Difference between revisions of "Modulation Methods/Implementation of OFDM Systems"

From LNTwww
 
(94 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Vielfachzugriffsverfahren
+
|Untermenü=Multiple Access Methods
|Vorherige Seite=Allgemeine Beschreibung von OFDM
+
|Vorherige Seite=General Description of OFDM
|Nächste Seite=OFDM für 4G–Netze
+
|Nächste Seite=OFDM for 4G Networks
 
}}
 
}}
==OFDM mittels diskreter Fouriertransformation (DFT)==
+
==OFDM using discrete Fourier transform (DFT)==
Betrachten wir nun erneut die sich zeitlich nicht überlappenden Sendesignalrahmen
+
<br>
 +
We now consider again the temporally non-overlapping transmitted signal frames
 
:$$s_k (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu ,\hspace{0.08cm}k} \cdot g_\mu (t - k \cdot T_{\rm{R}} )},$$
 
:$$s_k (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu ,\hspace{0.08cm}k} \cdot g_\mu (t - k \cdot T_{\rm{R}} )},$$
wobei $k$ die Rahmennummer angibt. Diese besitzen zu den Abtastzeiten $k · T_{\rm R} + ν · T_{\rm A}$ mit $0 ≤ ν < N$ und $T_{\rm A} = T/N$ die Abtastwerte
+
where &nbsp;$k$&nbsp; indicates the frame number.&nbsp; At sampling times &nbsp;$k · T_{\rm R} + ν · T_{\rm A}$&nbsp; with &nbsp;$0 ≤ ν < N$&nbsp; and &nbsp;$T_{\rm A} = T/N$,&nbsp; these frames have the sampling values
:$$s_{\nu ,k} = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu ,k} \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.03cm}\cdot \hspace{0.03cm}2\pi}} {\kern 1pt}\cdot \hspace{0.03cm}\nu \hspace{0.03cm}\cdot \hspace{0.03cm}{\mu}/{N}} }.$$
+
:$$s_{\nu ,\hspace{0.08cm}k} = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu ,\hspace{0.08cm}k} \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.03cm}\cdot \hspace{0.03cm}2\pi}} {\kern 1pt}\cdot \hspace{0.03cm}\nu \hspace{0.03cm}\cdot \hspace{0.03cm}{\mu}/{N}} }.$$
Mit der Umbenennung $s_{ν,\hspace{0.08cm}k} = d_{ν,\hspace{0.08cm}k}$ und $a_{\mu,\hspace{0.08cm}k} = D_{\mu,\hspace{0.08cm}k}$ entspricht diese Gleichung exakt der [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)#Inverse_Diskrete_Fouriertransformation|Inversen Diskreten Fouriertransformation]] – abgekürzt IDFT – im jeweils $k$–ten Intervall:
+
Here&nbsp; $T_{\rm R}$&nbsp; denote the&nbsp; "frame duration"&nbsp; (German:&nbsp; "Rahmendauer" &nbsp; &rArr; &nbsp; subscript&nbsp; "R")&nbsp; and&nbsp; $T_{\rm A}$&nbsp; the&nbsp; "sampling distance"&nbsp; (German:&nbsp; "Abtastabstand" &nbsp; &rArr; &nbsp; subscript&nbsp; "A").
:$$\quad d_{\nu ,k} = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu ,k} \cdot w^{ - \nu \hspace{0.03cm}\cdot \hspace{0.03cm} \mu } } \quad {\rm{mit}}  \quad w = {\rm{e}}^{ - {\rm{j}} {\rm{\hspace{0.03cm}\cdot \hspace{0.03cm}2\pi}}/N}.$$  
+
*With the renaming &nbsp;$s_{ν,\hspace{0.08cm}k} = d_{ν,\hspace{0.08cm}k}$&nbsp; and &nbsp;$a_{\mu,\hspace{0.08cm}k} = D_{\mu,\hspace{0.08cm}k}$&nbsp; the equation corresponds exactly to the &nbsp;[[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Inverse_discrete_Fourier_transform|$\text{Inverse Discrete Fourier Transform}$]]&nbsp; $\rm (IDFT)$&nbsp; in the&nbsp; $k$–th interval:
Hierbei sind $d_{ν,k}$ die Zeitabtastwerte und $D_{ν,\hspace{0.08cm}k}$ die diskreten Spektralkoeffizienten. Die Gleichung für den Übergang von der diskreten Zeit– zur diskreten Spektralfunktion – also die DFT – lautet:
+
:$$d_{\nu ,\hspace{0.08cm}k} = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu ,\hspace{0.08cm}k} \cdot w^{ - \nu \hspace{0.03cm}\cdot \hspace{0.03cm} \mu } } \quad {\rm{with}}  \quad w = {\rm{e}}^{ - {\rm{j}} {\rm{\hspace{0.03cm}\cdot \hspace{0.03cm}2\pi}}/N}.$$  
:$$\quad D_{\mu ,k} = \frac{1}{N}\cdot \sum\limits_{\nu = 0}^{N - 1} {d_{\nu ,k} \cdot w^{\hspace{0.05cm}\nu \hspace{0.03cm}\cdot \hspace{0.03cm}\mu } }.$$
+
:Here, &nbsp; $d_{ν,\hspace{0.08cm}k}$&nbsp; are the time samples and &nbsp;$D_{ν,\hspace{0.08cm}k}$&nbsp; are the discrete spectral coefficients.
  
Weiterhin gilt:  
+
*The equation for the transition from the discrete time function to the discrete spectral function &nbsp; &rArr; &nbsp; &nbsp;[[Signal_Representation/Discrete_Fourier_Transform_(DFT)#From_the_continuous_to_the_discrete_Fourier_transform|$\text{Discrete Fourier Transform}$]]&nbsp; $\rm (DFT)$&nbsp; is:  
*Die Koeffizienten $d_{ν,\hspace{0.08cm}k}$ und $D_{μ,\hspace{0.08cm}k}$ sind mit der Stützstellenanzahl $N$ periodisch. Zudem sind sie im Allgemeinen komplexwertig.  
+
:$$D_{\mu ,\hspace{0.08cm}k} = \frac{1}{N}\cdot \sum\limits_{\nu = 0}^{N - 1} {d_{\nu ,\hspace{0.08cm}k} \cdot w^{\hspace{0.05cm}\nu \hspace{0.03cm}\cdot \hspace{0.03cm}\mu } }.$$
*DFT und IDFT sind prinzipiell gleich aufgebaut und unterscheiden sich nur durch das Vorzeichen im Exponenten des komplexen Drehfaktors $w$ sowie den Normierungsfaktor $1/N$ bei der DFT.
 
  
 +
*Furthermore:
 +
#The coefficients &nbsp;$d_{ν,\hspace{0.08cm}k}$&nbsp; and &nbsp;$D_{μ,\hspace{0.08cm}k}$&nbsp; are periodic with the grid number &nbsp;$N$.&nbsp; Moreover,&nbsp; they are in general complex-valued.
 +
#In principle,&nbsp; DFT and IDFT have the same structure.
 +
#They only differ by the sign in the exponent of the complex rotation factor &nbsp;$w$&nbsp; and the normalization factor &nbsp;$1/N$&nbsp; in the case of DFT.
  
''Hinweise:''
 
*Das Interaktionsmodulodul [[Diskrete Fouriertransformation]] verdeutlicht die Eigenschaften von DFT und IDFT.
 
*Die Möglichkeit einer sehr effizienten Realisierung des Mehrträgersystems ergibt sich mit Hilfe der  [[Signaldarstellung/Fast-Fouriertransformation_(FFT)|Schnellen Fouriertransformation]] (englisch: ''Fast Fourier Transform'', FFT).
 
*Für die Verwendung von FFT/IFFT muss die Anzahl der Stützstellen (bzw. Abtastwerte) im Zeit– und Frequenzbereich jeweils eine Zweierpotenz sein.
 
*Unter dieser Voraussetzung ist mit den verschiedenen bekannten Algorithmen zur Umsetzung der FFT eine Berechnung mit der Komplexität ${\rm O}(N · {\rm log_2} \ (N))$ möglich.
 
  
==Realisierung des OFDM–Senders==
+
{{BlaueBox|TEXT=
Die Grafik zeigt das Blockschaltbild eines OFDM–Senders mittels IDFT. Der Index $k$ kennzeichnet wieder den Zeitrahmen. Man erkennt aus dieser Darstellung:
+
$\text{Notes:}$&nbsp;
*Im Eingangspuffer wird das Quellensignal $q(t)$ implizit seriell/parallel (S/P) gewandelt und danach eine Signalraumzuordnung auf die $N$ Spektralkoeffizienten $D_{\mu,k}$ vorgenommen.  
+
*The applet &nbsp;[[Applets:Discrete_Fouriertransform_and_Inverse|"Discrete Fourier Transform"]]&nbsp; clarifies the properties of DFT and IDFT.
*Bei einem 4–QAM–Mapping ergeben jeweils zwei Quellensymbole zusammen einen komplexen Koeffizienten $D_{\mu,k}$, der vier verschiedene Werte annehmen kann.  
+
*The possibility of an efficient realization of the multicarrier system results with the &nbsp;[[Signal_Representation/Fast_Fourier_Transform_(FFT)|$\text{Fast Fourier Transform}$]].&nbsp;
*Die so erzeugten Spektralkoeffizienten $D_{\mu,k}$ werden anschließend dem IDFT–Block zugeführt, der daraus die Zeitbereichswerte $d_{ν,k}$ generiert.
+
*For the use of&nbsp; FFT/IFFT,&nbsp; the number of interpolation points&nbsp; (or samples)&nbsp; in the time and frequency domain must be a power of two in each case.
*Diese werden wieder parallel/seriell gewandelt. Nach der darauf folgenden D/A–Wandlung und einer Tiefpassfilterung erhält man schließlich das Sendesignal $s(t)$ im äquivalenten Tiefpassbereich.  
+
*Under this condition,&nbsp; an implementation with the complexity &nbsp;$\mathcal{O}(N · {\rm log_2} \ N)$&nbsp; is possible with the different known algorithms for the implementation of the FFT.}}
  
 +
==Realization of the OFDM transmitter==
 +
<br>
 +
The diagram shows the block diagram for the realization of the OFDM transmitter using the&nbsp;"Inverse Discrete Fourier Transform"&nbsp; $\rm (IDFT)$.
 +
[[File:EN_Mod_T_5_6_S2.png|right|frame |Block diagram of the OFDM transmitter<br>]]
 +
*In the &nbsp;[[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|$\text{general model}$]]&nbsp; at the beginning of the last chapter,&nbsp; this replaces the very complex parallel demodulation of the &nbsp;$N$&nbsp; orthogonal carriers.
 +
*The implementation of the&nbsp; $\rm IDFT$&nbsp; as&nbsp; $\rm IFFT$&nbsp; (Inverse Fast Fourier Transform) results in a further reduction in effort.
  
  
[[File:P_ID1640__Mod_T_5_6_S2.png | Blockschaltbild eines OFDM-Senders]]
+
One recognizes from this diagram:  
 +
*In the input buffer,&nbsp; the source signal &nbsp;$q(t)$&nbsp; is implicitly serial/parallel&nbsp; $\rm (S/P)$&nbsp; converted.&nbsp; After that,&nbsp; a signal space mapping to the &nbsp;$N$&nbsp; spectral coefficients &nbsp;$D_{\mu,\hspace{0.08cm}k}$&nbsp; is performed.&nbsp; The index &nbsp;$k$&nbsp; again denotes the time frame.
 +
*In&nbsp; $\rm 4–QAM$&nbsp; mapping,&nbsp; each two source symbols together yield a complex coefficient &nbsp;$D_{\mu,\hspace{0.08cm}k}$,&nbsp; which can take four different values.
 +
*The spectral coefficients &nbsp;$D_{\mu,\hspace{0.08cm}k}$&nbsp; generated in this way are then fed to the&nbsp; $\rm IDFT$ block,&nbsp; which generates the time domain values&nbsp;$d_{ν,\hspace{0.08cm}k}$&nbsp; from them.&nbsp; These are again parallel/serial&nbsp; $\rm (P/S)$&nbsp; converted.&nbsp;
  
  
{{Box}}
+
After the subsequent&nbsp; $\rm (D/A)$ conversion and low-pass filtering the&nbsp; $\rm OFDM$  transmitted signal &nbsp;$s(t)$&nbsp; is finally obtained in the equivalent low-pass range.
'''Fazit:''' Die Inverse Diskrete Fouriertransformation (IDFT) ersetzt beim OFDM–Sender die sehr aufwändige parallele Modulation der $N$ orthogonalen Träger. Durch die Realisierung als IFFT (''Inverse Fast Fourier Transform'') ergibt sich eine weitere Aufwandsreduktion.  
 
{{end}}
 
  
==Realisierung des OFDM–Empfängers==
+
==Realization of the OFDM receiver==
Die folgende Grafik zeigt das Blockschaltbild eines OFDM–Empfängers mittels DFT.  
+
<br>
 +
The diagram shows the block diagram for the realization of the OFDM receiver using the &nbsp;"Discrete Fourier Transform"&nbsp; $\rm (DFT)$.
 +
This replaces in the &nbsp;[[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|$\text{general model}$]]&nbsp; (see last chapter)&nbsp; the very complex parallel demodulation of the&nbsp; $N$&nbsp; orthogonal carriers.
  
