 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.72}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74} \hspace{0.15cm} \underline {=0.3578\,{\rm bit}} \hspace{0.05cm}
 
  
 +
'''(4)'''&nbsp; With the source entropy&nbsp; H(X)&nbsp; given, we obtain for the equivocation:
 +
:H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(X) - I(X;Y) = 0.7219 - 0.3578 \hspace{0.15cm} \underline {=0.3642\,{\rm bit}} \hspace{0.05cm}.
 +
*However, one could also apply the general definition with the inference probabilities&nbsp; P_{X|Y}(⋅)&nbsp;:
 +
:H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = {\rm E} \hspace{0.02cm} \left [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)} \hspace{0.05cm}\right ] = {\rm E} \hspace{0.02cm} \left [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{P_Y(Y)}{P_{XY} (X, Y)} \hspace{0.05cm} \right ] \hspace{0.05cm}
  
 +
*In the example, the same result&nbsp; H(X|Y) = 0.3642 \ \rm bit&nbsp; is also obtained according to this calculation rule:
 +
:H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.18} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.02} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.08} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.72} \hspace{0.05cm}.
  
'''4.'''  Mit  der angegebenen Quellenentropie H(X) erhält man für die Äquivokation:
 
  
H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(X) - I(X;Y) = 0.7219 - 0.3578 \hspace{0.15cm} \underline {=0.3642\,{\rm bit}} \hspace{0.05cm}.
 
Man könnte auch die allgemeine Definition mit den Rückschlusswahrscheinlichkeiten P_{X|Y}(⋅)
 
anwenden:
 
  
$$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = {\rm E} \hspace{0.02cm} \big [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)} \hspace{0.05cm}\big ] = {\rm E} \hspace{0.02cm} \big [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{P_Y(Y)}{P_{XY} (X, Y)} \hspace{0.05cm} \big ] \hspace{0.05cm}$$
+
'''(5)'''&nbsp; Correct is the <u>proposed solution 2:</u>
 +
*In the case of disturbed transmission&nbsp; (ε > 0)&nbsp; the uncertainty regarding the sink is always greater than the uncertainty regarding the source.&nbsp; One obtains here as a numerical value:
 +
:$$H(Y) = H_{\rm bin}(0.26)={ 0.8268\,{\rm bit}} \hspace{0.05cm}.$$
 +
*With error-free transmission&nbsp; $(ε = 0),&nbsp; on the other hand,&nbsp; P_Y(⋅) = P_X(⋅)&nbsp; and&nbsp; H(Y) = H(X)$&nbsp; would apply.
  
Im Beispiel erhält man auch nach dieser Berechnungsvorschrift das gleiche Ergebnis H(X|Y) = 0.3642 bit :
 
  
H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) \hspace{-0.15cm}  =  \hspace{-0.15cm} 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.18} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.02} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.08} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.72} \hspace{0.05cm}
 
  
'''5.''' Richtig ist der ''Lösungsvorschlag 2.'' Bei gestörter Übertragung $(ε > 0)$ ist die Unsicherheit hinsichtlich der Sinke stets größer als die Unsicherheit bezüglich der Quelle. Man erhält hier als Zahlenwert:
+
'''(6)'''&nbsp; Here, too, the <u>second proposed solution</u> is correct:
H(Y) = H_{\rm bin}(0.26)={ 0.8268\,{\rm bit}} \hspace{0.05cm}
+
*Because of&nbsp; I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)&nbsp;,&nbsp; H(Y|X)&nbsp; is greater than&nbsp; H(X|Y) by the same magnitude that&nbsp; H(Y)&nbsp; is greater than&nbsp; H(X):  
Bei fehlerfreier Übertragung (ε = 0) würde dagegen P_Y(⋅) = P_X(⋅) und H(Y) = H(X) gelten
+
:$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(Y) -I(X;Y) = 0.8268 - 0.3578 ={ 0.469\,{\rm bit}} \hspace{0.05cm}$$
 
