Difference between revisions of "Applets:Attenuation of Copper Cables"

From LNTwww
 
(58 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{LntAppletLink|daempfung}}
+
{{LntAppletLinkEn|attenuationCopperCables_en}}         [https://www.lntwww.de/Applets:Dämpfung_von_Kupferkabeln '''English Applet with German WIKI description''']
  
 
==Applet Description==
 
==Applet Description==
 
<br>
 
<br>
 +
This applet calculates the attenuation function&nbsp; $a_{\rm K}(f)$&nbsp; of conducted transmission media&nbsp; $($with cable length&nbsp; $l)$:
 +
*For coaxial cables one usually uses the equation&nbsp; $a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l$.
 +
 +
*In contrast,&nbsp; two-wire lines are often displayed in the form&nbsp; $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$.
 +
 +
*The conversion of the&nbsp; $(k_1, \ k_2, \ k_3)$&nbsp; parameters to the&nbsp; $(\alpha_0, \ \alpha_1, \ \alpha_2)$&nbsp; parameters for&nbsp; $B = 30 \ \rm MHz$&nbsp; is realized as well as the other way around.
 +
 +
 +
Aside from the attenuation function&nbsp; $a_{\rm K}(f)$&nbsp;  the applet can display:
 +
*the associated magnitude frequency response&nbsp; $\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20},$
 +
 +
*the equalizer frequency response&nbsp; $\left | H_{\rm E}(f)\right | = \left | H_{\rm CRO}(f)  /  H_{\rm K}(f)\right | $,&nbsp; that leads to a Nyquist total frequency response&nbsp; $ H_{\rm CRO}(f) $,
 +
 +
*the corresponding squared magnitude frequency response $\left | H_{\rm E}(f)\right |^2 $.
 +
 +
 +
The integral over&nbsp; $\left | H_{\rm E}(f)\right |^2 $&nbsp; is a measure of the noise exaggeration of the selected Nyquist total frequency response and thus also for the expected error probability.&nbsp; From this, the&nbsp; &raquo;total efficiency&laquo; &nbsp;$\eta_\text{K+E}$&nbsp; for the channel&nbsp; $($German:&nbsp; '''K'''anal$)$&nbsp; plus the equalizer&nbsp; $($German:&nbsp; '''E'''ntzerrer$)$&nbsp; is calculated,&nbsp; which  in the applet is output in&nbsp; $\rm dB$.
 +
 +
Through optimization of the roll-off factor&nbsp; $r$&nbsp; of the raised cosine frequency response&nbsp; $ H_{\rm CRO}(f) $&nbsp; one gets the&nbsp; &raquo;channel efficiency&laquo;&nbsp; $ \eta_\text{K}$.&nbsp; This value indicates the deterioration of the overall system due to the attenuation function&nbsp; $ a_{\rm K} (f) $&nbsp; of the transmission medium.
  
 
==Theoretical Background==
 
==Theoretical Background==
 
<br>
 
<br>
===Magnitude Frequency Response and Attenuation Function===
+
===Magnitude frequency response and attenuation function===
 
Following relationship exists between the magnitude frequency response and the attenuation function:
 
Following relationship exists between the magnitude frequency response and the attenuation function:
 
:$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
 
:$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
*The index &bdquo;K&rdquo; makes it clear, that the considered LTI system is a cable(Ger: Kabel).
+
#The index&nbsp; "K"&nbsp; makes it clear,&nbsp; that the considered LTI system is a cable&nbsp; $($German: '''K'''abel$)$.
*For the first calculation rule, the damping function $a_\text{K}(f)$ must be used in $\rm dB$ (decibel).
+
#For the first calculation rule,&nbsp; the attenuation function&nbsp; $a_\text{K}(f)$&nbsp; must be used in&nbsp; $\rm dB$&nbsp; $($"decibel"$)$.
*For the first calculation rule, the damping function $a_\text{K, Np}(f)$ must be used in $\rm Np$ (Neper).
+
#For the second calculation rule,&nbsp; the attenuation function&nbsp; $a_\text{K, Np}(f)$&nbsp; must be used in&nbsp; $\rm Np$&nbsp; $($"Neper"$)$.
* The following conversions apply:  $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ or $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
+
# The following conversions apply: &nbsp; $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ &nbsp; or &nbsp; $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
* This applet exclusively uses dB values.
+
# This applet exclusively uses dB values.
  
===Attenuation Function of a Coaxial Cable===
+
===Attenuation function of a coaxial cable===
According to [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> the Attenuation Function of a Coaxial Cable of length $l$ is given as follows:
+
According to&nbsp; [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref>&nbsp; the attenuation function of a coaxial cable of length&nbsp; $l$&nbsp; is given as follows:
 