 +
The realization of the&nbsp; $\rm DFT$&nbsp; as&nbsp; $\rm FFT$&nbsp; ("Fast Fourier Transform")&nbsp; results in a further reduction of effort.&nbsp; The essential steps are:
 +
[[File:EN_Mod_T_5_6_S3.png |right|frame|Block diagram of the OFDM receiver]]
  
[[File:P_ID1641__Mod_T_5_6_S3_neu.png | Blockschaltbild eines OFDM-Empfängers]]
+
*The input signal &nbsp;$r(t)$&nbsp; of the receiver is first digitalized&nbsp; $(\rm A/D$ conversion$)$.&nbsp; This is followed by a pre-equalization in the time domain&nbsp; (optional),&nbsp; e.g. with &nbsp;[[Digital_Signal_Transmission/Entscheidungsrückkopplung|$\text{Decision Feedback Equalization}$]]&nbsp; $($ $\rm DFE)$&nbsp; or the &nbsp;[[Digital_Signal_Transmission/Viterbi–Empfänger|$\text{Viterbi algorithm}$]].
 +
*It should be noted,&nbsp; that the decisive equalization happens in the frequency domain. &nbsp; This is explained in section &nbsp;[[Modulation_Methods/Implementation_of_OFDM_Systems#OFDM_equalization_in_the_frequency_domain|"OFDM equalization in the frequency domain"]]&nbsp; at the end of the chapter and is not included in the diagram above.
 +
*After serial/parallel&nbsp; $\rm (S/P)$&nbsp; conversion,&nbsp; the discrete time values &nbsp;$d_{ν,\hspace{0.08cm}k}$&nbsp; are fed to the DFT block.&nbsp; The generated spectral samples &nbsp;$D_{\mu,\hspace{0.08cm}k}$&nbsp; are decoded by the QAM detector and implicitly parallel/serial converted in the output buffer,&nbsp; resulting in the sink signal &nbsp;$v(t)$.&nbsp; 
 +
*Note,&nbsp; that the receiver-side coefficients&nbsp;$d_{ν,\hspace{0.08cm}k}$&nbsp; and &nbsp;$D_{\mu,\hspace{0.08cm}k}$&nbsp; may well differ from the corresponding quantities of the OFDM transmitter due to channel distortion and noise,&nbsp; which is not reflected in the chosen nomenclature.
 +
*Only in the case of error-free detection,&nbsp; the coefficients &nbsp;$\hat{a}_{\mu,\hspace{0.08cm}k}$&nbsp; of the sink signal&nbsp;$v(t)$&nbsp; are identical to the coefficients &nbsp;$a_{\mu,\hspace{0.08cm}k}$&nbsp; of the source signal &nbsp;$q(t)$.&nbsp; In general,&nbsp; they differ,&nbsp; which is captured by the&nbsp; &raquo;'''symbol error rate'''&laquo;.
  
 +
==Intercarrier interference and intersymbol interference==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Definitions:}$&nbsp; Orthogonality of OFDM carriers is lost during transmission over a frequency-selective channel.
 +
*The resulting interference between the individual carriers is called&nbsp; &raquo;'''intercarrier interference'''&laquo;&nbsp; $\rm (ICI)$.
 +
*However,&nbsp; transmission over a multipath channel ultimately also causes superimposition of successive symbols and thus &nbsp;&raquo;[[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|$\text{intersymbol interference}$]]&laquo;.&nbsp;}}
  
Die wesentlichen Schritte dabei sind:
 
*Das Eingangssignal $r(t)$ des Empfängers wird zunächst digitalisiert (A/D–Wandlung). Darauf folgt eine Vorentzerrung im Zeitbereich (optional), zum Beispiel mittels Entscheidungsrückkopplung (''Decision Feedback Equalization'', DFE) oder Viterbi–Algorithmus.
 
*Anzumerken ist, dass die entscheidende Entzerrung jedoch im Frequenzbereich erfolgt. Diese wird erst im Abschnitt OFDM–Entzerrung am Kapitelende exemplarisch erläutert und ist in obiger Grafik nicht berücksichtigt.
 
*Nach der Seriell/Parallel–Wandlung (S/P) werden die diskreten Zeitwerte $d_{ν,k}$ dem DFT–Block zugeführt. Die erzeugten Spektralabtastwerte $D_{\mu,k}$ werden durch den QAM–Detektor decodiert und im Ausgangspuffer implizit parallel/seriell gewandelt, woraus das Sinkensignal $υ(t)$ hervorgeht.
 
*Zu beachten ist allerdings, dass sich die empfängerseitigen Koeffizienten $d_{ν,k}$ und $D_{\mu,k}$ aufgrund von Kanalverzerrungen und Rauschen von den entsprechenden Größen des OFDM–Senders durchaus unterscheiden können, was bei der gewählten Nomenklatur nicht zum Ausdruck kommt.
 
*Die Koeffizienten $â_{\mu,k}$ des Sinkensignals $υ(t)$ sind nur bei fehlerfreier Detektion identisch mit den Koeffizienten $a_{\mu,k}$ des Quellensignals $q(t)$. Im Allgemeinen unterscheiden sich diese, was durch die ''Symbolfehlerrate'' erfasst wird.
 
  
 +
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp; The diagram shows the real part of a received OFDM&nbsp; (equivalent low-pass)&nbsp; signal after transmission via a noise-free multipath channel with parameters:
 +
*for the path&nbsp; "0": &nbsp; Attenuation &nbsp;$h_0 = 0.5$; &nbsp; delay &nbsp;$τ_0 = 0$,
 +
:for the path&nbsp; "1": &nbsp; Attenuation &nbsp;$h_1 = 0.5$; &nbsp; delay &nbsp;$τ_1 = T/4$.
 +
[[File:EN_Mod_T_5_6_S4b.png|right|frame|Received OFDM signal via multipath channel in the equivalent low-pass range]]
 +
*The carrier of frequency &nbsp;$1 · f_0$&nbsp; of the interval &nbsp;$k$&nbsp; assigned with the coefficient&nbsp; "$+1$"&nbsp; is drawn in black.
 +
*The carrier weighted with&nbsp; "$-1$"&nbsp; with frequency &nbsp;$3 · f_0$&nbsp; in the previous interval &nbsp;$(k-\hspace{-0.08cm}1)$&nbsp; is shown in red.&nbsp;
 +
*Other intervals and carriers are not considered.
  
  
{{Box}}
+
One can see from this diagram:
'''Fazit:''' In der Praxis ersetzt die Diskrete Fouriertransformation (DFT) die sehr aufwändige parallele Demodulation der $N$ orthogonalen Träger. Durch die Realisierung als FFT (''Fast Fourier Transform'') ergibt sich eine weitere Aufwandsreduktion.  
+
#Transient events at the symbol beginning  lead to&nbsp; "intercarrier interference"&nbsp; $\rm (ICI)$&nbsp; in the spectrum.&nbsp;
{{end}}
+
#In the time domain,&nbsp; $\rm ICI$&nbsp; can be recognized by the jumps that occur&nbsp;  (marked yellow in the diagram).&nbsp;
 +
# As a result, orthogonality is lost with respect to the frequency grid points.
 +
#Further one recognizes&nbsp; "intersymbol interference"&nbsp; $\rm (ISI)$&nbsp; in the green framed time interval &nbsp;$0 ≤ t < τ_1$: &nbsp; <br> &nbsp; &nbsp; &nbsp; The red predecessor symbol &nbsp;$k-\hspace{-0.08cm}1$ &nbsp; $($frequency&nbsp; $3 · f_0)$&nbsp; interferes with the black symbol &nbsp;$k$ &nbsp; $($frequency $1 · f_0)$. }}
  
==Guard–Lücke zur Verminderung der Impulsinterferenzen (1)==
+
==Guard interval to reduce intersymbol interference==
Die Orthogonalität der OFDM–Träger geht bei der Übertragung über einen frequenzselektiven Kanal verloren. Die daraus resultierende Interferenz zwischen den einzelnen Trägern bezeichnet man als Intercarrier–Interferenz (ICI). Die Übertragung über einen solchen Mehrwegekanal bewirkt letztlich aber auch eine Überlagerung aufeinander folgender Symbole und damit Impulsinterferenzen (engl. ''Intersymbol Interference'', ISI).  
+
<br>
 +
A first possible solution for the second problem&nbsp; $\rm (ISI)$&nbsp; is the introduction of a guard interval of length &nbsp;$T_{\rm G}$:
 +
[[File: P_ID1643__Mod_T_5_6_S4b_1_neu.png|right|frame|Principle of the&nbsp; "guard interval"]]
 +
*Here,&nbsp; the signal between two symbols is set to zero for the duration of the protection time &nbsp;$T_{\rm G}$.&nbsp;
 +
 +
*As a result,&nbsp; possible pulse trailers of symbol&nbsp; $k-\hspace{-0.08cm}1$&nbsp; no longer extend into the following symbol &nbsp;$(k)$,&nbsp; provided that the guard interval is selected&nbsp; "wider"&nbsp; than the maximum channel delay.
  
 +
*The new frame duration &nbsp;$T_{\rm R}$ &ndash; i.e. the distance between successive transmitted symbols &ndash; is thus given by
 +
:$$T_{\rm R} = T + T_{\rm G}.$$
 +
<br clear=all>
 +
{{GraueBox|TEXT=
 +
$\text{Example 2:}$&nbsp;
 +
This diagram again shows the real part of the received OFDM signal,&nbsp; but now with&nbsp; "guard interval".&nbsp; The assumptions of &nbsp;[[Modulation_Methods/Implementation_of_OFDM_Systems#Intercarrier_interference_and_intersymbol_interference|$\text{Example 1}$]]&nbsp; have been kept.
 +
[[File:EN_Mod_T_5_6_S4b_v2.png |right|frame| OFDM reception signal over multipath channel with guard interval]]
  
[[File:P_ID1642__Mod_T_5_6_S4a.png | OFDM-Empfangssignal über Mehrwegekanal]]
+
The diagram shows:
 +
# In addition,&nbsp; $T_{\rm G} = T/4$&nbsp; is set,&nbsp; which corresponds to the limiting case &nbsp;$T_{\rm G} = τ_{\rm max}$&nbsp; for the present channel.
 +
#&nbsp;By using a guard interval of corresponding width, &nbsp;  intersymbol interference&nbsp; $\rm (ISI)$&nbsp; can be avoided &nbsp; &rArr; &nbsp; in interval &nbsp;$k$&nbsp; only one frequency occurs.
 +
#&nbsp;'''But''':&nbsp;  Intercarrier interference&nbsp; $\rm (ICI)$&nbsp; cannot be prevented by this,&nbsp; because the symbols still have a transient phase and thus jumps.
  
  
Die Grafik zeigt den Realteil eines OFDM–Empfangssignals im äquivalenten Tiefpassbereich nach der Übertragung über einen rauschfreien Mehrwegekanal mit den Parametern
 
*für den Pfad 0: Dämpfung $h_0 =$ 0.5; Verzögerung $τ_0/T =$ 0,
 
*für den Pfad 1: Dämpfung $h_1 =$ 0.5; Verzögerung $τ_1/T =$ 0.25.
 
  
  
Schwarz gezeichnet ist der mit „Plus–Eins” belegte Träger der Frequenz $1 · f_0$ des Intervalls $k$. Der mit „Minus–Eins” gewichtete Träger mit der Frequenz $3 · f_0$ im vorherigen Intervall $(k–1)$ ist rot dargestellt. Andere Intervalle und Träger werden nicht berücksichtigt. Man erkennt aus dieser Skizze:
 
*Die Einschwingvorgänge zu Symbolbeginn führen zu ''Intercarrier–Interferenz'' (ICI) im Spektrum. Im Zeitbereich erkennt man ICI an den auftretenden Sprüngen (in der Grafik gelb markiert). Dadurch geht die Orthogonalität bezüglich der Frequenzstützstellen verloren.
 
*Weiter erkennt man ''Impulsinterferenzen'' (ISI) im grün markierten Zeitintervall $0 ≤ t < τ_1$: Das Vorgängersymbol $k–1$ (Frequenz $3 · f_0$) stört das Symbol $k$ (Frequenz $1 · f_0$).
 
  
==Guard–Lücke zur Verminderung der Impulsinterferenzen (2)==
+
The&nbsp; "guard interval"&nbsp; approach will not be considered further.&nbsp;  Rather,&nbsp; a better alternative is presented in the next section.}}  
Ein erster möglicher Lösungsansatz für das zweite Problem (ISI) ist die Einführung einer Guard–Lücke der Länge $T_{\rm G}$. Dabei wird das Signal zwischen zwei Symbolen für die Dauer der Schutzzeit $T_{\rm G}$ zu Null gesetzt. Mögliche Impulsnachläufer des Symbols $k–1$ reichen dadurch nicht mehr in das darauffolgende Symbol $(k)$ hinein, sofern die Guard–Lücke „breiter” als die maximale Kanalverzögerung gewählt wird. Die neue Rahmendauer $T_{\rm R}$ – also der Abstand der Sendesymbole – ergibt sich damit zu $T_{\rm R} = T + T_{\rm G}$.
 
  
 +
==Cyclic Prefix==
 +
<br>
 +
A better solution for the described problem is the introduction of a&nbsp;  &raquo;'''cyclic extension of the transmitted symbols'''&laquo;&nbsp; in the so-called&nbsp; "guard interval"&nbsp; of length &nbsp;$T_{\rm G}$.
 +
[[File:EN_Mod_T_5_6_S5a_neu.png|right|frame| Principle of the cyclic prefix]]
 +
*For this,&nbsp; the end of a symbol in the time interval&nbsp; $T \ – \ T_{\rm G} ≤ t < T$&nbsp; is prefixed again to the actual symbol.
 +
*This procedure thus generates a&nbsp; &raquo;'''cyclic prefix'''&laquo;.
 +
*As with the&nbsp; "guard interval",&nbsp; the interval duration increases from symbol duration &nbsp;$T$&nbsp; to the new frame duration &nbsp;$T_{\rm R} = T + T_{\rm G}$.&nbsp;
 +
*The new number of samples of the extended discrete-time signal in the &nbsp;$k$–th interval is then:
 +
:$$N_{\rm{total}} = N + N_{\rm{G}} = N \cdot (1 + T_{\rm{G}} /T) .$$
 +
*The number of carriers and the number of useful IDFT values is still &nbsp;$N$.&nbsp; Here,&nbsp; the expansion is only achieved by repeating the end of the symbol &nbsp;$N\hspace{-0.03cm}-\hspace{-0.08cm}N_0$, ... , $N\hspace{-0.08cm}-\hspace{-0.08cm}1$&nbsp; in the guard interval&nbsp; (highlighted in red).
 +
*The use of the&nbsp; "cyclic prefix"&nbsp; seems to be particularly useful if the&nbsp; $\rm ISI$&nbsp; are mainly caused by tracking. This applies in particular to the copper twisted pairs used in &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL|$\text{DSL systems}$]].&nbsp;
 +
<br clear=all>
 +
{{GraueBox|TEXT=
 +
$\text{Example 3:}$&nbsp; The diagram shows the operation of the guard interval in the continuous-time case.&nbsp;
 +
The parameters from the consideration of the guard interval in&nbsp; [[Modulation_Methods/Implementation_of_OFDM_Systems#Intercarrier_interference_and_intersymbol_interference|$\text{Example 1}$]]&nbsp; still apply,&nbsp; although only one symbol&nbsp; $($with frequency &nbsp;$f_0)$ is now considered.&nbsp;
 +
[[File:EN_Mod_T_5_6_S5b_neu.png  |right|frame| Received OFDM signal over multipath channel with cyclic prefix]]
 +
 +
Further system parameters are again &nbsp;$T_{\rm G} = T/4$&nbsp; and for path&nbsp; "0"&nbsp; or path&nbsp; "1":
 +
*Attenuation &nbsp;$h_0 = 0.5$; &nbsp; delay &nbsp;$τ_0 = 0$,
 +
*Attenuation &nbsp;$h_1 = 0.5$; &nbsp; delay &nbsp;$τ_1 = T/4$.
  