+
*Direct calculation gives the same result&nbsp; $H(Y|X) = 0.469\ \rm  bit$:
 
+
:$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = {\rm E} \hspace{0.02cm} \left [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)} \right ] = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} \hspace{0.05cm}.$$
'''6.''' Auch hier ist der ''zweite Lösungsvorschlag'' richtig. Wegen
 
$I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)$
 
 
 
ist H(Y|X) um den gleichen Betrag größer als H(X|Y), um den auch H(Y) größer ist als H(X):
 
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(Y) -I(X;Y) = 0.8268 - 0.3578 ={ 0.4690\,{\rm bit}} \hspace{0.05cm}$$
 
Bei direkter Berechnung erhält man das gleiche Ergebnis $H(Y|X) = 0.4690 bit$:
 
 
 
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{-0.15cm}  = \hspace{-0.15cm} {\rm E} \hspace{0.02cm} \big [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)} \big ] =$$ 
 
$$=\hspace{-0.15cm} 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} \hspace{0.05cm}$$
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 127: Line 138:
  
  
[[Category:Aufgaben zu Informationstheorie|^3.3 Transinformation bei diskreten Kanälen^]]
+
[[Category:Information Theory: Exercises|^3.3 Application to Digital Signal Transmission^]]

Latest revision as of 07:05, 18 September 2022

BSC model considered

We consider the  Binary Symmetric Channel  \rm (BSC). The parameter values are valid for the whole exercise:

  • Crossover probability:   \varepsilon = 0.1,
  • Probability for  0:   p_0 = 0.2,
  • Probability for  1:   p_1 = 0.8.


Thus the probability mass function of the source is:   P_X(X)= (0.2 , \ 0.8)  and for the source entropy applies:

H(X) = p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_0} + p_1\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_1} = H_{\rm bin}(0.2)={ 0.7219\,{\rm bit}} \hspace{0.05cm}.

The task is to determine:

  • the probability function of the sink:
P_Y(Y) = (\hspace{0.05cm}P_Y(0)\hspace{0.05cm}, \ \hspace{0.05cm} P_Y(1)\hspace{0.05cm}) \hspace{0.05cm},
  • the joint probability function:
P_{XY}(X, Y) = \begin{pmatrix} p_{00} & p_{01}\\ p_{10} & p_{11} \end{pmatrix} \hspace{0.05cm},
  • the mutual information:
I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \cdot P_{Y}(Y) }\right ] \hspace{0.05cm},
  • the equivocation:
H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = {\rm E} \hspace{0.02cm} \big [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)} \big ] \hspace{0.05cm},
  • the irrelevance:
H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = {\rm E} \hspace{0.02cm} \big [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)} \big ] \hspace{0.05cm}.




Hints:


Questions

1

Calculate the joint probabilities  P_{ XY }(X, Y)

P_{ XY }(0, 0) \ = \

P_{ XY }(0, 1) \ = \

P_{ XY }(1, 0) \ = \

P_{ XY }(1, 1) \ = \

2

What is the probability mass function  P_Y(Y)  of the sink?

P_Y(0)\ = \

P_Y(1) \ = \

3

What is the value of the mutual information  I(X;\ Y)?

I(X; Y)\ = \

\ \rm bit

4

Which value results for the equivocation  H(X|Y)?

H(X|Y) \ = \

\ \rm bit

5

Which statement is true for the sink entropy  H(Y) ?

H(Y)  is never greater than  H(X).
H(Y)  is never smaller than  H(X).

6

Which statement is true for the irrelevance  H(Y|X) ?

H(Y|X)  is never larger than the equivocation  H(X|Y).
H(Y|X)  is never smaller than the equivocation  H(X|Y).