:$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
 
:$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
*It is important to note the difference between $a_{\rm K}(f)$ in $\rm dB$ and the &bdquo;alpha&rdquo; coefficient with other pseudo&ndash;units.
+
#It is important to note the difference between&nbsp; $a_{\rm K}(f)$ in $\rm dB$&nbsp; and the&nbsp; "alpha"&nbsp; coefficient with other pseudo&ndash;units.
*The attenuation function $a_{\rm K}(f)$ is directly proportional to the cable length $l$; $a_{\rm K}(f)/l$ is referred to as the &bdquo;attenuation factor&rdquo; or &bdquo;kilometric attenuation&rdquo;.  
+
#The attenuation function&nbsp; $a_{\rm K}(f)$&nbsp; is directly proportional to the cable length&nbsp; $l$.
*The frequency-independent component $α_0$ of the attenuation factor takes into account the Ohmic losses.  
+
# $\alpha_{\rm K}(f)= a_{\rm K}(f)/l$&nbsp; is referred to as the&nbsp; "attenuation factor"&nbsp; or&nbsp; "kilometric attenuation".  
*The frequency proportional portion $α_1 · f$ of the attenuation factor is due to the derivation losses (&bdquo;crosswise loss&rdquo;) .  
+
#The frequency-independent component&nbsp; $α_0$&nbsp; of the attenuation factor takes into account the Ohmic losses.  
*the dominant portion $α_2$ goes back to [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels|Skineffekt]], which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.  
+
#The frequency-proportional portion&nbsp; $α_1 · f$&nbsp; of the attenuation factor is due to the derivation losses&nbsp; $($"crosswise loss"$)$.  
 +
#The dominant portion&nbsp; $α_2$&nbsp; goes back to the&nbsp; [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable|&raquo;skin effect&laquo;]],&nbsp; which causes a lower current density inside the conductor compared to its surface.&nbsp;
 +
#As a result,&nbsp; the resistance of an electric line increases with the square root of the frequency.  
  
  
The constants for the ''standard coaxial cable'' with a 2.6 mm inner diameter and a 9.5 mm outer diameter &nbsp; &rArr;&nbsp; short '''Coax (2.6/9.5 mm)''' are:
+
The constants for the&nbsp; &raquo;'''standard coaxial cable'''&laquo;&nbsp; with a 2.6 mm inner diameter and a 9.5 mm outer diameter &nbsp; &rArr;&nbsp; short&nbsp; '''Coax (2.6/9.5 mm)'''&nbsp; are:
 
:$$\alpha_0  = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 
:$$\alpha_0  = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
  
The same applies to the ''coaxial coaxial cable''' &nbsp; &rArr;&nbsp; short '''Coax (1.2/4.4 mm)''':  
+
The same applies to the&nbsp; &raquo;'''small coaxial cable'''&laquo; &nbsp; &rArr;&nbsp; short '''Coax (1.2/4.4 mm)''':  
 
:$$\alpha_0  = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 
:$$\alpha_0  = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 
  \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 
  \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
  
 +
*These values ​​can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the FTZ in Darmstadt – see [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref>. 
  
 +
*They are valid for a temperature of&nbsp; $\rm 20^\circ \C$&nbsp; $\rm (293\ K)$&nbsp; and frequencies greater than&nbsp; $\text{200 kHz}$.
  
These values ​​can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> .  They are valid for a temperature of 20 ° C (293 K) and frequencies greater than 200 kHz.
 
  
 
+
===Attenuation function of a two&ndash;wired line===
===Attenuation Function of a Two&ndash;wired Line===
+
According to&nbsp; [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref>&nbsp; the attenuation function of a two&ndash;wired line of length&nbsp; $l$&nbsp; is given as follows:
According to [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref> the attenuation function of a Two&ndash;wired Line of length $l$ is given as follows:
 
 
:$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$
 
:$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$
This function is not directly interpretable, but is a phenomenological description.
+
This function is not directly interpretable,&nbsp; but it is a phenomenological description.
  
 
[PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref>also provides the constants determined by measurement results:
 
[PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref>also provides the constants determined by measurement results:
Line 50: Line 71:
  
 
From these numerical values one recognizes:  
 
From these numerical values one recognizes:  
*The attenuation factor $α(f)$ and the attenuation function $a_{\rm K}(f) = α(f) · l$ depend significantly on the pipe diameter. The cables laid since 1994 with $d = 0.35 \ \rm (mm)$ and $d = 0.5$ mm have a 10% greater attenuation factor than the older lines with  $d = 0.4$ or $d= 0.6$.  
+
*The attenuation factor&nbsp; $α(f)$&nbsp; and the attenuation function&nbsp; $a_{\rm K}(f) = α(f) · l$&nbsp; depend significantly on the pipe diameter.&nbsp; The cables laid since 1994 with&nbsp; $d = 0.35 \ \rm mm$&nbsp; and&nbsp; $d = 0.5\ \rm mm$&nbsp; have a&nbsp; $10\%$&nbsp; greater attenuation factor than the older lines with&nbsp; $d = 0.4\ \rm mm$&nbsp; or&nbsp; $d= 0.6\ \rm mm$.  
*However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range $l_{\rm max}$ of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate generators have to be used.  
+
*However,&nbsp; this smaller diameter,&nbsp; which is based on the manufacturing and installation costs,&nbsp; significantly reduces the range&nbsp; $l_{\rm max}$&nbsp; of the transmission systems used on these lines,&nbsp; so that in the worst case scenario expensive intermediate regenerators have to be used.  
*The current transmission methods for copper lines prove only a relatively narrow frequency band, for example $120\ \rm  kHz$ with [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]]  and  ca. $1100 \ \rm kHz$ with [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL|DSL]]. For $f = 1 \ \rm MHz$ the attenuation factor of a 0.4 mm cable is around $20 \ \rm dB/km$, so that even with a cable length of $l = 4 \ \rm km$ the Attenuation does not exceed $80 \ \rm dB$.  
+
*The current transmission methods for copper lines prove only a relatively narrow frequency band,&nbsp; for example&nbsp; $120\ \rm  kHz$&nbsp; with&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|&raquo;ISDN&laquo;]]&nbsp; and&raquo; $\approx 1100 \ \rm kHz$&nbsp; with&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL|&raquo;DSL&laquo;]].&nbsp; For&nbsp; $f = 1 \ \rm MHz$&nbsp; the attenuation factor of a 0.4 mm cable is around&nbsp; $20 \ \rm dB/km$,&nbsp; so that even with a cable length of&nbsp; $l = 4 \ \rm km$&nbsp; the attenuation does not exceed&nbsp; $80 \ \rm dB$.  
  