[[File: P_ID1643__Mod_T_5_6_S4b_1_neu.png  | Prinzip der Guard-Lücke]]
 
  
 +
In the frame &nbsp;$k$&nbsp; of duration &nbsp;$T_{\rm R}$,&nbsp; there is now no interference at all:
 +
#&nbsp;Since the preceding symbols completely fade away during the guard interval, there is no&nbsp; "intersymbol interference"&nbsp; $\rm (ISI)$.
 +
#&nbsp;Since the respective transients do not extend into the useful symbols,&nbsp; no &nbsp;"intercarrier interference"&nbsp; $\rm (ICI)$&nbsp; occurs either. }}
 +
<br clear=all>
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp;
 +
#&nbsp; By using a cyclic prefix alone, both&nbsp;"intercarrier interference"&nbsp; $\rm (ICI)$&nbsp; and &nbsp;"intersymbol interference"&nbsp; $\rm (ISI)$ can be completely avoided.
 +
#&nbsp; This requires that the length of the guard interval &nbsp;$(T_{\rm G})$&nbsp; is at least equal to the maximum duration &nbsp;$τ_{\rm max}$&nbsp; of the channel impulse response: &nbsp; $T_{\rm G} \ge τ_{\rm max}$.&nbsp;
 +
#&nbsp; In the example considered, &nbsp;$T_{\rm G} = τ_{\rm max}  = \tau_1$ .
 +
#&nbsp; The quantity&nbsp; $τ_{\rm max}$&nbsp; generally limits the ISI– and ICI–free section within the guard interval to the range &nbsp;$ \ –T_{\rm G} + τ_{\rm max} ≤ t < T$.}}
  
Die untere Grafik zeigt wieder den Realteil des OFDM–Empfangssignals, aber nun mit Guard–Lücke. Die Systemparameter des letzten Abschnitts wurden beibehalten und zusätzlich $T_{\rm G} = T/4$ gesetzt, was bei dem gewählten Parametersatz dem Grenzfall $T_{\rm G} = τ_{\rm max}$ entspricht.  
+
==OFDM system with cyclic prefix==
 +
<br>
 +
The &nbsp; "Cyclic prefix"&nbsp; block must therefore be added to the &nbsp;[[Modulation_Methods/Implementation_of_OFDM_Systems#Realization_of_the_OFDM_transmitter|$\text{transmitter structure}$]]&nbsp; already shown at the beginning.&nbsp;  At the &nbsp;[[Modulation_Methods/Implementation_of_OFDM_Systems#Realization_of_the_OFDM_receiver|$\text{receiver}$]]&nbsp; this prefix must be removed again.
  
 +
[[File:EN_Mod_T_5_6_S6a.png |right|frame| OFDM transmitter&nbsp; $($subscript&nbsp; $\rm S)$&nbsp; and receiver&nbsp; $($subscript&nbsp; $\rm E)$&nbsp; with cyclic prefix]]
  
[[File:P_ID1644__Mod_T_5_6_S4b_2_neu.png | OFDM-Empfangssignal über Mehrwegekanal mit Guard-Lücke]]
+
*The definition of a suitable guard interval is an important design criterion for OFDM-based transmission systems.&nbsp; A possible approach to this is presented as an example in the section &nbsp;[[Modulation_Methods/OFDM_für_4G–Netze|"OFDM for 4G Networks"]].&nbsp;
 +
*However,&nbsp; the use of a cyclic prefix degrades the &nbsp; "bandwidth efficiency".&nbsp; The degradation increases with increasing duration &nbsp;$T_{\rm G}$&nbsp; of the guard interval&nbsp; (hereafter abbreviated as&nbsp; "GI").
 +
*Under the simplifying assumption of a transmission spectrum  &nbsp;$S(f)$&nbsp; hard limited to&nbsp;$1/T$,&nbsp; the bandwidth efficiency – see [Kam04]<ref>Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>:  
 +
:$$\beta  = \frac{ \text{symbol rate} }{ {\rm bandwidth} } = \frac{1/(T + T_{\rm G})}{1/T} = \frac{1}{{1 + T_{\rm{G}} /T}}.$$
 +
*However,&nbsp; in a system using the so-called&nbsp; "matched filter approach",&nbsp; increasing the frame duration from &nbsp;$T$&nbsp; to &nbsp;$T_{\rm G} + T$&nbsp; leads to a decrease in the signal-to-noise ratio if the impulse responses &nbsp;$g_{\rm S}(t)$&nbsp; and &nbsp;$g_{\rm E}(t)$&nbsp; of the transmission and  receiver filters are matched to the symbol duration &nbsp;$T$.&nbsp; 
 +
*The resulting &nbsp;signal&ndash;to&ndash;noise ratio&nbsp; $\rm (SNR)$&nbsp;  of the overall system&nbsp; (in dB)&nbsp; can be calculated as follows,&nbsp; taking into account the guard interval:
 +
:$${\rm{SNR}}_{\hspace{0.08cm}{\rm{ {\rm{with} }\hspace{0.08cm} GI} } } = {\rm{SNR}}_{\hspace{0.08cm}{\rm{{\rm{without}}\hspace{0.08cm} GI}}} + 10 \cdot \lg (\beta ), \quad {\rm{where}}$$
 +
:$$\beta  = \frac{{\left[ {\int\limits_0^T {g_{\rm{S}} (\tau ) \cdot g_{\rm{E}} ( - \tau )d\tau } } \right]^2 }}{{\int\limits_{ - T_{\rm{G}} }^T {g_{\rm{S}}^2 (\tau )} \,d\tau \cdot \int\limits_{\rm{0}}^T {g_{\rm{E}}^2 (\tau )} \,d\tau }} = \frac{ {T^2 } } { {(T + T_{\rm{G} } ) \cdot T} } = \frac{1}{ {1 + T_{\rm{G} } /T} }.$$
  
 +
{{GraueBox|TEXT=
 +
$\text{Example 4:}$&nbsp;
 +
We assume a guard interval of length &nbsp;$T_{\rm G} = T/3$.&nbsp; Then the bandwidth efficiency is given by:
 +
:$$\beta = \frac{1}{ {1 + 1/3} } = 3/4.$$
 +
*The share of the cyclic prefix in the frame duration &nbsp;$T_{\rm R}$&nbsp; is &nbsp;$25\%$,&nbsp; and
 +
*the&nbsp; (logarithmic)&nbsp; SNR loss is then &nbsp;$10 · \lg \ (4/3) ≈ 1.25 \ \rm dB$. }}
  
  
{{Box}}
+
The&nbsp; (German language)&nbsp; SWF applet &nbsp;[[Applets:OFDM|"OFDM-Spektrum und Signale"]] &nbsp; &rArr; &nbsp; "OFDM Spectrum and Signals"&nbsp; illustrates the operation of a cyclic prefix in the continuous-time case with respect to &nbsp;"intercarrier interference"&nbsp; $\rm (ICI)$.
'''Diese Grafik zeigt:''' Durch die Verwendung einer Guard–Lücke entsprechender Breite können zwar Impulsinterferenzen (ISI) vermieden werden, Intercarrier–Interferenz (ICI) lässt sich dadurch jedoch nicht verhindern, da die Symbole weiterhin eine Einschwingphase und damit Sprünge aufweisen.
 
{{end}}
 
  
 +
==OFDM equalization in the frequency domain==
 +
<br>
 +
We continue to consider the &nbsp;[[Modulation_Methods/Implementation_of_OFDM_Systems#OFDM_system_with_cyclic_prefix|$\text{OFDM system}$]]&nbsp; in the noise-free case and assume a time-invariant channel impulse response whose length is smaller than the duration &nbsp;$T_{\rm G}$&nbsp; of the cyclic prefix added at the transmit end.
 +
*The observation is made in the &nbsp;$k$–th interval,&nbsp; and indexing is omitted.
 +
*The discrete-time channel impulse response can be written as &nbsp; $h_ν = h(ν · T_{\rm A})$&nbsp; with the abbreviation &nbsp;$T_{\rm A} = T/N$.&nbsp;
 +
*The discrete-time reception signal is thus obtained by linear &nbsp;[[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_time_domain|$\text{convolution}$]]&nbsp; to:
 +
:$$r_\nu = s_\nu * h_\nu = d_\nu * h_\nu.$$
 +
This takes into account that the time samples &nbsp;$s_ν$&nbsp; of the transmitted signal coincide with the IDFT coefficients &nbsp;$d_ν$.&nbsp;
  
Aus diesem Grund soll im Folgenden der Ansatz „Guard–Lücke” nicht mehr weiter betrachtet werden. Vielmehr wird nachfolgend eine bessere Alternative vorgestellt.  
+
{{BlaueBox|TEXT=
 +
$\text{To be noted:}$&nbsp; In general,&nbsp; for the conventional linear convolution:
 +
:$${\rm{DFT} } \{ d_\nu * h_\nu \} \ne {\rm{DFT} } \{d_\nu \} \cdot {\rm{DFT} } \{ h_\nu \}.$$
 +
*Nevertheless,&nbsp; in order to specify the discrete spectrum of the received signal by the discrete Fourier transform&nbsp; $\rm (DFT)$,&nbsp; one needs the &nbsp;[https://en.wikipedia.org/wiki/Circular_convolution $\text{cyclic convolution}$]:&nbsp;
 +
:$$r_\nu = d_\nu * _{\rm (circ)} h_\nu \quad \circ\hspace{0.01cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad R_\mu = {\rm{DFT} } \{ d_\nu * _{\rm (circ)} h_\nu \}.$$
 +
:The terms&nbsp; "circular convolution"&nbsp; and&nbsp; "periodic convolution"&nbsp; are also used synonymously for this purpose.
 +
*Using the convolution theorem for linear time-invariant systems,&nbsp; one can then also write the spectrum as a product of two discrete Fourier transforms:
 +
:$$R_\mu = {\rm{DFT} }\{ d_\nu \} \cdot {\rm{DFT} }\{ h_\nu \} = D_\mu \cdot H_\mu.$$
 +
*To compensate for the influence of the channel on the received sequence,&nbsp; it is convenient to multiply the spectrum by the inverse transfer function &nbsp;$1/H_{\mu}$.&nbsp;
 +
*This&nbsp; "zero forcing"&nbsp; approach leads to the ideal signal reconstruction in the noise-free case.&nbsp; The equalization can be done point by point:
 +
:$$\hat {D}_\mu = \frac{1}{ {H_\mu } } \cdot R_\mu.$$}}
  
==Zyklisches Präfix (1)==
 
Eine besser geeignete Lösung für das beschriebene Problem ist die Einführung einer zyklischen Erweiterung der Sendesymbole im so genannten ''Guard–Intervall'' der Länge $T_{\rm G}$. Dafür wird das Ende eines Symbols im Zeitabschnitt $T \ – \ T_{\rm G} ≤ t < T$ dem eigentlichen Symbol erneut vorangestellt. Dieses Verfahren erzeugt somit ein zyklisches Präfix.
 
  
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$ &nbsp;
 +
*In the&nbsp; &raquo;'''OFDM system'''&laquo;,&nbsp; &nbsp;'''channel equalization can be realized with a single multiplication per subcarrier'''&nbsp; if the channel frequency response is known.
 +
*In contrast, a&nbsp; &raquo;'''classic single-carrier system'''&laquo;&nbsp; would require &nbsp;'''equalization of the entire frequency range used'''. }}
  
[[File:P_ID1645__Mod_T_5_6_S5a_neu.png | Prinzip des zyklischen Präfixes]]
+
==OFDM equalization in matrix-vector notation==
 +
<br>
 +
In the following,&nbsp; a renewed but more in-depth consideration of OFDM equalization will be given,&nbsp; where we use a &nbsp;[https://en.wikipedia.org/wiki/Matrix_multiplication $\text{matrix-vector notation}$].&nbsp; &nbsp; The consideration still refers to the &nbsp;$k$–th interval,&nbsp; without any special note:
 +
*The vector of a channel with &nbsp;$L$&nbsp; echoes is &nbsp;$\mathbf h = (h_0$, ... , $h_L)$.&nbsp; The transmission matrix with &nbsp;$N$&nbsp; rows and &nbsp;$N + L$&nbsp; columns is:
 +
:$${\rm\bf{H}} = \left( {\begin{array}{*{20}c}  {h_0 } & {h_1 } &  \cdots  & {h_L } & {} & {} & {}  \\  {} & {h_0 } & {h_1 } &  \cdots  & {h_L } & {} & {}  \\  {} & {} &  \ddots  &  \ddots  & {} &  \ddots  & {}  \\  {} & {} & {} & {h_0 } & {h_1 } &  \cdots  & {h_L }  \\ \end{array}} \right).$$
 +
*Here, &nbsp;$N$&nbsp; indicates the number of carriers and hence the number of time samples of the IDFT.&nbsp; With the transmitted vector &nbsp;${\bf d} = (d_0$, &nbsp;...&nbsp; , $d_{N–1})$&nbsp; the received  vector is:
 +
:$$\bf r = d · H.$$
  
 +
*Considering the cyclic prefix,&nbsp; the extended transmitted vector is obtained:
 +
:$${\rm\bf{d}}_{{\rm{ext}}} = (d_{N - N_G } , \ \ldots \ ,d_{N - 1} ,d_0 , \ \ldots \ ,d_{N - 1} ).$$
 +
*Now,&nbsp; one could extend the above transmission matrix &nbsp;$\bf H$&nbsp; likewise accordingly on &nbsp;  $(N + N_{\rm G})$&nbsp; rows &nbsp; and &nbsp; $(N + L + N_{\rm G})$&nbsp; columns &nbsp; as well as remove the prefix at the receiver again,&nbsp; which is not to be pursued here further.
  