Solution

(1)  The following applies in general or with the numerical values  p_0 = 0.2  and  \varepsilon = 0.1 for the quantities sought:

P_{XY}(0, 0) = p_0 \cdot (1 - \varepsilon) \hspace{0.15cm} \underline {=0.18} \hspace{0.05cm}, \hspace{0.5cm} P_{XY}(0, 1) = p_0 \cdot \varepsilon \hspace{0.15cm} \underline {=0.02} \hspace{0.05cm},
P_{XY}(1, 0) = p_1 \cdot \varepsilon \hspace{0.15cm} \underline {=0.08} \hspace{0.05cm}, \hspace{1.55cm} P_{XY}(1, 1) = p_1 \cdot (1 - \varepsilon) \hspace{0.15cm} \underline {=0.72} \hspace{0.05cm}.


(2)  In general:

P_Y(Y) = \big [ {\rm Pr}( Y = 0)\hspace{0.05cm}, {\rm Pr}( Y = 1) \big ] = \big ( p_0\hspace{0.05cm}, p_1 \big ) \cdot \begin{pmatrix} 1 - \varepsilon & \varepsilon\\ \varepsilon & 1 - \varepsilon \end{pmatrix}.

This gives the following numerical values:

{\rm Pr}( Y = 0)= p_0 \cdot (1 - \varepsilon) + p_1 \cdot \varepsilon = 0.2 \cdot 0.9 + 0.8 \cdot 0.1 \hspace{0.15cm} \underline {=0.26} \hspace{0.05cm},
{\rm Pr}( Y = 1)= p_0 \cdot \varepsilon + p_1 \cdot (1 - \varepsilon) = 0.2 \cdot 0.1 + 0.8 \cdot 0.9 \hspace{0.15cm} \underline {=0.74} \hspace{0.05cm}.


(3)  For the mutual information, according to the definition with  p_0 = 0.2p_1 = 0.8  and  \varepsilon = 0.1:

I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \hspace{-0.05cm}\cdot \hspace{-0.05cm} P_{Y}(Y) }\right ] \hspace{0.3cm} \Rightarrow
I(X;Y) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.18}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.02 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.02}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74} + 0.08 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.08}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.72 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.72}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74} \hspace{0.15cm} \underline {=0.3578\,{\rm bit}} \hspace{0.05cm}.


(4)  With the source entropy  H(X)  given, we obtain for the equivocation:

H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(X) - I(X;Y) = 0.7219 - 0.3578 \hspace{0.15cm} \underline {=0.3642\,{\rm bit}} \hspace{0.05cm}.
  • However, one could also apply the general definition with the inference probabilities  P_{X|Y}(⋅) :
H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = {\rm E} \hspace{0.02cm} \left [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)} \hspace{0.05cm}\right ] = {\rm E} \hspace{0.02cm} \left [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{P_Y(Y)}{P_{XY} (X, Y)} \hspace{0.05cm} \right ] \hspace{0.05cm}
  • In the example, the same result  H(X|Y) = 0.3642 \ \rm bit  is also obtained according to this calculation rule:
H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.18} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.02} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.08} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.72} \hspace{0.05cm}.


(5)  Correct is the proposed solution 2:

  • In the case of disturbed transmission  (ε > 0)  the uncertainty regarding the sink is always greater than the uncertainty regarding the source.  One obtains here as a numerical value:
H(Y) = H_{\rm bin}(0.26)={ 0.8268\,{\rm bit}} \hspace{0.05cm}.
  • With error-free transmission  (ε = 0),  on the other hand,  P_Y(⋅) = P_X(⋅)  and  H(Y) = H(X)  would apply.


(6)  Here, too, the second proposed solution is correct:

  • Because of  I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) ,  H(Y|X)  is greater than  H(X|Y) by the same magnitude that  H(Y)  is greater than  H(X):
H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(Y) -I(X;Y) = 0.8268 - 0.3578 ={ 0.469\,{\rm bit}} \hspace{0.05cm}
  • Direct calculation gives the same result  H(Y|X) = 0.469\ \rm bit:
H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = {\rm E} \hspace{0.02cm} \left [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)} \right ] = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} \hspace{0.05cm}.