  
===Umrechnung zwischen $k$– und $\alpha$– Parametern===
+
===Conversion between $k$ and $\alpha$ parameters===
Es besteht die Möglichkeit, die  $k$&ndash;Parameter des Dämpfungsmaßes &nbsp; &rArr; &nbsp;  $\alpha_{\rm I} (f)$ in entsprechende $\alpha$&ndash;Parameter &nbsp; &rArr; &nbsp;  $\alpha_{\rm II} (f)$ umzurechnen:  
+
The&nbsp; $k$&ndash;parameters of the attenuation factor &nbsp; &rArr; &nbsp;  $\alpha_{\rm I} (f)$&nbsp; can be converted into corresponding&nbsp; $\alpha$&ndash;parameters &nbsp; &rArr; &nbsp;  $\alpha_{\rm II} (f)$:  
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
+
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm with} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
 
:$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}.$$
 
:$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}.$$
  
Als Kriterium dieser Umrechnung gehen wir davon aus, dass die quadratische Abweichung dieser beiden Funktioneninnerhalb einer Bandbreite  $B$ minimal ist:
+
As a criterion of this conversion,&nbsp; we assume that the quadratic deviation of these two functions is minimal within a bandwidth&nbsp; $B$:
 
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
 
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrunde gelegten Bandbreite $B$ abhängigund lauten:
+
It is obvious that&nbsp; $α_0 = k_1$.&nbsp; The parameters&nbsp; $α_1$&nbsp; and&nbsp; $α_2$&nbsp; are dependent on the underlying bandwidth&nbsp; $B$&nbsp; and are:
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot  {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot  {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 +
 +
In the opposite direction the conversion rule for the exponent is:
 +
 +
:$$k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Auxiliary variable:  }A = \frac{2} {3} \cdot  \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$
 +
 +
With this result you can specify&nbsp; $ k_2 $&nbsp; with each of the above equations.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
*Für $k_3 = 1$ (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
+
#For&nbsp; $k_3 = 1$&nbsp; $($frequency-proportional attenuation factor$)$&nbsp; we get &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
*Für $k_3 = 0.5$  (entsprechend Skineffekt) erhält man folgende Koeffizienten: &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
+
#For&nbsp; $k_3 = 0.5$&nbsp; $($skin effect$)$&nbsp; we get the coefficients: &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
*Für $k_3 < 0.5$ ergibt sich ein negatives $\alpha_1$. Umrechnung ist nur für $0.5 \le k_3 \le 1$ möglich.}}
+
#For&nbsp; $k_3 < 0.5$&nbsp; we get a negative&nbsp; $\alpha_1$ &nbsp; &rArr; &nbsp; conversion is only possible for&nbsp; $0.5 \le k_3 \le 1$.
 +
#For&nbsp; $0.5 \le k_3 \le 1$&nbsp; we get the coefficients&nbsp; $\alpha_1 > 0$&nbsp; and&nbsp; $\alpha_2 > 0$,&nbsp; which are also dependent on&nbsp; $B/f_0$.
 +
#From&nbsp; $\alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz$ &nbsp; &rArr; &nbsp;  $k_3 = 0.63$,&nbsp; $k_2 = 2.9 \ \rm dB/km$.}}
 +
 
 +
 
 +
===Channel influence on the binary Nyquistent equalization=== 
 +
Going by the block diagram:&nbsp; Between the Dirac delta source and the&nbsp; $($threshold$)$&nbsp; decision are the frequency responses for the
 +
[[File:Applet_Kabeldaempfung_1_version_englisch.png|right|frame|Simplified block diagram of the optimal Nyquist equalizer|class=fit]]
 +
[[File:Applet_Kabeldaempfung_2_version2.png|right|frame|Frequency Response with raised cosine <br> &nbsp; &nbsp; <u>Note:</u> &nbsp; $f_{\rm Nyq} = [f_1 + f_2]/2 =1/(2T)$|class=fit]]
 +
 
 +
*transmitter&nbsp; $($German:&nbsp; $\rm S$ender$)$ &nbsp;&rArr;&nbsp; $H_{\rm S}(f)$,
  
 +
*channel&nbsp; $($German: $\rm K$anal$)$ &nbsp;&rArr;&nbsp; $H_{\rm K}(f)$,&nbsp;  and
  
'''Umrechnung in Gegenrichtung'''
+
*receiver&nbsp; $($German:&nbsp;  $\rm E$mpfänger$)$ &nbsp; &rArr;&nbsp; $H_{\rm E}(f)$.
  
'''Fehlt noch'''
 
  
===Zum Kanaleinfluss  auf die binäre Nyquistentzerrung=== 
+
In this applet
[[File:UMTS_Bild_1.png|right|frame|Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers|class=fit]]
+
*we neglect the influence of the transmitted pulse form &nbsp; &rArr; &nbsp; $H_{\rm S}(f) \equiv 1$ &nbsp; &rArr; &nbsp; Dirac delta shaped transmitted signal $s(t)$,&nbsp; and
Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender &nbsp;&rArr;&nbsp; $H_{\rm S}(f)$,  Kanal &nbsp;&rArr;&nbsp; $H_{\rm K}(f)$ und Empfänger &nbsp; &rArr;&nbsp; $H_{\rm E}(f)$.
 