Die Intervalldauer steigt dabei wie bei der Guard–Lücke von der ursprünglichen Symboldauer $T$ auf die neue Rahmendauer $T_{\rm R} = T + T_{\rm G}$. Die neue Anzahl der Abtastwerte des erweiterten zeitdiskreten Signals im $k$–ten Intervall beträgt dann:
 
$$N_{\rm{gesamt}} = N + N_{\rm{G}} = N \cdot (1 + T_{\rm{G}} /T) .$$
 
Die Anzahl der Träger und die Anzahl der Nutz–IDFT–Werte ist weiterhin $N$. Die Erweiterung wird hier lediglich durch eine Wiederholung von Werten als Guard–Intervall erzielt.
 
  
==Zyklisches Präfix (2)==
+
Alternatively,&nbsp; one can use the &nbsp;"cyclic matrix" &nbsp;$\rm \bf H_C$&nbsp; with &nbsp;$N$&nbsp; rows and &nbsp;$N$&nbsp; columns as well as the &nbsp;"Fourier transform &nbsp;$\rm \bf F$&nbsp; in matrix–vector notation":&nbsp;
Der Einsatz des zyklischen Präfixes erscheint dann besonders sinnvoll, wenn die Impulsinterferenzen vor allem durch Nachläufer hervorgerufen werden. Dies trifft auch auf die bei DSL–Systemen verwendeten Kupfer–Doppeladern zu.
+
:$${\rm\bf{H}}_{\rm{C}}  = \left( {\begin{array}{*{20}c}
 
 
Die Grafik zeigt die Funktionsweise des Guard–Intervalls im zeitkontinuierlichen Fall. Es gelten weiterhin die Systemparameter aus der Betrachtung der Guard–Lücke, wobei allerdings nur noch ein Symbol (mit der Frequenz $f_0$) betrachtet wird. Die weiteren Systemparameter sind wiederum $T_{\rm G} = T/4$ sowie
 
*für den Pfad 0: Dämpfung $h_0 =$ 0.5; Verzögerung $τ_0/T =$ 0,
 
*für den Pfad 1: Dämpfung $h_1 =$ 0.5; Verzögerung $τ_1/T =$ 0.25.
 
 
 
 
 
Interferenzen werden verhindert, wenn
 
*die Vorgängersymbole während des Guard–Intervalls vollständig abklingen (ISI) und
 
*die jeweiligen Einschwingvorgänge (ICI) nicht in die Nutzsymbole hineinreichen.
 
 
 
 
 
 
 
[[File:P_ID1646__Mod_T_5_6_S5b_neu.png | OFDM-Empfangssignal über Mehrwegekanal mit zyklischem Präfix]]
 
 
 
 
 
 
 
{{Box}}
 
'''Fazit:''' Durch ein Zyklisches Präfix lassen sich sowohl ICI als auch ISI vollständig vermeiden. Voraussetzung dafür ist, dass die Länge des Guard–Intervalls $(T_{\rm G})$ mindestens gleich der maximalen Dauer der Kanalimpulsantwort $(τ_{\rm max}$, hier gleich $τ_1)$ ist: $T_{\rm G} ≥ τ_{\rm max}$. Im hier betrachteten Beispiel gilt das Gleichheitszeichen.
 
{{end}}
 
 
 
 
 
Die Länge der Kanalimpulsantwort $(τ_{\rm max})$ begrenzt dabei den ISI– und ICI–freien Abschnitt innerhalb des Guard–Intervalls auf den Bereich $ \ –T_{\rm G} + τ_{\rm max} ≤ t < 0$.
 
 
 
==OFDM–System mit zyklischem Präfix (1)==
 
Die bereits vorne gezeigte Senderstruktur muss also noch um den Block „Zyklisches Präfix” ergänzt werden. Beim Empfänger muss dieses Präfix wieder entfernt werden.
 
 
 
 
 
[[File:P_ID1647__Mod_T_5_6_S6a_ganz_neu.png | OFDM-Sender und -Empfänger mit zyklischem Präfix]]
 
 
 
 
 
Die Festlegung eines geeigneten Guard–Intervalls ist ein wichtiges Designkriterium bei OFDM–basierten Übertragungssystemen. Eine mögliche Vorgehensweise dazu wird im Abschnitt OFDM für 4G–Netze exemplarisch vorgestellt.
 
 
 
Das zu diesem Kapitel gehörende Interaktionsmodul verdeutlicht die Funktionsweise eines zyklischen Präfixes im zeitkontinuierlichen Fall im Bezug auf Intercarrier–Interferenz (ICI):
 
 
 
OFDM–Spektrum und –Signale
 
 
 
==OFDM–System mit zyklischem Präfix (2)==
 
Die Verwendung eines zyklischen Präfixes vermindert jedoch die Bandbreiteneffizienz. Dabei steigt die Degradation mit wachsender Dauer $T_{\rm G}$ des Guard–Intervalls – nachfolgend abgekürzt mit GI. Unter der vereinfachenden Annahme eines hart auf $N/T$ begrenzten Sendespektrums $S(f)$ ergibt sich für die Bandbreiteneffizienz – siehe [Kam04]<ref>Kammeyer, K.D.: ''Nachrichtenübertragung.'' Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>:
 
$$\beta = \frac{1}{{1 + T_{\rm{G}} /T}} = \frac{ {\rm Symbolrate} }{ {\rm Bandbreite} }.$$
 
Bei einem System, das dem so genannten Matched–Filter–Ansatz genügt, führt eine Vergrößerung der Rahmendauer von $T$ auf $T_{\rm G} + T$ allerdings zu einer Verringerung des Signal–Rausch–Verhältnisses, wenn die Impulsantworten $g_{\rm S}(t)$ und $g_{\rm E}(t)$ von Sende– und Empfangsfilter an die Symboldauer $T$ angepasst sind. Das resultierende SNR (in dB) berechnet sich zu
 
$${\rm{SNR}}_{\hspace{0.03cm}{\rm{ {\rm{mit} }\hspace{0.03cm} GI} } } = {\rm{SNR}}_{\hspace{0.03cm}{\rm{{\rm{ohne}}\hspace{0.03cm} GI}}} + 10 \cdot \lg (\beta ), \quad {\rm{wobei}}$$
 
$$\beta = \frac{{\left[ {\int\limits_0^T {g_{\rm{S}} (\tau ) \cdot g_{\rm{E}} ( - \tau )d\tau } } \right]^2 }}{{\int\limits_{ - T_{\rm{G}} }^T {g_{\rm{S}}^2 (\tau )} \,d\tau \cdot \int\limits_{\rm{0}}^T {g_{\rm{E}}^2 (\tau )} \,d\tau }} = \frac{ {T^2 } } { {(T + T_{\rm{G} } ) \cdot T} } = \frac{1}{ {1 + T_{\rm{G} } /T} }.$$
 
 
 
 
 
 
 
{{Beispiel}}
 
Gehen wir von einem Guard–Intervall der Länge $T_{\rm G} = T/3$ aus, dann ergibt sich für die Bandbreiteneffizienz:
 
$$\beta = \frac{1}{ {1 + 1/3} } = 3/4.$$
 
Der Anteil des zyklischen Präfixes an der Rahmendauer $T_{\rm R}$ beträgt 25% und der (logarithmische) SNR–Verlust ist dann 10 · lg (4/3) ≈ 1.25 dB.
 
{{end}}
 
 
 
==OFDM–Entzerrung im Frequenzbereich==
 
Wir betrachten das OFDM–System weiterhin im rauschfreien Fall und gehen von einer zeitinvarianten Kanalimpulsantwort aus, deren Länge geringer als die Dauer $T_{\rm G}$ des sendeseitig hinzugefügten zyklischen Präfixes ist. Die Betrachtung erfolgt im $k$–ten Intervall, wobei auf die Indizierung verzichtet wird. Die zeitdiskrete Kanalimpulsantwort lässt sich mit der Abkürzung $T_{\rm A} = T/N$ als $h_ν = h(ν · T_{\rm A})$ schreiben.
 
 
 
 
 
Das zeitdiskrete Empfangssignal ergibt sich damit durch lineare Faltung zu:
 
$$r_\nu = s_\nu * h_\nu = d_\nu * h_\nu.$$
 
Hierbei ist berücksichtigt, dass die Zeitabtastwerte $s_ν$ des Sendesignals mit den IDFT–Koeffizienten $d_ν$ übereinstimmen.
 
 
 
Zu beachten ist: Im Allgemeinen gilt für die herkömmliche lineare Faltung:
 
$${\rm{DFT}} \{ d_\nu * h_\nu \} \ne {\rm{DFT}} \{d_\nu \} \cdot {\rm{DFT}} \{ h_\nu \}.$$
 
Um dennoch das diskrete Empfangsspektrum durch die diskrete Fouriertransformation (DFT) angeben zu können, benötigt man die '''zirkulare Faltung''':
 
$$r_\nu = d_\nu * _{\rm circ} h_\nu \quad \circ\hspace{0.01cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad R_\mu = {\rm{DFT}} \{ d_\nu * _{\rm circ} h_\nu \}.$$
 
Mit dem Faltungssatz für lineare zeitinvariante Systeme (LZI–Systeme) kann man dann das Spektrum auch als Produkt zweier diskreter Fouriertransformierter schreiben:
 
$$R_\mu = {\rm{DFT}}\{ d_\nu \} \cdot {\rm{DFT}}\{ h_\nu \} = D_\mu \cdot H_\mu.$$
 
Um den Einfluss des Kanals auf die Empfangsfolge auszugleichen, bietet sich also die Multiplikation des Spektrums mit der inversen Übertragungsfunktion $1/H_{\mu}$ an. Dieser „''Zero Forcing''”–Ansatz führt im rauschfreien Fall zur idealen Signalrekonstruktion. Die Entzerrung kann dabei punktweise erfolgen:
 
$$\hat D_\mu = \frac{1}{ {H_\mu } } \cdot R_\mu.$$
 
 
 
 
 
 
 
{{Box}}
 
'''Fazit''': Bei einem OFDM–System kann die Kanalentzerrung mit nur einer einzigen Multiplikation je Unterträger realisiert werden, sofern der Frequenzgang des Kanals bekannt ist. Bei einem klassischen Einträger–System müsste man demgegenüber den gesamten genutzten Frequenzbereich entzerren.
 
{{end}}
 
 
 
==OFDM–Entzerrung in Matrix–Vektor–Notation (1)==
 
Im Folgenden soll eine erneute, tiefer gehende Betrachtung der OFDM–Entzerrung erfolgen, wobei wir die Matrix–Vektor–Notation verwenden. Die Betrachtung erfolgt weiterhin im $k$–ten Intervall:
 
*Der Vektor eines Kanals mit $L$ Echos ist $\mathbf h = (h_0, ... , h_L)$. Die Übertragungsmatrix mit $N$ Zeilen und $N + L$ Spalten lautet:
 
$${\rm\bf{H}} = \left( {\begin{array}{*{20}c}  {h_0 } & {h_1 } & \cdots  & {h_L } & {} & {} & {}  \\  {} & {h_0 } & {h_1 } &  \cdots  & {h_L } & {} & {}  \\  {} & {} &  \ddots  &  \ddots  & {} &  \ddots  & {}  \\  {} & {} & {} & {h_0 } & {h_1 } &  \cdots  & {h_L }  \\ \end{array}} \right).$$
 
*Hierbei gibt $N$ wieder die Anzahl der Träger und damit auch der Zeitabtastwerte der IDFT an. Mit dem Sendevektor ${\bf d} = (d_0, ... , d_{N–1})$ ergibt sich der Empfangsvektor zu $\bf r = d · H$.
 
*Unter Berücksichtigung des zyklischen Präfixes erhält man den erweiterten Sendevektor:  
 
$${\rm\bf{d}}_{{\rm{ext}}} = (d_{N - N_G } , \ldots ,d_{N - 1} ,d_0 , \ldots ,d_{N - 1} ).$$
 
*Nun könnte man die obige Übertragungsmatrix $\bf H$ ebenfalls entsprechend auf $(N + N_{\rm G})$ Zeilen und $(N + L + N_{\rm G})$ Spalten erweitern sowie das Präfix am Empfänger wieder entfernen.
 
*Alternativ kann auch die $\rm \bf \ zyklische \ Matrix \ H_C$ mit $N$ Zeilen und $N$ Spalten verwendet werden:  
 
$${\rm\bf{H}}_{\rm{C}}  = \left( {\begin{array}{*{20}c}
 
 
   {h_0 } & {h_1 } &  \cdots  &  \cdots  & {h_L } & {} & {} & {}  \\
 
   {h_0 } & {h_1 } &  \cdots  &  \cdots  & {h_L } & {} & {} & {}  \\
 
   {} & {h_0 } & {h_1 } &  \cdots  &  \cdots  & {h_L } & {} & {}  \\
 
   {} & {h_0 } & {h_1 } &  \cdots  &  \cdots  & {h_L } & {} & {}  \\
Line 205: Line 222:
 
     \vdots  & {} &  \ddots  & {} & {} & {} &  \ddots  &  \vdots  \\
 
     \vdots  & {} &  \ddots  & {} & {} & {} &  \ddots  &  \vdots  \\
 
   {h_1 } &  \cdots  &  \cdots  & {h_L } & {} & {} & {} & {h_0 }  \\
 
   {h_1 } &  \cdots  &  \cdots  & {h_L } & {} & {} & {} & {h_0 }  \\
\end{array}} \right)  .$$
+
\end{array}} \right), \hspace{1cm} {\rm\bf{F}} = \left( {\begin{array}{*{20}c}
Die Beschreibung der OFDM–Entzerrung wird nachfolgend fortgesetzt.
 
