Difference between revisions of "Aufgaben:Exercise 4.06Z: Signal Space Constellations"
From LNTwww
(34 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}} |
− | [[File: | + | [[File:EN_Dig_Z_4_6.png|right|frame|Three signal space constellations]] |
− | + | The (mean) symbol error probability of an optimal binary system is: | |
:$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$ | :$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$ | ||
− | + | It should be noted here: | |
− | * ${\rm Q}(x)$ | + | * ${\rm Q}(x)$ denotes the complementary Gaussian error function (definition and approximation): |
:$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u | :$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u | ||
− | \approx | + | \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} |
− | |||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * $d$ | + | * The parameter $d$ specifies the distance between the two transmitted signal points $s_0$ and $s_1$ in vector space: |
:$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$ | :$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$ | ||
− | * $\sigma_n^2$ | + | * $\sigma_n^2$ is the variance of the AWGN noise after the detector, which e.g. can be implemented as a matched filter. <br>It is assumed that $\sigma_n^2 = N_0/2$. |
− | + | The graphic shows three different signal space constellations, namely | |
− | |||
− | |||
− | |||
− | + | :* Variant $\rm A$: $s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1)$, | |
+ | :* Variant $\rm B$: $s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2)$, | ||
+ | :* Variant $\rm C$: $s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0)$. | ||
+ | |||
+ | |||
+ | The mean energy per symbol $(E_{\rm S})$ can be calculated as follows: | ||
:$$E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + | :$$E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + | ||
{\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.$$ | {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.$$ | ||
− | + | ||
− | * | + | |
− | * | + | |
+ | Notes: | ||
+ | * The chapter belongs to the chapter [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]]. | ||
+ | |||
+ | * For numeric calculations, the energy $E = 1$ can be set for simplification. | ||
+ | |||
+ | * Unless otherwise specified, equally probable symbols can be assumed: | ||
:$${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$ | :$${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$ | ||
+ | |||
− | |||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which prerequisites must absolutely (in any case) be fulfilled so that the given error probability equation is valid? |
+ | |type="[]"} | ||
+ | + Additive white Gaussian noise with variance $\sigma_n^2$. | ||
+ | + Optimal binary receiver. | ||
+ | + Decision boundary in the middle between the symbols. | ||
+ | - Equally likely symbols $s_0$ and $s_1$. | ||
+ | |||
+ | {Which statement applies to the error probability with $\sigma_n^2 = E$? | ||
|type="[]"} | |type="[]"} | ||
− | + | - Variant $\rm A$ has the lowest error probability. | |
− | - | + | - Variant $\rm B$ has the lowest error probability. |
+ | - Variant $\rm C$ has the lowest error probability. | ||
+ | + All variants show the same error behavior. | ||
− | { | + | {Give the error probability for variant $\rm A$ with $\sigma_n^2 = E$. You can calculate ${\rm Q}(x)$ according to the approximation. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$ |
+ | |||
+ | {It is assumed that $N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}$, $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$. What is the error probability for variant $\rm C$ with equally probable symbols? | ||
+ | |type="{}"} | ||
+ | $p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$ | ||
+ | |||
+ | {What is the error probability for variant $\rm B$ under the same conditions? | ||
+ | |type="{}"} | ||
+ | $p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$ | ||
+ | |||
+ | {How large should the average energy per symbol $(E_{\rm S})$ be chosen for variant $\rm A$ in order to obtain the same error probability as for variant $\rm C$? | ||
+ | |type="{}"} | ||
+ | $E_{\rm S} \ = \ $ { 21.5 3% } $\ \cdot 10^{\rm –6} \ \rm Ws$ | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The <u>first three prerequisites</u> must be met in any case: |
− | '''(2)''' | + | *The equation then applies independently of the occurrence probabilities. |
− | '''(3)''' | + | *In the case of ${\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1)$, a lower error probability can be achieved by shifting the decision threshold. |
− | '''(4)''' | + | |
− | '''(5)''' | + | |
+ | |||
+ | '''(2)''' The noise rms value $\sigma_n$ and thus also the signal energy $E = \sigma_n^2$ are the same for all three considered variants. | ||
+ | *The same applies to the distance of the signal space points. For variant $\rm A$, for example, the following applies: | ||
+ | :$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$ | ||
+ | |||
+ | *Due to the shifting of the coordinate system, the distance between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ does not change (variant $\rm B$), the same distance results in variant $\rm C$ (after rotation). | ||
+ | |||
+ | *<u>Solution 4</u> is correct: | ||
+ | #By rotating the coordinate system, one can always get by with one basis function $(N = 1)$ for a binary system $(M = 2)$. | ||
+ | #Since the two-dimensional noise is circularly symmetric ⇒ equal standard deviation $\sigma_n$ in all directions, <br>the noise term can also be described one-dimensionally as in the chapter [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]]. | ||
+ | |||
+ | |||
+ | |||
+ | '''(3)''' For all variants considered here, i.e., also for variant $\rm A$, the following holds: | ||
+ | :$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) | ||
+ | = {\rm Q}(2.5)\hspace{0.05cm}.$$ | ||
+ | |||
+ | *With the given approximation we obtain | ||
+ | :$$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | '''(4)''' For variant $\rm C$, the average energy per symbol is given by: | ||
+ | :$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + | ||
+ | {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = | ||
+ | \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$ | ||
+ | :$$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | *Substituting this result into the equation found in '''(3)''', we obtain with $\sigma_n^2 = N_0/2$: | ||