  
In diesem Applet
+
*presuppose a binary Nyquist system with raised cosine around the frequency&nbsp; $f_{\rm Nyq}$:   
*vernachlässigen wir den Einfluss der Sendeimpulsform &nbsp; &rArr; &nbsp; $H_{\rm S}(f) \equiv 1$ &nbsp; &rArr; &nbsp; diracförmiges Sendesignal $s(t)$,
+
:$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$
*setzen ein binäres Nyquistsystem mit Cosinus&ndash;Roll-off um die Nyquistfrequenz $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ voraus:   
 
:$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$  
 
  
Das bedeutet: Das [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|erste Nyquistkriterium]] wird erfüllt&nbsp; &rArr; &nbsp; <br>Zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig  &nbsp; ⇒  &nbsp; es gibt keine [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]] (englisch: ''Intersymbol Interference'', ISI).  
+
This means:&nbsp; The&nbsp; [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_frequency_domain|&raquo;first Nyquist criterion&laquo;]] is met<br> &rArr; &nbsp; Timely successive pulses do not disturb each other<br>⇒  &nbsp; there are no [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|&raquo;intersymbol interferences&laquo;]].  
  
Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:
+
In the case of white Gaussian noise, the transmission quality is thus determined solely by the noise power in front of the receiver:
  
:$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
+
:$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{with}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
  
Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal &nbsp; &rArr; &nbsp; $H_{\rm K}(f) \equiv 1$ und rechteckfömigem $H_{\rm CRO}(f) \equiv 1$ im Bereich $|f| \le f_{\rm Nyq}$:
+
The lowest possible noise performance results with
 +
#an ideal channel &nbsp; &rArr; &nbsp; $H_{\rm K}(f) \equiv 1$,&nbsp; and
 +
#a rectangular $H_{\rm CRO}(f) \equiv 1$&nbsp; in&nbsp; $|f| \le f_{\rm Nyq}$:
  
:$$P_\text{N, min} =  P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .$$
+
:$$\Rightarrow \hspace{0.5cm}P_\text{N, min} =  P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ] = N_0 \cdot f_{\rm Nyq} .$$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definitionen:}$&nbsp;   
+
$\text{Definitions:}$&nbsp;   
*Als Gütekriterium für ein gegebenes System verwenden wir den '''Gesamt&ndash;Wirkungsgrad''':
+
*As a quality criterion for a given system we use the '''total efficiency''' with respect to the channel $\rm (K)$ and the receiver $\rm (E)$:
 +
 
 +
:$$\eta_\text{K+E} =  \frac{P_{\rm N} \ \big [\text{Optimal system: Channel }H_{\rm K}(f) \equiv 1,\ \text{Roll-off factor  } r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{Given system: Channel  }H_{\rm K}(f), \ \text{Roll-off factor  }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$
  
:$$\eta_\text{K+R} =  \frac{P_{\rm N} \ \big [\text{gegebenes System:  Kanal  }H_{\rm K}(f), \ \text{Roll-off-Faktor  }r \big ]}{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \le 1.$$
+
This quality criterion is specified in the applet for both parameter sets in logarithm form: &nbsp; $10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB$.
  
Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: &nbsp; $10 \cdot \lg \ \eta_\text{K+R} \le 0 \ \rm dB$.
+
*Through variation and optimization of the receiver &nbsp; &rArr; &nbsp; roll-off factor $r$ we get the '''channel efficiency''':
  
*Durch Variation und Optimierung des Roll-off-Faktors $r$ erhält man den '''Kanal&ndash;Wirkungsgrad''':
+
:$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+E} .$$}}
  
:$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+R} .$$}}
 
  
'''Ab hier bis zum Beginn der Versuchsdurchführung ist alles Mist - eine Art Vorratsspeicher'''
+
[[File:Applet_Kabeldaempfung_3_version2.png|right|frame|Square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $|class=fit]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;
 +
The graph shows the square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $ with $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f)  /  \left \vert H_{\rm K}(f)\right \vert$ for the following boundary conditions:
 +
*Attenuation function of the channel: &nbsp; $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,
 +
*Nyquist frequency: &nbsp; $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off factor $r = 0.5$
  
  
*Bei UMTS ist das Empfangsfilter $H_{\rm E}f) = H_{\rm S}(f)$ an den Sender angepasst (''Matched–Filter'') und der Gesamtfrequenzgang $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ erfüllt
+
This results in the following consequences:
:$$ H(f) = H_{\rm CRO}(f) =   \left\{ \begin{array}{c}    1 \\ 0 \\ \cos^2 \left( \frac {\pi \cdot (|f| - f_1)}{2 \cdot (f_2 - f_1)} \right)\end{array} \right.\quad
+
*In the area up to $f_{1} = 10 \ \text{MHz: }$ $H_{\rm CRO}(f) = 1$ &nbsp; &rArr; &nbsp; $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (see yellow area).
\begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm sonst }\hspace{0.05cm}. \end{array}
+
* The flank of $H_{\rm CRO}(f)$ is only effective from $f_{1}$ to $f_{2} = 30 \ {\rm MHz}$  and $\left \vert H_{\rm E}(f)\right \vert ^2$ decreases more and more.
\begin{array}{*{20}c} |f| \le f_1,  \\ |f| \ge f_2,\\   \\\end{array}$$
+
*The maximum of  $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ at $f_{\rm max} \approx 11.5 \ {\rm MHz}$  is twice the value of $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
+
*The integral over  $\left \vert H_{\rm E}(f)\right \vert ^2$ is a measure of the effective noise power. In the current example this is $4.6$ times bigger than the minimal noise power (for $a_{\rm K}(f) = 0 \ {\rm dB}$ and $r=1$) &nbsp; &rArr; &nbsp; $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$}}
Die zugehörige Zeitfunktion lautet:
 
  
:$$h(t) = h_{\rm CRO}(t) ={\rm si}(\pi \cdot t/ T_{\rm C}) \cdot \frac{\cos(r \cdot \pi t/T_{\rm C})}{1- (2r \cdot  t/T_{\rm C})^2}. $$
+
==Exercises==
 