 
 
==OFDM–Entzerrung in Matrix–Vektor–Notation (2)==
 
Für das Weitere wird auch die Fouriertransformation in Matrix–Vektor–Notation benötigt:
 
$${\rm\bf{F}} = \left( {\begin{array}{*{20}c}
 
 
   1 & 1 &  \cdots  & 1  \\
 
   1 & 1 &  \cdots  & 1  \\
 
   1 & {} & {} & {}  \\
 
   1 & {} & {} & {}  \\
Line 218: Line 230:
 
   \end{array}} \right) .$$
 
   \end{array}} \right) .$$
  
Daraus ergibt sich die Diskrete Fouriertransformation (DFT) mit $1/N · \bf F$ und deren Inverse (IDFT) mit $\rm \bf F^{\star}$, so dass sich der Sendevektor als $\rm \bf d = D · F^{\star}$ darstellen lässt. Die $N$ Spektralkoeffizienten werden durch den Vektor ${\rm \bf D} = 1/N · \rm \bf d · F$ beschrieben und der Empfangsvektor ist $\rm \bf r = d · H_C = D · F^{\star} · H_C$.  
+
*The Discrete Fourier Transform&nbsp; $\rm (DFT)$&nbsp; can be represented by &nbsp;$1/N · \bf F$&nbsp; and its inverse&nbsp; $\rm (IDFT)$&nbsp; by &nbsp;$\rm \bf F^{\star}$ such that for the transmitted  vector: &nbsp;$\rm {\bf d} = {\bf D} · {\bf F}^{\star}$.  
  
Die (diskrete) Fourier–Transformierte des Empfangsvektors berechnet sich dann zu:  
+
*The &nbsp;$N$&nbsp; spectral coefficients are described by the vector &nbsp;${\bf D} = 1/N · {\bf d} · {\bf F}$&nbsp; and the  received vector is &nbsp;${\bf r} = {\bf d} · {\bf H}_{\rm C} = {\bf D} · {\bf F}^{\star} · {\bf H}_{\rm C}$.
$${\rm\bf{R}} = \frac{1}{N} \cdot {\rm\bf{r}} \cdot {\rm\bf{F}} = {\rm\bf{D}} \cdot \left( {\begin{array}{*{20}c}
+
 
 +
*The (discrete) Fourier transform &nbsp;$\rm \bf R$&nbsp; of the received vector &nbsp;$\rm \bf r$&nbsp; can then be written in the following way:
 +
:$${\rm\bf{R}} = \frac{1}{N} \cdot {\rm\bf{r}} \cdot {\rm\bf{F}} = {\rm\bf{D}} \cdot \left( {\begin{array}{*{20}c}
 
   {H_0 } & {} & {} & {}  \\
 
   {H_0 } & {} & {} & {}  \\
 
   {} & {H_1 } & {} & {}  \\
 
   {} & {H_1 } & {} & {}  \\
 
   {} & {} &  \ddots  & {}  \\
 
   {} & {} &  \ddots  & {}  \\
 
   {} & {} & {} & {H_{N - 1} }  \\
 
   {} & {} & {} & {H_{N - 1} }  \\
  \end{array}} \right),\hspace{0.25cm} {\rm mit}\hspace{0.25cm}  H_\mu = \sum\limits_{l = 0}^L {h_l \cdot
+
  \end{array}} \right),\hspace{0.25cm} {\rm with}\hspace{0.25cm}  H_\mu = \sum\limits_{l = 0}^L {h_l \cdot
   {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi }}{\kern 1pt}
+
   {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi }}\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm}\mu /N} }.$$
    \cdot \hspace{0.02cm}l {\kern 1pt} \cdot\mu /N} }.$$
+
 
Das Empfangssymbol auf dem $\mu$–ten Träger ist somit $R_{\mu} = D_{\mu} · H_{\mu}$, das sich somit wiederum mit dem ''Zero Forcing''–Ansatz entzerren lässt:  
+
[[File:EN_Mod_T_5_6_S8b.png|right|frame| Block diagram of the OFDM receiver]]
$$\hat D_\mu = \frac{1}{ {H_\mu } } \cdot R_\mu = e_\mu \cdot R_\mu .$$
+
{{BlaueBox|TEXT=
Die vorgeschlagene Entzerrung mit den Entzerrungskoeffizienten $e_{\mu} = 1/H_{\mu}$ mit $\mu = 0, ... , N–1$ führt schließlich zum endgültigen Blockschaltbild des OFDM–Empfängers:
+
$\text{Conclusion:}$&nbsp;
 +
*The received symbol on the&nbsp; $\mu$–th carrier is: &nbsp;
 +
:$$R_{\mu} = D_{\mu} · H_{\mu} \ \ (\mu = 0, \text{...}\ ,\ N–1).$$
 +
*This can thus be equalized using the &nbsp;"Zero Forcing"&nbsp; approach:  
 +
:$$\hat {D}_\mu = \frac{1}{ {H_\mu } } \cdot R_\mu = e_\mu \cdot R_\mu .$$
 +
*Equalization &nbsp; &rArr; &nbsp; multiplication with &nbsp;$e_{\mu} = 1/H_{\mu} \ (\mu = 0,$ ... , $N–1)$.
 +
* The complete block diagram of OFDM receiver is shown on the right.
 +
}}
  
  
[[File:P_ID1651__Mod_T_5_6_S8b_ganz_neu.png | Blockschaltbild der OFDM–Entzerrung]]
+
{{GraueBox|TEXT=
 +
$\text{Example 5:}$&nbsp;
 +
We assume a system with &nbsp;$N = 4$&nbsp; carriers and a channel with &nbsp;$L = 2$&nbsp; echoes,
 +
*so that for the transmitted vector &nbsp;${\bf d} = (d_0, d_1, d_2, d_3)$,&nbsp; and
 +
*for the channel impulse response &nbsp;${\bf h} = (h_0, h_1, h_2)$.&nbsp;
  
==OFDM–Entzerrung in Matrix–Vektor–Notation (3)==
 
{{Beispiel}}
 
Wir gehen von einem System mit $N =$ 4 Trägern und einem Kanal mit $L =$ 2 Echos aus, so dass für den Sendevektor ${\bf d} = (d_0, d_1, d_2, d_3)$ und für die Kanalimpulsantwort ${\bf h} = (h_0, h_1, h_2)$ gilt.
 
  
Zur Repräsentation des zyklischen Präfixes verwenden wir statt des erweiterten Sendevektors mit der zugehörigen Übertragungsmatrix die zyklische Übertragungsmatrix
+
'''(1)''' &nbsp; To represent the cyclic prefix,&nbsp; we use the cyclic transmission matrix  &nbsp;${\rm\bf{H} }_{\rm{C} }$,&nbsp; instead of the extended transmitted vector with the corresponding transmission matrix,&nbsp; resulting in the received vector &nbsp;${\rm \bf r}=  {\rm \bf d} \cdot {\rm \bf H}_{\rm{C} }$:&nbsp;
$${\rm\bf{H}}_{\rm{C}}  = \left( {\begin{array}{*{20}c}
+
:$${\rm\bf{H} }_{\rm{C} }  = \left( {\begin{array}{*{20}c}
   {h_0 } & {h_1 } & {h_2 } & {}  \\
+
   {h_0 } & {h_1 } & {h_2 } & { }  \\
 
   {} & {h_0 } & {h_1 } & {h_2 }  \\
 
   {} & {h_0 } & {h_1 } & {h_2 }  \\
 
\hline
 
\hline
 
   {h_2 } & {} & {h_0 } & {h_1 }  \\
 
   {h_2 } & {} & {h_0 } & {h_1 }  \\
 
   {h_1 } & {h_2 } & {} & {h_0 }  \\
 
   {h_1 } & {h_2 } & {} & {h_0 }  \\
\end{array}} \right).$$
+
\end{array} } \right)\hspace{1cm}
Der Empfangsvektor $\rm \bf r = d · H_c$ ergibt sich damit zu
+
{\rm\bf{r} } = \left( {r_0 ,r_1 ,r_2 ,r_3 } \right) = \left( {d_0 ,d_1 ,d_2 ,d_3 } \right) \cdot \left( {\begin{array}{*{20}c}
$${\rm\bf{r}} = \left( {r_0 ,r_1 ,r_2 ,r_3 } \right) = \left( {d_0 ,d_1 ,d_2 ,d_3 } \right) \cdot \left( {\begin{array}{*{20}c}
 
 
   {h_0 } & {h_1 } & {h_2 } & {}  \\
 
   {h_0 } & {h_1 } & {h_2 } & {}  \\
 
   {} & {h_0 } & {h_1 } & {h_2 }  \\
 
   {} & {h_0 } & {h_1 } & {h_2 }  \\
Line 255: Line 276:
 
   {h_2 } & {} & {h_0 } & {h_1 }  \\
 
   {h_2 } & {} & {h_0 } & {h_1 }  \\
 
   {h_1 } & {h_2 } & {} & {h_0 }  \\
 
   {h_1 } & {h_2 } & {} & {h_0 }  \\
\end{array}} \right) $$
+
\end{array} } \right) $$
$$\Rightarrow \hspace{0.3cm} r_0 = d_0 \cdot h_0 + d_2 \cdot h_2 + d_3 \cdot h_1, \hspace{0.5cm}
+
:$$\Rightarrow \hspace{0.3cm} r_0 = d_0 \cdot h_0 + d_2 \cdot h_2 + d_3 \cdot h_1, \hspace{0.5cm}
 
r_1 = d_0 \cdot h_1 + d_1 \cdot h_0 + d_3 \cdot h_2,$$
 
r_1 = d_0 \cdot h_1 + d_1 \cdot h_0 + d_3 \cdot h_2,$$
$$\Rightarrow \hspace{0.3cm} r_2 = d_0 \cdot h_2 + d_1 \cdot h_1 + d_2 \cdot h_0, \hspace{0.5cm}
+
:$$\Rightarrow \hspace{0.3cm} r_2 = d_0 \cdot h_2 + d_1 \cdot h_1 + d_2 \cdot h_0, \hspace{0.5cm}
 
r_3 = d_1 \cdot h_2 + d_2 \cdot h_1 + d_3 \cdot h_0.$$
 
r_3 = d_1 \cdot h_2 + d_2 \cdot h_1 + d_3 \cdot h_0.$$
Die (diskrete) Fourier–Transformierte des Empfangsvektors berechnet sich zu
+
 
$${\rm\bf{R}} = \frac{1}{N} \cdot {\rm\bf{r}} \cdot {\rm\bf{F}} = {\rm\bf{D}} \cdot \left( {\begin{array}{*{20}c}
+
'''(2)''' &nbsp;  The&nbsp; (discrete)&nbsp; Fourier transform of the received  vector is calculated to be
 +
:$${\rm\bf{R} } = \frac{1}{N} \cdot {\rm\bf{r} } \cdot {\rm\bf{F} } = {\rm\bf{D} } \cdot \left( {\begin{array}{*{20}c}
 
   {H_0 } & {} & {} & {}  \\
 
   {H_0 } & {} & {} & {}  \\
 
   {} & {H_1 } & {} & {}  \\
 
   {} & {H_1 } & {} & {}  \\
 
   {} & {} & {H_2 } & {}  \\
 
   {} & {} & {H_2 } & {}  \\
 
   {} & {} & {} & {H_3 }  \\
 
   {} & {} & {} & {H_3 }  \\
\end{array}} \right) ,\hspace{0.25cm} {\rm mit}\hspace{0.25cm} H_\mu = \sum\limits_{l = 0}^2 {h_l \cdot
+
\end{array} } \right) ,\hspace{0.25cm} {\rm mit}\hspace{0.25cm} H_\mu = \sum\limits_{l = 0}^2 {h_l \cdot
   {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi }}{\kern 1pt}
+
   {\rm{e} }^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm}l \hspace{0.05cm}\cdot \hspace{0.03cm} \mu /4} }  .$$
    \cdot \hspace{0.02cm}l {\kern 1pt} \cdot\mu /4} }  .$$
 
 
 
  
 +
'''(3)'''  &nbsp; For numerical calculations,&nbsp; we assume a known BPSK-encoded transmitted  sequence &nbsp;$\rm \bf D$&nbsp; (in the frequency domain)&nbsp; and the following channel impulse response &nbsp;$\bf h$:&nbsp;
 +
:$${\rm\bf{D} } = \frac{1}{N} \cdot {\rm\bf{d} } \cdot {\rm\bf{F} } =
 +
\left( D_0, D_1,D_2,D_3\right) = \left( +1,\ -1,\ +1,\ -1\right),$$
 +
:$$
 +
{\rm\bf{h} }= \left( h_0, h_1,h_2\right) = \left(
 +
0.5,\ 0.3,\ 0.2\right).$$
  
Für die numerische Berechnung gehen wir nun von einer bekannten, BPSK–codierten Sendefolge $\rm \bf D$ (im Frequenzbereich) und der folgenden Kanalimpulsantwort $\bf h$ aus:
+
'''(4)'''  &nbsp; First,&nbsp; we determine the elements &nbsp;$H_{\mu}$&nbsp; of the diagonal matrix:
$${\rm\bf{D}} = \frac{1}{N} \cdot {\rm\bf{d}} \cdot {\rm\bf{F}} =
+
:$$\begin{array}{l}
\left( D_0, D_1,D_2,D_3\right) = \left( +1,-1,+1,-1\right),$$
+
  H_0 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^0 = 0.5 + 0.3 + 0.2 = 1,} \\
$${\rm\bf{h}}= \left( h_0, h_1,h_2\right) = \left(
+
  H_1 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm} {1}/{4} } } = 0.5 \cdot {\rm{e} }^0 + 0.3 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}\pi } } /2 } +
0.5,0.3,0.2\right).$$
+
  0.2 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}\pi } } } = 0.3 - {\rm{j} } \cdot 0.3, \\
Zunächst bestimmen wir die Elemente $H_{\mu}$ der Diagonalmatrix:
+
  H_2 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm} {2}/{4} } } = 0.5 \cdot {\rm{e} }^0 + 0.3 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}\pi } } }
$$\begin{array}{l}
+
  + 0.2 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}2\pi } } } = 0.4, \\
  H_0 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e}}^0 = 0.5 + 0.3 + 0.2 = 1,} \\
+
  H_3 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm} {3}/{4} } } = 0.5 \cdot {\rm{e} }^0 + 0.3 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} {3}/{2} \pi } } }
  H_1 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e}}^{ - {\rm{j2\pi }}{\kern 1pt} l {\kern 1pt}
+
  + 0.2 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}3\pi } } } = 0.3 + {\rm{j} } \cdot 0.3. \\
\cdot {1}/{4}} } = 0.5 \cdot {\rm{e}}^0 + 0.3 \cdot {\rm{e}}^{ - {\rm{j\pi }} /2 } +
 