+ | :$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) | ||
+ | = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) | ||
+ | ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. $$ | ||
+ | |||
+ | |||
+ | '''(5)''' Rotating the coordinate system does not change the energy ratios. | ||
+ | *Therefore, $p_{\rm S} \ \underline {\approx 0.7\%}$ is obtained again. | ||
+ | |||
+ | |||
+ | |||
+ | '''(6)''' In variant $\rm A$, the average energy per symbol is | ||
+ | :$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E | ||
+ | \hspace{0.05cm}. $$ | ||
+ | |||
+ | *The distance from the threshold, which should be midway between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ for equally probable symbols, is $d/2 = 2.5 \cdot E^{\rm 1/2}$, as in the other variants. | ||
+ | |||
+ | *Thus, with $\sigma_n^2 = N_0/2$, we obtain the governing equation: | ||
+ | :$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) | ||
+ | ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} | ||
+ | \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 | ||
+ | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$ | ||
+ | :$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$ | ||
+ | |||
+ | *This means: For variant $\rm A$, compared to the other two variants, a mean symbol energy $E_{\rm S}$ larger by a factor of $3.44$ is required to achieve the same $p_{\rm S} = 0.7\%$. Because: | ||
+ | #This signal space constellation is very unfavorable. It results in a very large $E_{\rm S}$ without increasing the distance $d$ at the same time. | ||
+ | #With $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$, on the other hand, $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ would result. | ||
+ | #That means: The error probability would be larger by more than one power of ten. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 61: | Line 145: | ||
− | [[Category: | + | [[Category:Digital Signal Transmission: Exercises|^4.3 BER Approximation^]] |
Latest revision as of 17:18, 27 July 2022
The (mean) symbol error probability of an optimal binary system is:
- $$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$
It should be noted here:
- ${\rm Q}(x)$ denotes the complementary Gaussian error function (definition and approximation):
- $${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$
- The parameter $d$ specifies the distance between the two transmitted signal points $s_0$ and $s_1$ in vector space:
- $$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$
- $\sigma_n^2$ is the variance of the AWGN noise after the detector, which e.g. can be implemented as a matched filter.
It is assumed that $\sigma_n^2 = N_0/2$.
The graphic shows three different signal space constellations, namely
- Variant $\rm A$: $s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1)$,
- Variant $\rm B$: $s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2)$,
- Variant $\rm C$: $s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0)$.
The mean energy per symbol $(E_{\rm S})$ can be calculated as follows:
- $$E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.$$
Notes:
- The chapter belongs to the chapter "Approximation of the Error Probability".
- For numeric calculations, the energy $E = 1$ can be set for simplification.
- Unless otherwise specified, equally probable symbols can be assumed:
- $${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$
Questions
Solution
(1) The first three prerequisites must be met in any case:
- The equation then applies independently of the occurrence probabilities.
- In the case of ${\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1)$, a lower error probability can be achieved by shifting the decision threshold.
(2) The noise rms value $\sigma_n$ and thus also the signal energy $E = \sigma_n^2$ are the same for all three considered variants.
- The same applies to the distance of the signal space points. For variant $\rm A$, for example, the following applies:
- $$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$
- Due to the shifting of the coordinate system, the distance between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ does not change (variant $\rm B$), the same distance results in variant $\rm C$ (after rotation).
- Solution 4 is correct:
- By rotating the coordinate system, one can always get by with one basis function $(N = 1)$ for a binary system $(M = 2)$.
- Since the two-dimensional noise is circularly symmetric ⇒ equal standard deviation $\sigma_n$ in all directions,
the noise term can also be described one-dimensionally as in the chapter "Error Probability for Baseband Transmission".
(3) For all variants considered here, i.e., also for variant $\rm A$, the following holds:
- $$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) = {\rm Q}(2.5)\hspace{0.05cm}.$$
- With the given approximation we obtain
- $$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$
(4) For variant $\rm C$, the average energy per symbol is given by:
- $$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$
- $$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} \hspace{0.05cm}.$$
- Substituting this result into the equation found in (3), we obtain with $\sigma_n^2 = N_0/2$:
- $$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. $$
(5) Rotating the coordinate system does not change the energy ratios.
- Therefore, $p_{\rm S} \ \underline {\approx 0.7\%}$ is obtained again.
(6) In variant $\rm A$, the average energy per symbol is
- $$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E \hspace{0.05cm}. $$
- The distance from the threshold, which should be midway between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ for equally probable symbols, is $d/2 = 2.5 \cdot E^{\rm 1/2}$, as in the other variants.
- Thus, with $\sigma_n^2 = N_0/2$, we obtain the governing equation:
- $$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$
- $$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$
- This means: For variant $\rm A$, compared to the other two variants, a mean symbol energy $E_{\rm S}$ larger by a factor of $3.44$ is required to achieve the same $p_{\rm S} = 0.7\%$. Because:
- This signal space constellation is very unfavorable. It results in a very large $E_{\rm S}$ without increasing the distance $d$ at the same time.
- With $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$, on the other hand, $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ would result.
- That means: The error probability would be larger by more than one power of ten.