„CRO” steht hierbei für [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus–Rolloff]] (englisch: ''Raised Cosine''). Die Summe $f_1 + f_2$ ist gleich dem Kehrwert der Chipdauer $T_{\rm C} = 260 \ \rm ns$, also gleich $3.84 \ \rm MHz$. Der ''Rolloff–Faktor'' (wir bleiben bei der in $\rm LNTwww$ gewählten Bezeichnung $r$, im UMTS–Standard wird hierfür $\alpha$ verwendet)
 
  
:$$r =  \frac{f_2 - f_1}{f_2 + f_1} $$
+
[[File:Applet_Kabeldaempfung_6_version1.png|right]]
+
*First choose an exercise number $1$ ... $11$.
wurde bei UMTS zu $r = 0.22$ festgelegt. Die beiden Eckfrequenzen sind somit
+
*An exercise description is displayed.
 +
*Parameter values are adjusted to the respective exercises.
 +
*Click "Show solution" to display the solution.  
 +
*Exercise description and solution are in English.
  
:$$f_1 = {1}/(2 T_{\rm C}) \cdot (1-r) \approx 1.5\,{\rm MHz}, \hspace{0.2cm}
 
f_2 ={1}/(2 T_{\rm C})  \cdot (1+r) \approx 2.35\,{\rm MHz}.$$
 
 
Die erforderliche Bandbreite beträgt $B = 2 · f_2 = 4.7 \ \rm MHz$. Für jeden UMTS–Kanal steht somit mit $5 \ \rm MHz$ ausreichend Bandbreite zur Verfügung.
 
  
[[File:P_ID1547__Bei_T_4_3_S5b_v1.png|right|frame|Cosinus–Rolloff–Spektrum und Impulsantwort]]
+
Number "0" is a "Reset" button:
 +
*Sets parameters to initial values (like after loading the section).
 +
*Displays a "Reset text" to further describe the applet.
 +
 
 +
 
 +
In the following desctiption '''Blue''' means the left parameter set (blue in the applet), and '''Red''' means  the right parameter set (red in the applet). For parameters that are marked with an apostrophe the unit is not displayed. For example we write ${\alpha_2}' =2$  &nbsp; for &nbsp; $\alpha_2 =2\,  {\rm dB} / ({\rm km \cdot \sqrt{MHz} })$.
 +
 
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;  Die Grafik zeigt
+
'''(1)'''&nbsp; First set '''Blue''' to $\text{Coax (1.2/4.4 mm)}$ and then to $\text{Coax (2.6/9.5 mm)}$. The cable length is $l_{\rm Blue}= 5\ \rm km$.  
*links das (normierte) Nyquistspektrum $H(f)$, und
+
:Interpret  $a_{\rm K}(f)$ and  $\vert H_{\rm K}(f) \vert$, in particular the functional values $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ and $\vert H_{\rm K}(f = 0) \vert$.}}
*rechts den zugehörigen Nyquistimpuls $h(t)$, dessen Nulldurchgänge im Abstand $T_{\rm C}$ äquidistant sind.  
 
<br clear=all>
 
$\text{Es ist zu beachten:}$
 
* Das Sendefilter $H_{\rm S}(f)$ und Matched–Filter $H_{\rm E}(f)$ sind jeweils  [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme|Wurzel–Cosinus–Rolloff–förmig]] (englisch: ''Root Raised Cosine''). Erst das Produkt $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ den Cosinus–Rolloff.
 
*Das bedeutet auch: Die Impulsantworten $h_{\rm S}(t)$ und $h_{\rm E}(t)$ erfüllen für sich allein die erste Nyquistbedingung nicht. Erst die Kombination aus beiden (im Zeitbereich die Faltung) führt zu den gewünschten äquidistanten Nulldurchgängen.}}
 
  
  
 +
$\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately with }\sqrt{f}\text{ and the magnitude frequency response decreases similarly to an exponential function};$
 +
$\hspace{1.15cm}\text{Coax (1.2/4.4 mm):    }a_{\rm K}(f =  f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$
  
$$a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski &amp; Wellhausen.}$$
+
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm):     }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$
*Umrechnung der $k$-Parameter in die $a$-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite $B$ minimal sein soll:
 
$$a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.$$
 
*Kontrolle: $k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.$
 
*Der Gesamtfrequenzgang $H(f)$ ist ein  Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor $r$, wobei stets $B=f_2$ und $r=\frac{f_2-f_1}{f_2+f_1}$ gelten soll.
 
*Ohne Berücksichtigung des Sendespektrums gilt $H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}$.
 
*Der angegebene Integralwert $=\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f$ ist ein Maß für die Rauschleistung des Systems, wenn der Kanal $H_K(f)$ durch das Empfangsfilter $H_E(f)$ in weiten Bereichen bis $f_1$ vollständig entzerrt  wird.
 
 
  
{{Beispiel}}
+
{{BlaueBox|TEXT=
 +
'''(2)'''&nbsp; Set '''Blue''' to $\text{Coax (2.6/9.5 mm)}$ and $l_{\rm Blue} = 5\ \rm km$. How is $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ affected by $\alpha_0$,  $\alpha_1$ und  $\alpha_2$?}}
  
*idealer Kanal ($a_0=a_1=a_2=0$ dB), $B=20$ MHz, $r=0$: Integralwert = $40$ MHz.
 
*schwach verzerrender Kanal ($a_2=5$ dB), $B=20$ MHz, $r=0.5$: Integralwert $\approx 505$ MHz.
 