  0.2 \cdot {\rm{e}}^{ - {\rm{j\pi }} } = 0.3 - {\rm{j}} \cdot 0.3, \\
 
  H_2 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e}}^{ - {\rm{j2\pi }}{\kern 1pt} l {\kern 1pt}
 
\cdot {\kern 1pt} {2}/{4}} } = 0.5 \cdot {\rm{e}}^0 + 0.3 \cdot {\rm{e}}^{ - {\rm{j\pi }} }
 
  + 0.2 \cdot {\rm{e}}^{ - {\rm{j2\pi }} } = 0.4, \\
 
  H_3 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e}}^{ - {\rm{j2\pi }} {\kern 1pt} l {\kern 1pt}
 
\cdot {\kern 1pt} {3}/{4}} } = 0.5 \cdot {\rm{e}}^0 + 0.3 \cdot {\rm{e}}^{ - {\rm{j \frac{3}{2} \pi }} }
 
  + 0.2 \cdot {\rm{e}}^{ - {\rm{j3\pi }} } = 0.3 + {\rm{j}} \cdot 0.3. \\
 
 
  \end{array}$$
 
  \end{array}$$
Damit ergibt sich der Vektor der Frequenzstützstellen am Empfänger zu
+
'''(5)'''  &nbsp; Thus,&nbsp; the vector of frequency support points at the receiver is given by
$$\begin{align*}{\rm\bf{R}}  &=  \left( {\rm{1, -1, \; \; 1, -1}} \right) \cdot \left( {\begin{array}{*{20}c}
+
:$$\begin{align*}{\rm\bf{R} }  &=  \left( {\rm{1, -1, \; \; 1, -1} } \right) \cdot \left( {\begin{array}{*{20}c}
 
   1 & {} & {} & {}  \\
 
   1 & {} & {} & {}  \\
   {} & {0.3 - {\rm{j}} \cdot 0.3} & {} & {}  \\
+
   {} & {0.3 - {\rm{j} } \cdot 0.3} & {} & {}  \\
 
   {} & {} & {0.4} & {}  \\
 
   {} & {} & {0.4} & {}  \\
   {} & {} & {} & {0.3 + {\rm{j}} \cdot 0.3}  \\
+
   {} & {} & {} & {0.3 + {\rm{j} } \cdot 0.3}  \\
\end{array}} \right) =\\ \\ & = {\rm{ (1, -0.3 + j \cdot 0.3, \; \; 0.4, -0.3 - j \cdot 0.3) }}.\end{align*}$$
+
\end{array} } \right) \ = \  {\rm{ (1, -0.3 + j \cdot 0.3, \; \; 0.4, -0.3 - j \cdot 0.3) } }.\end{align*}$$
Die Entzerrerkoeffizienten wählt man nun entsprechend $e_{\mu} = 1/H_{\mu}$, wobei $\mu =$ 0, ... , 3 gilt:  
+
 
$$e_0  = 1, \quad e_1 = \frac{1}{{0.3 - {\rm{j}} \cdot 0.3}}, \quad e_2 = \frac{1}{ {0.4} }, \quad e_3  = \frac{1}{{0.3 + {\rm{j}} \cdot 0.3}}.$$
+
'''(6)'''  &nbsp; One chooses the equalizer coefficients according to &nbsp;$e_{\mu} = 1/H_{\mu}$,&nbsp; where &nbsp;$\mu = 0$, ... , $3$ &nbsp; holds:  
Die entzerrte Symbolfolge ergibt sich mit ${\bf e} = (e_0, e_1, e_2, e_3)$ schließlich zu
+
:$$e_0  = 1, \quad e_1 = \frac{1}{ {0.3 - {\rm{j} } \cdot 0.3} }, \quad e_2 = \frac{1}{ {0.4} }, \quad e_3  = \frac{1}{{0.3 + {\rm{j} } \cdot 0.3} }.$$
$$\hat {\rm\bf{D}} = {\rm\bf{R}} \cdot {\rm\bf{e}}^{\rm{T}}  = (R_0 ,R_1 ,R_2 ,R_3) \cdot \left( {\begin{array}{*{20}c}
+
 
 +
'''(7)'''  &nbsp; The rectified symbol sequence with &nbsp;${\bf e} = (e_0, e_1, e_2, e_3)$&nbsp; finally results in
 +
:$$\hat {\rm\bf{D} } = {\rm\bf{R} } \cdot {\rm\bf{e} }^{\rm{T} }  = (R_0 ,R_1 ,R_2 ,R_3) \cdot \left( {\begin{array}{*{20}c}
 
   {e_0 }  \\
 
   {e_0 }  \\
 
   {e_1 }  \\
 
   {e_1 }  \\
 
   {e_2 }  \\
 
   {e_2 }  \\
 
   {e_3 }  \\
 
   {e_3 }  \\
\end{array}} \right) = \left( 1, -1, \; \; 1, -1 \right).$$
+
\end{array}} \right) = \left( +1, -1, \; +1, -1 \right).$$
Dies entspricht exakt der Sendesymbolfolge $\bf D$. Das heißt: Bei Kenntnis des Kanals lässt sich das Signal ideal entzerren, wobei man pro Symbol (Träger) nur eine einzige Multiplikation benötigt.  
+
&rArr; &nbsp; This corresponds exactly to the transmitted  symbol sequence &nbsp;$\bf D$.&nbsp; That is: <br>
{{end}}
+
 
 +
:'''Knowing the channel,&nbsp; the signal can be completely equalized,&nbsp; requiring only a single multiplication per symbol&nbsp; (carrier)'''. }}
 +
 
 +
==Advantages and disadvantages of OFDM==
 +
<br>
 +
Major &nbsp;&raquo;'''advantages'''&laquo;&nbsp; of OFDM over single-carrier or other multi-carrier systems are:
 +
*flexible with respect to adaptation to bad channel conditions,
 +
*simple channel organization,
 +
*very easy to realize equalization,
 +
*very robust against multipath propagation due to guard interval technique,
 +
*high spectral efficiency,
 +
*simple implementation using&nbsp; $\rm IFFT/FFT$&nbsp; (Fast Fourier Transform),
 +
*relatively insensitive to inaccurate time synchronization.
 +
 
 +
 
 +
Major &nbsp;&raquo;'''disadvantages'''&laquo;&nbsp; of OFDM are:
 +
*susceptible to Doppler spreading due to a relatively long symbol duration,
 +
*sensitive to oscillator fluctuations,
 +
*an unfavorable crest factor.
 +
 
  
==Vor– und Nachteile von OFDM==
+
'''Note''': &nbsp; The so-called &nbsp;"crest factor"&nbsp; describes the ratio of peak value to rms value of an alternating quantity.&nbsp; In an OFDM system,&nbsp; this can be very large.&nbsp; As a result,&nbsp; the demands on the amplifier circuits used are very high&nbsp; (linearity over a wide range),&nbsp; if efficiency&nbsp; (energy consumption,&nbsp; waste heat)&nbsp; is not to be ignored.
Wesentliche Vorteile von OFDM gegenüber Einträger– oder anderen Mehrträgersystemen sind:  
 
*flexibel hinsichtlich Anpassung an schlechte Kanalzustände,  
 
*einfache Kanalorganisation,  
 
*sehr einfach zu realisierende Entzerrung,  
 
*durch Guard–Intervall–Technik sehr robust gegen Mehrwegeausbreitung,  
 
*hohe spektrale Effizienz,
 
*einfache Implementierung mit Hilfe der IFFT/FFT (Schnelle Fouriertransformation),
 
*relativ unempfindlich für ungenaue Zeitsynchronisation.  
 
  
 +
{{BlaueBox|TEXT=
 +
$\text{Conclusions:}$&nbsp;
 +
*The advantages of OFDM far outweigh the disadvantages.
 +
*Although the principle has been known at least since the publication [Wei71]<ref>Weinstein, S. B.:&nbsp;  Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform.&nbsp; IEEE Transactions on Communications, COM-19, S. 628-634, 1971.</ref>,&nbsp; OFDM systems have,&nbsp; however,&nbsp; only been used since the 1990s.
 +
*The main reason for this is among other things,&nbsp; that the powerful signal processors required for IFFT or FFT have only been available for a few years. }}
  
Wesentliche Nachteile von OFDM sind:
+
==Exercises for the chapter==
*anfällig für Doppler–Spreizungen durch eine relativ lange Symboldauer,
+
<br>
*empfindlich gegenüber Oszillatorschwankungen,
+
[[Aufgaben:Exercise_5.7:_OFDM_Transmitter_using_IDFT|Exercise 5.7: OFDM Transmitter using IDFT]]
*ein schlechter Crest–Faktor (Scheitelfaktor).  
 
  
 +
[[Aufgaben:Exercise_5.7Z:_Application_of_the_IDFT|Exercise 5.7Z: Application of the IDFT]]
  
''Anmerkung'': Der so genannte ''Crest–Faktor'' beschreibt das Verhältnis von Spitzenwert zu Effektivwert einer Wechselgröße. Bei einem OFDM–System kann dieser sehr groß sein. Dadurch sind die daraus resultierenden Anforderungen an die verwendeten Verstärkerschaltungen sehr hoch (Linearität über einen weiten Bereich), wenn dabei die Effizienz (Energieverbrauch, Abwärme) nicht außer Acht gelassen werden soll.  
+
[[Aufgaben:Exercise_5.8:_Equalization_in_Matrix_Vector_Notation|Exercise 5.8: Equalization in Matrix Vector Notation]]
  
 +
[[Aufgaben:Exercise_5.8Z:_Cyclic_Prefix_and_Guard_Interval|Exercise 5.8Z: Cyclic Prefix and Guard Interval]]
  
{{Box}}
 
'''Fazit:''' Die Vorteile von OFDM überwiegen die Nachteile bei Weitem:
 
*Obwohl das grundsätzliche Verfahren mindestens seit der Veröffentlichung [Wei71]<ref>Weinstein, S. B.: ''Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform''. IEEE Transactions on Communications, COM-19, S. 628-634, 1971.</ref> bekannt ist, finden die OFDM–Systeme allerdings erst seit den 1990–Jahren Verwendung.
 
*Die Hauptursache dafür ist wohl unter anderem darin zu suchen, dass die für die IFFT bzw. FFT benötigten leistungsfähigen Signalprozessoren erst seit einigen Jahren verfügbar sind.
 
{{end}}
 
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:05, 11 March 2023

OFDM using discrete Fourier transform (DFT)


We now consider again the temporally non-overlapping transmitted signal frames

$$s_k (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu ,\hspace{0.08cm}k} \cdot g_\mu (t - k \cdot T_{\rm{R}} )},$$

where  $k$  indicates the frame number.  At sampling times  $k · T_{\rm R} + ν · T_{\rm A}$  with  $0 ≤ ν < N$  and  $T_{\rm A} = T/N$,  these frames have the sampling values

$$s_{\nu ,\hspace{0.08cm}k} = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu ,\hspace{0.08cm}k} \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.03cm}\cdot \hspace{0.03cm}2\pi}} {\kern 1pt}\cdot \hspace{0.03cm}\nu \hspace{0.03cm}\cdot \hspace{0.03cm}{\mu}/{N}} }.$$

Here  $T_{\rm R}$  denote the  "frame duration"  (German:  "Rahmendauer"   ⇒   subscript  "R")  and  $T_{\rm A}$  the  "sampling distance"  (German:  "Abtastabstand"   ⇒   subscript  "A").

  • With the renaming  $s_{ν,\hspace{0.08cm}k} = d_{ν,\hspace{0.08cm}k}$  and  $a_{\mu,\hspace{0.08cm}k} = D_{\mu,\hspace{0.08cm}k}$  the equation corresponds exactly to the  $\text{Inverse Discrete Fourier Transform}$  $\rm (IDFT)$  in the  $k$–th interval:
$$d_{\nu ,\hspace{0.08cm}k} = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu ,\hspace{0.08cm}k} \cdot w^{ - \nu \hspace{0.03cm}\cdot \hspace{0.03cm} \mu } } \quad {\rm{with}} \quad w = {\rm{e}}^{ - {\rm{j}} {\rm{\hspace{0.03cm}\cdot \hspace{0.03cm}2\pi}}/N}.$$
Here,   $d_{ν,\hspace{0.08cm}k}$  are the time samples and  $D_{ν,\hspace{0.08cm}k}$  are the discrete spectral coefficients.
$$D_{\mu ,\hspace{0.08cm}k} = \frac{1}{N}\cdot \sum\limits_{\nu = 0}^{N - 1} {d_{\nu ,\hspace{0.08cm}k} \cdot w^{\hspace{0.05cm}\nu \hspace{0.03cm}\cdot \hspace{0.03cm}\mu } }.$$
  • Furthermore:
  1. The coefficients  $d_{ν,\hspace{0.08cm}k}$  and  $D_{μ,\hspace{0.08cm}k}$  are periodic with the grid number  $N$.  Moreover,  they are in general complex-valued.
  2. In principle,  DFT and IDFT have the same structure.
  3. They only differ by the sign in the exponent of the complex rotation factor  $w$  and the normalization factor  $1/N$  in the case of DFT.


$\text{Notes:}$ 

  • The applet  "Discrete Fourier Transform"  clarifies the properties of DFT and IDFT.
  • The possibility of an efficient realization of the multicarrier system results with the  $\text{Fast Fourier Transform}$
  • For the use of  FFT/IFFT,  the number of interpolation points  (or samples)  in the time and frequency domain must be a power of two in each case.
  • Under this condition,  an implementation with the complexity  $\mathcal{O}(N · {\rm log_2} \ N)$  is possible with the different known algorithms for the implementation of the FFT.