  
{{end}}
+
$\Rightarrow\hspace{0.3cm}\alpha_2\text{ is dominant due to the skin effect. The contributions of } \alpha_0\text{ (ca. 0.1 dB) and }\alpha_1 \text{  (ca. 0.6 dB) are comparatively small.}$
  
==Versuchsdurchführung==
+
{{BlaueBox|TEXT=
 +
'''(3)'''&nbsp; Additionally, set '''Red''' to $\text{Two&ndash;wired Line (0.5 mm)}$ and $l_{\rm Red} = 1\ \rm km$. What is the resulting value for $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?
 +
:Up to what length $l_{\rm Red}$ does the red attenuation function stay under the blue one?}}
  
[[File:Exercises_binomial_fertig.png|right]]
 
*Wählen Sie zunächst die Nummer '''1''' ... '''6''' der zu bearbeitenden Aufgabe.
 
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
 
*Lösung nach Drücken von &bdquo;Hide solution&rdquo;.
 
*Aufgabenstellung und Lösung in Englisch.
 
  
 +
$\Rightarrow\hspace{0.3cm}\text{Red curve:    }a_{\rm K}(f =  f_\star) = 87.5 {\ \rm dB} \text{. The condition above is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f =  f_\star) = 61.3 {\ \rm dB}.$
  
Die Nummer '''0''' entspricht einem &bdquo;Reset&rdquo;:
+
{{BlaueBox|TEXT=
*Gleiche Einstellung wie beim Programmstart.
+
'''(4)'''&nbsp; Set '''Red''' to ${k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km$ and vary the Parameter $0.5 \le k_3 \le 1$.  
*Ausgabe eines &bdquo;Reset&ndash;Textes&rdquo; mit weiteren Erläuterungen zum Applet.
+
:How do the parameters affect $a_{\rm K}(f)$ and  $\vert H_{\rm K}(f) \vert$?  }}
  
  
In der folgenden Beschreibung bedeutet
+
$\Rightarrow\hspace{0.3cm}\text{With }k_2\text {being constant,  }a_{\rm K}(f)\text{ increases with bigger values of }k_3\text{ and  }\vert H_{\rm K}(f) \vert \text{ decreases faster and faster. With }k_3 =1: a_{\rm K}(f)\text{ rises linearly.}$
*'''Blau''': &nbsp; Verteilungsfunktion 1 (im Applet blau markiert),
 
*'''Rot''': &nbsp; &nbsp; Verteilungsfunktion 2 (im Applet rot markiert).
 
  
 +
$\hspace{1.15cm}\text{With }k_3 \to 0.5, \text{ the attenuation function is more and more determined by the skin effect, same as in the coaxial cable.}$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''&nbsp; Setzen Sie '''Blau''' zunächst auf $\text{Coax (2.6/9.5 mm)}$ und anschließend auf $\text{Coax (1.2/4.4 mm)}$. Die Kabellänge sei jeweils $l_{\rm Blau}= 3\ \rm km$.  
+
'''(5)'''&nbsp; Set '''Red''' to $\text{Two&ndash;wired Line (0.5 mm)}$ and '''Blue''' to $\text{Conversion of Red}$. For the length use $l_{\rm Red} = l_{\rm Blue} = 1\ \rm km$.  
:Betrachten und Interpretieren Sie  $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$, insbesondere die Funktionswerte $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ und $\vert H_{\rm K}(f = 0) \vert$.}}
+
:Analyse and interpret the displayed functions $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$.}}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.$
  
 +
$\hspace{1.15cm}\text{The resulting parameters from the conversion are }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.$
  
$\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};$
+
{{BlaueBox|TEXT=
 +
'''(6)'''&nbsp; We assume the settings of '''(5)'''. Which parts of the attenuation function are due to ohmic loss, lateral losses and skin effect?  }}
  
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm):    }a_{\rm K}(f =  f_\star) = 39.2\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9951;$
 
  
$\hspace{1.15cm}\text{Coax (1.2/4.4 mm):     }a_{\rm K}(f = f_\star) = 86.0\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9768.$
+
$\Rightarrow\hspace{0.3cm}\text{Solution based on '''Blue''':   }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0\text{:    }83.7\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0 \text{ and } \alpha_1\text{:    }60.9\ {\rm dB}.$
  
 +
$\hspace{1.15cm}\text{For a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than for a coaxial cable.}$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Für '''Blau''' gelte $\text{Coax (1.2/4.4 mm)}$ und $l_{\rm Blau} = 3\ \rm km$. Wie wird $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ von $\alpha_0$$\alpha_1$ und  $\alpha_2$ beeinflusst?}}
+
'''(7)'''&nbsp; Set '''Blue''' to ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ and '''Red''' to ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km$. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.5$.
 +
:How big are the total efficiency $\eta_\text{K+E}$ and the channel efficiency $\eta_\text{K}$?}}
  
  
$\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{ (Skineffekt). Die Beiträge von } \alpha_0\text{ (Ohmsche Verluste) und }\alpha_1 \text{  (Querverluste) sind jeweils nur ca0.2 dB.}$
+
$\Rightarrow\hspace{0.3cm}10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideal system) and }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: DC signal attenuation only)}$.
 +
 
 +
$\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.$
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(8)'''&nbsp; The same settings apply as in '''(7)'''. Under what transmission power $P_{\rm red}$ with respect to $P_{\rm blue}$ do both systems achieve the same error probability?  }}
 +
 
  
 +
$\Rightarrow\hspace{0.3cm}\text{We need to achieve  }10 \cdot \lg {P_{\rm Red}}/{P_{\rm Blue}} = 2 \ {\rm dB} \ \ \Rightarrow \ \ {P_{\rm Red}}/{P_{\rm Blue}} = 10^{0.2} = 1.585.$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)'''&nbsp; Setzen Sie zusätzlich '''Rot''' auf $\text{Two&ndash;wired Line (0.5 mm)}$ und $l_{\rm Rot} = 3\ \rm km$. Welcher Wert ergibt sich für $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?  
+
'''(9)'''&nbsp; Set '''Blue''' to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ and '''Red''' to "Inactive". Additionally set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.
:Bis zu welcher Länge $l_{\rm Rot}$ liegt die rote Dämfungsfunktion unter der blauen?}}
+
:How does $\vert H_{\rm E}(f) \vert$ look like? Calculate the total efficiency $\eta_\text{K+E}$ and the channel efficiency$\eta_\text{K}$.}}
  
  
$\Rightarrow\hspace{0.3cm}\text{Für die rote Kurve gilt:   }a_{\rm K}(f = f_\star) = 262.5 {\ \rm dB} \text{. Obige Bedingung wird erfüllt für }l_{\rm Rot} = 0.95\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = ??? {\ \rm dB}.$
+
$\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert  = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For } f > 25 {\ \rm MHz: }\vert H_{\rm E}(f) \vert  = 0.\text{ In between, the effect of the CRO edge can be observed.}$
  
 +
$\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.7 \text{ is already set }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Setzen Sie '''Rot''' auf $\text{Two&ndash;wired Line (0.5 mm)}$ und '''Blau''' auf $\text{Conversion of Red}$. Es gelte $l_{\rm Rot} = l_{\rm Blau} = 1\ \rm km$.  
+
'''(10)'''&nbsp; Set '''Blue''' to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ and '''Red''' to "Inactive". Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.  
:Betrachten und Interpretieren Sie die dargestellten Funktionsverläufe für $a_{\rm K}(f)$ und  $\vert H_{\rm K}(f) \vert$.}}
+
:How big is $\vert H_{\rm E}(f = 0) \vert$? What is the maximum value of $\vert H_{\rm E}(f) \vert$? Calculate the channel efficiency $\eta_\text{K}$.}}
  
  
$\Rightarrow\hspace{0.3cm}\text{Sehr gute Approximation der Zweidrahtleitung durch den blauen Parametersatz, sowohl bezüglich }a_{\rm K}(f) \text{ als auch }\vert H_{\rm K}(f) \vert.$
+
$\Rightarrow\hspace{0.3cm}\vert H_{\rm E}(f = 0) \vert =  \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ and the maximum value } \vert H_{\rm E}(f) \vert \text{ is approximately }37500\text{ for }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},$
  
 +
$\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Es gelten die Einstellungen von '''(4)'''. Welche Anteile der Dämpfungsfunktion gehen auf Ohmschen Verlust, Querverluste und Skineffekt zurück?  }}
+
'''(11)'''&nbsp;The same settings apply as in '''(10)''' and $r= 0.17$. Vary the cable length up to $l_{\rm blue} = 10 \ \rm km$.
 +
:How much do the maximum value of $\vert H_{\rm E}(f) \vert$, the channel efficiency $\eta_\text{K}$ and the optimal rolloff factor $r_{\rm opt}$ change?}}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{The maximum value of } \vert H_{\rm E}(f) \vert \text{ increases and }10 \cdot \lg \ \eta_\text{K} \text{ decreases more and more.}$
 +
 
 +
$\hspace{0.95cm}\text{At 10 km length } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) \vert = 352000  \approx \vert H_{\rm E}(f =0)\vert$.
 +
 
 +
==Applet Manual==
 +
[[File:Applet_Kabeldaempfung_5_version2.png|left|600px]]
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Preselection for blue parameter set
 +
 
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Input of the $\alpha$ parameters via sliders
 +
 
 +
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Preselection for red parameter set
  
 +
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Input of the $k$ parameters via sliders
  
$\Rightarrow\hspace{0.3cm}\text{Lösung anhand '''Blau''':  }\alpha_0(f =  f_\star= 30 \ {\rm MHz}) = 4 \ {\rm dB/km}, \hspace{0.2cm}\alpha_1(f =  f_\star) = 12.8 \ {\rm dB/km}, \hspace{0.2cm}\alpha_2(f =  f_\star) = 60.9 \ {\rm dB/km};$
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Input of the parameters $f_{\rm Nyq}$ and $r$  
  
$\hspace{1.15cm}\text{Bei einer Zweidrahtleitung ist der Einfluss der Längs&ndash; und der Querverluste signifikant größer als bei einem Koaxialkabel.}$
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Selection for the graphic display
  
 +
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Display $a_\text{K}(f)$, $|H_\text{K}(f)|$, $|H_\text{E}(f)|$, ...
  
{{BlaueBox|TEXT=
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Scaling factor $H_0$ for $|H_\text{E}(f)|$, $|H_\text{E}(f)|^2$
'''(6)'''&nbsp; Variieren Sie ausgehend von der bisherigen Einstellung den Parameter $0.5 \le k_3 \le 1$. Was erkennt man anhand von  $a_{\rm K}(f)$ und  $\vert H_{\rm K}(f) \vert$?  }}
+
 
 +
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Selection of the frequency $f_\star$ for numeric values
 +
 
 +
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numeric values for blue parameter set
 +
 
 +
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Numeric values for red parameter set
  
 +
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Output system efficiency $\eta_\text{K+E}$ in dB
  
$\Rightarrow\hspace{0.3cm}\text{Bei festem }k_2\text {wird }a_{\rm K}(f)\text{ immer größer und es ergibt sich für }k_3 = 1\text{ ein linearer Verlauf; }\vert H_{\rm K}(f) \vert \text{ nimmt immer schneller ab;}$
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Store & Recall of settings
  
$\hspace{1.15cm}\text{Mit }k_3 \to 0.5\text{ nähert sich die Dämpfungsfunktion der Zweidrahtleitung der eines Koaxialkabels immer mehr an.}$
+
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Exercise section
  
 +
&nbsp; &nbsp; '''(O)''' &nbsp; &nbsp; Variation of the graphic display:$\hspace{0.5cm}$"$+$" (Zoom in),
  
 +
$\hspace{0.5cm}$ "$-$" (Zoom out)
  
 +
$\hspace{0.5cm}$ "$\rm o$" (Reset)
  
 +
$\hspace{0.5cm}$ "$\leftarrow$" (Move left),  etc.
  