Realization of the OFDM transmitter


The diagram shows the block diagram for the realization of the OFDM transmitter using the "Inverse Discrete Fourier Transform"  $\rm (IDFT)$.

Block diagram of the OFDM transmitter
  • In the  $\text{general model}$  at the beginning of the last chapter,  this replaces the very complex parallel demodulation of the  $N$  orthogonal carriers.
  • The implementation of the  $\rm IDFT$  as  $\rm IFFT$  (Inverse Fast Fourier Transform) results in a further reduction in effort.


One recognizes from this diagram:

  • In the input buffer,  the source signal  $q(t)$  is implicitly serial/parallel  $\rm (S/P)$  converted.  After that,  a signal space mapping to the  $N$  spectral coefficients  $D_{\mu,\hspace{0.08cm}k}$  is performed.  The index  $k$  again denotes the time frame.
  • In  $\rm 4–QAM$  mapping,  each two source symbols together yield a complex coefficient  $D_{\mu,\hspace{0.08cm}k}$,  which can take four different values.
  • The spectral coefficients  $D_{\mu,\hspace{0.08cm}k}$  generated in this way are then fed to the  $\rm IDFT$ block,  which generates the time domain values $d_{ν,\hspace{0.08cm}k}$  from them.  These are again parallel/serial  $\rm (P/S)$  converted. 


After the subsequent  $\rm (D/A)$ conversion and low-pass filtering the  $\rm OFDM$ transmitted signal  $s(t)$  is finally obtained in the equivalent low-pass range.

Realization of the OFDM receiver


The diagram shows the block diagram for the realization of the OFDM receiver using the  "Discrete Fourier Transform"  $\rm (DFT)$. This replaces in the  $\text{general model}$  (see last chapter)  the very complex parallel demodulation of the  $N$  orthogonal carriers.

The realization of the  $\rm DFT$  as  $\rm FFT$  ("Fast Fourier Transform")  results in a further reduction of effort.  The essential steps are:

Block diagram of the OFDM receiver
  • The input signal  $r(t)$  of the receiver is first digitalized  $(\rm A/D$ conversion$)$.  This is followed by a pre-equalization in the time domain  (optional),  e.g. with  $\text{Decision Feedback Equalization}$  $($ $\rm DFE)$  or the  $\text{Viterbi algorithm}$.
  • It should be noted,  that the decisive equalization happens in the frequency domain.   This is explained in section  "OFDM equalization in the frequency domain"  at the end of the chapter and is not included in the diagram above.
  • After serial/parallel  $\rm (S/P)$  conversion,  the discrete time values  $d_{ν,\hspace{0.08cm}k}$  are fed to the DFT block.  The generated spectral samples  $D_{\mu,\hspace{0.08cm}k}$  are decoded by the QAM detector and implicitly parallel/serial converted in the output buffer,  resulting in the sink signal  $v(t)$. 
  • Note,  that the receiver-side coefficients $d_{ν,\hspace{0.08cm}k}$  and  $D_{\mu,\hspace{0.08cm}k}$  may well differ from the corresponding quantities of the OFDM transmitter due to channel distortion and noise,  which is not reflected in the chosen nomenclature.
  • Only in the case of error-free detection,  the coefficients  $\hat{a}_{\mu,\hspace{0.08cm}k}$  of the sink signal $v(t)$  are identical to the coefficients  $a_{\mu,\hspace{0.08cm}k}$  of the source signal  $q(t)$.  In general,  they differ,  which is captured by the  »symbol error rate«.

Intercarrier interference and intersymbol interference


$\text{Definitions:}$  Orthogonality of OFDM carriers is lost during transmission over a frequency-selective channel.

  • The resulting interference between the individual carriers is called  »intercarrier interference«  $\rm (ICI)$.
  • However,  transmission over a multipath channel ultimately also causes superimposition of successive symbols and thus  »$\text{intersymbol interference}$«. 


$\text{Example 1:}$  The diagram shows the real part of a received OFDM  (equivalent low-pass)  signal after transmission via a noise-free multipath channel with parameters:

  • for the path  "0":   Attenuation  $h_0 = 0.5$;   delay  $τ_0 = 0$,
for the path  "1":   Attenuation  $h_1 = 0.5$;   delay  $τ_1 = T/4$.
Received OFDM signal via multipath channel in the equivalent low-pass range
  • The carrier of frequency  $1 · f_0$  of the interval  $k$  assigned with the coefficient  "$+1$"  is drawn in black.
  • The carrier weighted with  "$-1$"  with frequency  $3 · f_0$  in the previous interval  $(k-\hspace{-0.08cm}1)$  is shown in red. 
  • Other intervals and carriers are not considered.


One can see from this diagram:

  1. Transient events at the symbol beginning lead to  "intercarrier interference"  $\rm (ICI)$  in the spectrum. 
  2. In the time domain,  $\rm ICI$  can be recognized by the jumps that occur  (marked yellow in the diagram). 
  3. As a result, orthogonality is lost with respect to the frequency grid points.
  4. Further one recognizes  "intersymbol interference"  $\rm (ISI)$  in the green framed time interval  $0 ≤ t < τ_1$:  
          The red predecessor symbol  $k-\hspace{-0.08cm}1$   $($frequency  $3 · f_0)$  interferes with the black symbol  $k$   $($frequency $1 · f_0)$.

Guard interval to reduce intersymbol interference


A first possible solution for the second problem  $\rm (ISI)$  is the introduction of a guard interval of length  $T_{\rm G}$:

Principle of the  "guard interval"
  • Here,  the signal between two symbols is set to zero for the duration of the protection time  $T_{\rm G}$. 
  • As a result,  possible pulse trailers of symbol  $k-\hspace{-0.08cm}1$  no longer extend into the following symbol  $(k)$,  provided that the guard interval is selected  "wider"  than the maximum channel delay.
  • The new frame duration  $T_{\rm R}$ – i.e. the distance between successive transmitted symbols – is thus given by
$$T_{\rm R} = T + T_{\rm G}.$$


$\text{Example 2:}$  This diagram again shows the real part of the received OFDM signal,  but now with  "guard interval".  The assumptions of  $\text{Example 1}$  have been kept.

OFDM reception signal over multipath channel with guard interval

The diagram shows:

  1. In addition,  $T_{\rm G} = T/4$  is set,  which corresponds to the limiting case  $T_{\rm G} = τ_{\rm max}$  for the present channel.
  2.  By using a guard interval of corresponding width,   intersymbol interference  $\rm (ISI)$  can be avoided   ⇒   in interval  $k$  only one frequency occurs.
  3.  But:  Intercarrier interference  $\rm (ICI)$  cannot be prevented by this,  because the symbols still have a transient phase and thus jumps.



The  "guard interval"  approach will not be considered further.  Rather,  a better alternative is presented in the next section.

Cyclic Prefix


A better solution for the described problem is the introduction of a  »cyclic extension of the transmitted symbols«  in the so-called  "guard interval"  of length  $T_{\rm G}$.

Principle of the cyclic prefix
  • For this,  the end of a symbol in the time interval  $T \ – \ T_{\rm G} ≤ t < T$  is prefixed again to the actual symbol.
  • This procedure thus generates a  »cyclic prefix«.
  • As with the  "guard interval",  the interval duration increases from symbol duration  $T$  to the new frame duration  $T_{\rm R} = T + T_{\rm G}$. 
  • The new number of samples of the extended discrete-time signal in the  $k$–th interval is then:
$$N_{\rm{total}} = N + N_{\rm{G}} = N \cdot (1 + T_{\rm{G}} /T) .$$
  • The number of carriers and the number of useful IDFT values is still  $N$.  Here,  the expansion is only achieved by repeating the end of the symbol  $N\hspace{-0.03cm}-\hspace{-0.08cm}N_0$, ... , $N\hspace{-0.08cm}-\hspace{-0.08cm}1$  in the guard interval  (highlighted in red).
  • The use of the  "cyclic prefix"  seems to be particularly useful if the  $\rm ISI$  are mainly caused by tracking. This applies in particular to the copper twisted pairs used in  $\text{DSL systems}$


$\text{Example 3:}$  The diagram shows the operation of the guard interval in the continuous-time case.  The parameters from the consideration of the guard interval in  $\text{Example 1}$  still apply,  although only one symbol  $($with frequency  $f_0)$ is now considered. 

Received OFDM signal over multipath channel with cyclic prefix

Further system parameters are again  $T_{\rm G} = T/4$  and for path  "0"  or path  "1":

  • Attenuation  $h_0 = 0.5$;   delay  $τ_0 = 0$,
  • Attenuation  $h_1 = 0.5$;   delay  $τ_1 = T/4$.


In the frame  $k$  of duration  $T_{\rm R}$,  there is now no interference at all:

  1.  Since the preceding symbols completely fade away during the guard interval, there is no  "intersymbol interference"  $\rm (ISI)$.
  2.  Since the respective transients do not extend into the useful symbols,  no  "intercarrier interference"  $\rm (ICI)$  occurs either.


$\text{Conclusion:}$ 

  1.   By using a cyclic prefix alone, both "intercarrier interference"  $\rm (ICI)$  and  "intersymbol interference"  $\rm (ISI)$ can be completely avoided.
  2.   This requires that the length of the guard interval  $(T_{\rm G})$  is at least equal to the maximum duration  $τ_{\rm max}$  of the channel impulse response:   $T_{\rm G} \ge τ_{\rm max}$. 
  3.   In the example considered,  $T_{\rm G} = τ_{\rm max} = \tau_1$ .
  4.   The quantity  $τ_{\rm max}$  generally limits the ISI– and ICI–free section within the guard interval to the range  $ \ –T_{\rm G} + τ_{\rm max} ≤ t < T$.

OFDM system with cyclic prefix


The   "Cyclic prefix"  block must therefore be added to the  $\text{transmitter structure}$  already shown at the beginning.  At the  $\text{receiver}$  this prefix must be removed again.

OFDM transmitter  $($subscript  $\rm S)$  and receiver  $($subscript  $\rm E)$  with cyclic prefix
  • The definition of a suitable guard interval is an important design criterion for OFDM-based transmission systems.  A possible approach to this is presented as an example in the section  "OFDM for 4G Networks"
  • However,  the use of a cyclic prefix degrades the   "bandwidth efficiency".  The degradation increases with increasing duration  $T_{\rm G}$  of the guard interval  (hereafter abbreviated as  "GI").
  • Under the simplifying assumption of a transmission spectrum  $S(f)$  hard limited to $1/T$,  the bandwidth efficiency – see [Kam04][1]:
$$\beta = \frac{ \text{symbol rate} }{ {\rm bandwidth} } = \frac{1/(T + T_{\rm G})}{1/T} = \frac{1}{{1 + T_{\rm{G}} /T}}.$$
  • However,  in a system using the so-called  "matched filter approach",  increasing the frame duration from  $T$  to  $T_{\rm G} + T$  leads to a decrease in the signal-to-noise ratio if the impulse responses  $g_{\rm S}(t)$  and  $g_{\rm E}(t)$  of the transmission and receiver filters are matched to the symbol duration  $T$. 
  • The resulting  signal–to–noise ratio  $\rm (SNR)$  of the overall system  (in dB)  can be calculated as follows,  taking into account the guard interval:
$${\rm{SNR}}_{\hspace{0.08cm}{\rm{ {\rm{with} }\hspace{0.08cm} GI} } } = {\rm{SNR}}_{\hspace{0.08cm}{\rm{{\rm{without}}\hspace{0.08cm} GI}}} + 10 \cdot \lg (\beta ), \quad {\rm{where}}$$
$$\beta = \frac{{\left[ {\int\limits_0^T {g_{\rm{S}} (\tau ) \cdot g_{\rm{E}} ( - \tau )d\tau } } \right]^2 }}{{\int\limits_{ - T_{\rm{G}} }^T {g_{\rm{S}}^2 (\tau )} \,d\tau \cdot \int\limits_{\rm{0}}^T {g_{\rm{E}}^2 (\tau )} \,d\tau }} = \frac{ {T^2 } } { {(T + T_{\rm{G} } ) \cdot T} } = \frac{1}{ {1 + T_{\rm{G} } /T} }.$$

$\text{Example 4:}$  We assume a guard interval of length  $T_{\rm G} = T/3$.  Then the bandwidth efficiency is given by:

$$\beta = \frac{1}{ {1 + 1/3} } = 3/4.$$
  • The share of the cyclic prefix in the frame duration  $T_{\rm R}$  is  $25\%$,  and
  • the  (logarithmic)  SNR loss is then  $10 · \lg \ (4/3) ≈ 1.25 \ \rm dB$.


The  (German language)  SWF applet  "OFDM-Spektrum und Signale"   ⇒   "OFDM Spectrum and Signals"  illustrates the operation of a cyclic prefix in the continuous-time case with respect to  "intercarrier interference"  $\rm (ICI)$.

OFDM equalization in the frequency domain


We continue to consider the  $\text{OFDM system}$  in the noise-free case and assume a time-invariant channel impulse response whose length is smaller than the duration  $T_{\rm G}$  of the cyclic prefix added at the transmit end.

  • The observation is made in the  $k$–th interval,  and indexing is omitted.
  • The discrete-time channel impulse response can be written as   $h_ν = h(ν · T_{\rm A})$  with the abbreviation  $T_{\rm A} = T/N$. 
  • The discrete-time reception signal is thus obtained by linear  $\text{convolution}$  to:
$$r_\nu = s_\nu * h_\nu = d_\nu * h_\nu.$$

This takes into account that the time samples  $s_ν$  of the transmitted signal coincide with the IDFT coefficients  $d_ν$. 

$\text{To be noted:}$  In general,  for the conventional linear convolution:

$${\rm{DFT} } \{ d_\nu * h_\nu \} \ne {\rm{DFT} } \{d_\nu \} \cdot {\rm{DFT} } \{ h_\nu \}.$$
  • Nevertheless,  in order to specify the discrete spectrum of the received signal by the discrete Fourier transform  $\rm (DFT)$,  one needs the  $\text{cyclic convolution}$
$$r_\nu = d_\nu * _{\rm (circ)} h_\nu \quad \circ\hspace{0.01cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad R_\mu = {\rm{DFT} } \{ d_\nu * _{\rm (circ)} h_\nu \}.$$
The terms  "circular convolution"  and  "periodic convolution"  are also used synonymously for this purpose.
  • Using the convolution theorem for linear time-invariant systems,  one can then also write the spectrum as a product of two discrete Fourier transforms:
$$R_\mu = {\rm{DFT} }\{ d_\nu \} \cdot {\rm{DFT} }\{ h_\nu \} = D_\mu \cdot H_\mu.$$
  • To compensate for the influence of the channel on the received sequence,  it is convenient to multiply the spectrum by the inverse transfer function  $1/H_{\mu}$. 
  • This  "zero forcing"  approach leads to the ideal signal reconstruction in the noise-free case.  The equalization can be done point by point:
$$\hat {D}_\mu = \frac{1}{ {H_\mu } } \cdot R_\mu.$$


$\text{Conclusion:}$  

  • In the  »OFDM system«,   channel equalization can be realized with a single multiplication per subcarrier  if the channel frequency response is known.
  • In contrast, a  »classic single-carrier system«  would require  equalization of the entire frequency range used.

OFDM equalization in matrix-vector notation


In the following,  a renewed but more in-depth consideration of OFDM equalization will be given,  where we use a  $\text{matrix-vector notation}$.    The consideration still refers to the  $k$–th interval,  without any special note:

  • The vector of a channel with  $L$  echoes is  $\mathbf h = (h_0$, ... , $h_L)$.  The transmission matrix with  $N$  rows and  $N + L$  columns is:
$${\rm\bf{H}} = \left( {\begin{array}{*{20}c} {h_0 } & {h_1 } & \cdots & {h_L } & {} & {} & {} \\ {} & {h_0 } & {h_1 } & \cdots & {h_L } & {} & {} \\ {} & {} & \ddots & \ddots & {} & \ddots & {} \\ {} & {} & {} & {h_0 } & {h_1 } & \cdots & {h_L } \\ \end{array}} \right).$$
  • Here,  $N$  indicates the number of carriers and hence the number of time samples of the IDFT.  With the transmitted vector  ${\bf d} = (d_0$,  ...  , $d_{N–1})$  the received vector is:
$$\bf r = d · H.$$
  • Considering the cyclic prefix,  the extended transmitted vector is obtained:
$${\rm\bf{d}}_{{\rm{ext}}} = (d_{N - N_G } , \ \ldots \ ,d_{N - 1} ,d_0 , \ \ldots \ ,d_{N - 1} ).$$
  • Now,  one could extend the above transmission matrix  $\bf H$  likewise accordingly on   $(N + N_{\rm G})$  rows   and   $(N + L + N_{\rm G})$  columns   as well as remove the prefix at the receiver again,  which is not to be pursued here further.


Alternatively,  one can use the  "cyclic matrix"  $\rm \bf H_C$  with  $N$  rows and  $N$  columns as well as the  "Fourier transform  $\rm \bf F$  in matrix–vector notation": 

$${\rm\bf{H}}_{\rm{C}} = \left( {\begin{array}{*{20}c} {h_0 } & {h_1 } & \cdots & \cdots & {h_L } & {} & {} & {} \\ {} & {h_0 } & {h_1 } & \cdots & \cdots & {h_L } & {} & {} \\ {} & {} & \ddots & \ddots & {} & {} & \ddots & {} \\ {} & {} & {} & {h_0 } & {h_1 } & \cdots & \cdots & {h_L } \\ \hline {h_L } & {} & {} & {} & {h_0 } & {h_1 } & \cdots & {h_{L - 1} } \\ \vdots & \ddots & {} & {} & {} & \ddots & {} & \vdots \\ \vdots & {} & \ddots & {} & {} & {} & \ddots & \vdots \\ {h_1 } & \cdots & \cdots & {h_L } & {} & {} & {} & {h_0 } \\ \end{array}} \right), \hspace{1cm} {\rm\bf{F}} = \left( {\begin{array}{*{20}c} 1 & 1 & \cdots & 1 \\ 1 & {} & {} & {} \\ \vdots & {} & {{\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi }}{\kern 1pt} \cdot \hspace{0.02cm}\nu {\kern 1pt} \cdot\mu /N} } & {} \\ 1 & {} & {} & {} \\ \end{array}} \right) .$$
  • The Discrete Fourier Transform  $\rm (DFT)$  can be represented by  $1/N · \bf F$  and its inverse  $\rm (IDFT)$  by  $\rm \bf F^{\star}$ such that for the transmitted vector:  $\rm {\bf d} = {\bf D} · {\bf F}^{\star}$.
  • The  $N$  spectral coefficients are described by the vector  ${\bf D} = 1/N · {\bf d} · {\bf F}$  and the received vector is  ${\bf r} = {\bf d} · {\bf H}_{\rm C} = {\bf D} · {\bf F}^{\star} · {\bf H}_{\rm C}$.
  • The (discrete) Fourier transform  $\rm \bf R$  of the received vector  $\rm \bf r$  can then be written in the following way:
$${\rm\bf{R}} = \frac{1}{N} \cdot {\rm\bf{r}} \cdot {\rm\bf{F}} = {\rm\bf{D}} \cdot \left( {\begin{array}{*{20}c} {H_0 } & {} & {} & {} \\ {} & {H_1 } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {H_{N - 1} } \\ \end{array}} \right),\hspace{0.25cm} {\rm with}\hspace{0.25cm} H_\mu = \sum\limits_{l = 0}^L {h_l \cdot {\rm{e}}^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi }}\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm}\mu /N} }.$$
Block diagram of the OFDM receiver

$\text{Conclusion:}$ 

  • The received symbol on the  $\mu$–th carrier is:  
$$R_{\mu} = D_{\mu} · H_{\mu} \ \ (\mu = 0, \text{...}\ ,\ N–1).$$
  • This can thus be equalized using the  "Zero Forcing"  approach:
$$\hat {D}_\mu = \frac{1}{ {H_\mu } } \cdot R_\mu = e_\mu \cdot R_\mu .$$
  • Equalization   ⇒   multiplication with  $e_{\mu} = 1/H_{\mu} \ (\mu = 0,$ ... , $N–1)$.
  • The complete block diagram of OFDM receiver is shown on the right.


$\text{Example 5:}$  We assume a system with  $N = 4$  carriers and a channel with  $L = 2$  echoes,

  • so that for the transmitted vector  ${\bf d} = (d_0, d_1, d_2, d_3)$,  and
  • for the channel impulse response  ${\bf h} = (h_0, h_1, h_2)$. 


(1)   To represent the cyclic prefix,  we use the cyclic transmission matrix  ${\rm\bf{H} }_{\rm{C} }$,  instead of the extended transmitted vector with the corresponding transmission matrix,  resulting in the received vector  ${\rm \bf r}= {\rm \bf d} \cdot {\rm \bf H}_{\rm{C} }$: 

$${\rm\bf{H} }_{\rm{C} } = \left( {\begin{array}{*{20}c} {h_0 } & {h_1 } & {h_2 } & { } \\ {} & {h_0 } & {h_1 } & {h_2 } \\ \hline {h_2 } & {} & {h_0 } & {h_1 } \\ {h_1 } & {h_2 } & {} & {h_0 } \\ \end{array} } \right), \hspace{1cm} {\rm\bf{r} } = \left( {r_0 ,r_1 ,r_2 ,r_3 } \right) = \left( {d_0 ,d_1 ,d_2 ,d_3 } \right) \cdot \left( {\begin{array}{*{20}c} {h_0 } & {h_1 } & {h_2 } & {} \\ {} & {h_0 } & {h_1 } & {h_2 } \\ \hline {h_2 } & {} & {h_0 } & {h_1 } \\ {h_1 } & {h_2 } & {} & {h_0 } \\ \end{array} } \right) $$
$$\Rightarrow \hspace{0.3cm} r_0 = d_0 \cdot h_0 + d_2 \cdot h_2 + d_3 \cdot h_1, \hspace{0.5cm} r_1 = d_0 \cdot h_1 + d_1 \cdot h_0 + d_3 \cdot h_2,$$
$$\Rightarrow \hspace{0.3cm} r_2 = d_0 \cdot h_2 + d_1 \cdot h_1 + d_2 \cdot h_0, \hspace{0.5cm} r_3 = d_1 \cdot h_2 + d_2 \cdot h_1 + d_3 \cdot h_0.$$

(2)   The  (discrete)  Fourier transform of the received vector is calculated to be

$${\rm\bf{R} } = \frac{1}{N} \cdot {\rm\bf{r} } \cdot {\rm\bf{F} } = {\rm\bf{D} } \cdot \left( {\begin{array}{*{20}c} {H_0 } & {} & {} & {} \\ {} & {H_1 } & {} & {} \\ {} & {} & {H_2 } & {} \\ {} & {} & {} & {H_3 } \\ \end{array} } \right) ,\hspace{0.25cm} {\rm mit}\hspace{0.25cm} H_\mu = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^{ - {\rm{j \hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm}l \hspace{0.05cm}\cdot \hspace{0.03cm} \mu /4} } .$$

(3)   For numerical calculations,  we assume a known BPSK-encoded transmitted sequence  $\rm \bf D$  (in the frequency domain)  and the following channel impulse response  $\bf h$: 

$${\rm\bf{D} } = \frac{1}{N} \cdot {\rm\bf{d} } \cdot {\rm\bf{F} } = \left( D_0, D_1,D_2,D_3\right) = \left( +1,\ -1,\ +1,\ -1\right),$$
$$ {\rm\bf{h} }= \left( h_0, h_1,h_2\right) = \left( 0.5,\ 0.3,\ 0.2\right).$$

(4)   First,  we determine the elements  $H_{\mu}$  of the diagonal matrix:

$$\begin{array}{l} H_0 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^0 = 0.5 + 0.3 + 0.2 = 1,} \\ H_1 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm} {1}/{4} } } = 0.5 \cdot {\rm{e} }^0 + 0.3 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}\pi } } /2 } + 0.2 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}\pi } } } = 0.3 - {\rm{j} } \cdot 0.3, \\ H_2 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm} {2}/{4} } } = 0.5 \cdot {\rm{e} }^0 + 0.3 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}\pi } } } + 0.2 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}2\pi } } } = 0.4, \\ H_3 = \sum\limits_{l = 0}^2 {h_l \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} 2\pi } }\hspace{0.05cm}\cdot \hspace{0.03cm} l \hspace{0.05cm}\cdot \hspace{0.03cm} {3}/{4} } } = 0.5 \cdot {\rm{e} }^0 + 0.3 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm} {3}/{2} \pi } } } + 0.2 \cdot {\rm{e} }^{ - {\rm{j\hspace{0.05cm}\cdot \hspace{0.03cm}3\pi } } } = 0.3 + {\rm{j} } \cdot 0.3. \\ \end{array}$$

(5)   Thus,  the vector of frequency support points at the receiver is given by

$$\begin{align*}{\rm\bf{R} } &= \left( {\rm{1, -1, \; \; 1, -1} } \right) \cdot \left( {\begin{array}{*{20}c} 1 & {} & {} & {} \\ {} & {0.3 - {\rm{j} } \cdot 0.3} & {} & {} \\ {} & {} & {0.4} & {} \\ {} & {} & {} & {0.3 + {\rm{j} } \cdot 0.3} \\ \end{array} } \right) \ = \ {\rm{ (1, -0.3 + j \cdot 0.3, \; \; 0.4, -0.3 - j \cdot 0.3) } }.\end{align*}$$

(6)   One chooses the equalizer coefficients according to  $e_{\mu} = 1/H_{\mu}$,  where  $\mu = 0$, ... , $3$   holds:

$$e_0 = 1, \quad e_1 = \frac{1}{ {0.3 - {\rm{j} } \cdot 0.3} }, \quad e_2 = \frac{1}{ {0.4} }, \quad e_3 = \frac{1}{{0.3 + {\rm{j} } \cdot 0.3} }.$$

(7)   The rectified symbol sequence with  ${\bf e} = (e_0, e_1, e_2, e_3)$  finally results in

$$\hat {\rm\bf{D} } = {\rm\bf{R} } \cdot {\rm\bf{e} }^{\rm{T} } = (R_0 ,R_1 ,R_2 ,R_3) \cdot \left( {\begin{array}{*{20}c} {e_0 } \\ {e_1 } \\ {e_2 } \\ {e_3 } \\ \end{array}} \right) = \left( +1, -1, \; +1, -1 \right).$$

⇒   This corresponds exactly to the transmitted symbol sequence  $\bf D$.  That is:

Knowing the channel,  the signal can be completely equalized,  requiring only a single multiplication per symbol  (carrier).

Advantages and disadvantages of OFDM


Major  »advantages«  of OFDM over single-carrier or other multi-carrier systems are:

  • flexible with respect to adaptation to bad channel conditions,
  • simple channel organization,
  • very easy to realize equalization,
  • very robust against multipath propagation due to guard interval technique,
  • high spectral efficiency,
  • simple implementation using  $\rm IFFT/FFT$  (Fast Fourier Transform),
  • relatively insensitive to inaccurate time synchronization.


Major  »disadvantages«  of OFDM are:

  • susceptible to Doppler spreading due to a relatively long symbol duration,
  • sensitive to oscillator fluctuations,
  • an unfavorable crest factor.


Note:   The so-called  "crest factor"  describes the ratio of peak value to rms value of an alternating quantity.  In an OFDM system,  this can be very large.  As a result,  the demands on the amplifier circuits used are very high  (linearity over a wide range),  if efficiency  (energy consumption,  waste heat)  is not to be ignored.

$\text{Conclusions:}$ 

  • The advantages of OFDM far outweigh the disadvantages.
  • Although the principle has been known at least since the publication [Wei71][2],  OFDM systems have,  however,  only been used since the 1990s.
  • The main reason for this is among other things,  that the powerful signal processors required for IFFT or FFT have only been available for a few years.

Exercises for the chapter


Exercise 5.7: OFDM Transmitter using IDFT

Exercise 5.7Z: Application of the IDFT

Exercise 5.8: Equalization in Matrix Vector Notation

Exercise 5.8Z: Cyclic Prefix and Guard Interval


References

  1. Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4. Auflage, 2004.
  2. Weinstein, S. B.:  Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform.  IEEE Transactions on Communications, COM-19, S. 628-634, 1971.