 +
'''Other options for graphic display''':
 +
*Hold shift and scroll: Zoom in on/out of coordinate system,
 +
*Hold shift and left click: Move the coordinate system.
  
==Vorgeschlagene Parametersätze==  
+
==About the Authors==
 +
This interactive calculation was designed and realized at the&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; of the&nbsp; [https://www.tum.de/ Technische Universität München].
 +
*The original version was created in 2009 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Sebastian_Seitz_.28Diplomarbeit_LB_2009.29|Sebastian Seitz]]&nbsp; as part of his Diploma thesis using "FlashMX&ndash;Actionscript" (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
 +
*In 2018 this Applet was redesigned and updated to "HTML5" by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]]&nbsp; as part of his Bachelor's thesis (Supervisor:&nbsp; [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) .
  
(1)&nbsp;&nbsp; Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=20$, $a_1=0$, $a_2=0$: <br>
 
Konstante Werte $a_K=20$ dB und $\left| H_K(f)\right|=0.1$. Nur Ohmsche Verluste werden berücksichtigt. <br>
 
(2) Parameter wie (1), aber zusätzlich $a_1=1$ dB/(km &middot; MHz):<br>
 
Linearer Anstieg von $a_K(f)$ zwischen $20$ dB und $50$ dB, $\left| H_K(f)\right|$ fällt beidseitig exponentiell ab.<br>
 
(3)&nbsp;&nbsp; Parameter wie (1), aber $a_0=0$, $a_1=0$, $a_2=1$ dB/(km &middot; MHz<sup>1/2</sup>).<br>
 
$a_K(f)$ und $\left| H_K(f)\right|$ werden ausschließlich durch den Skineffekt bestimmt. $a_K(f)$ ist proportional zu $f^{1/2}$.<br>
 
(4)&nbsp;&nbsp; Parameter wie (1), aber nun mit der Einstellung &bdquo;Koaxialkabel $2.6/9.5$ mm&ldquo; (Normalkoaxialkabel):<br>
 
Es überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=13.05$ dB; ohne $a_0$: $13.04$ dB, ohne $a_1=12.92$ dB.<br>
 
(5)&nbsp;&nbsp; Parameter wie (1), aber nun mit der Einstellung &bdquo;Koaxialkabel $1.2/4.4$ mm&ldquo; (Kleinkoaxialkabel):<br>
 
Wieder überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=28.66$ dB; ohne $a_0$: $28.59$ dB, ohne $a_1=28.48$ dB.<br>
 
(6)&nbsp;&nbsp; Nur roter Parametersatz, $l=1 km$, $b=30$ MHz, $r=0$, Einstellung &bdquo;Zweidrahtleitung $0.4$ mm&ldquo;.<br>
 
Skineffekt ist auch hier dominant; $a_k$ ($f=30$ MHz)$=111.4$ dB; ohne $k_1$: $106.3$ dB.<br>
 
(7)&nbsp;&nbsp; Parameter wie (6), aber nun Halbierung der Kabellänge ($l=0.5$ km):<br>
 
Auch die Dämpfungswerte werden halbiert: $a_k$ ($f=30$ MHz)$=55.7$ dB; ohne $k_1$: $53.2$ dB.<br>
 
(8)&nbsp;&nbsp; Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:<br>
 
Sehr gute Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.4$ dB.<br>
 
(9)&nbsp;&nbsp; Parameter wie (8), aber nun Approximation auf die Bandbreite $B=20$ MHz:<br>
 
Noch bessere Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.15$ dB.<br>
 
(10)&nbsp;&nbsp; Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=a_1=a_2=0$; unten Darstellung $\left| H_K(f)\right|^2$:<br>
 
Im gesamten Bereich ist $\left| H_K(f)\right|^2=1$; der Integralwert ist somit $2B=60$ (in MHz).<br>
 
(11)&nbsp;&nbsp; Parameter wie (10), aber nun mit Einstellung &bdquo;Koaxialkabel $2.6/9.5$ mm&ldquo; (Normalkoaxialkabel):<br>
 
$\left| H_K(f)\right|^2$ ist bei $f=1$ etwa $1$ und steigt zu den Rändern bis ca. $20$. Der Integralwert ist ca. $550$.<br>
 
(12)&nbsp;&nbsp; Parameter wie (11), aber nun mit der deutlich größeren Kabellänge $l=5$ km:<br>
 
Deutliche Verstärkung des Effekts; Anstieg bis ca. $3.35\cdot 10^6$ am Rand und Integralwert $2.5\cdot 10^7$.<br>
 
(13)&nbsp;&nbsp; Parameter wie (12), aber nun mit Rolloff-Faktor $r=0.5$:<br>
 
Deutliche Abschwächung des Effekts; Anstieg bis ca. $5.25\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.07\cdot 10^6$.<br>
 
(14)&nbsp;&nbsp; Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste ($a_0=0$):<br>
 
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. $5.15\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.05\cdot 10^6$.<br>
 
(15)&nbsp;&nbsp; Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste ($a_1=0$):<br>
 
Ebenfalls kein großer Unterschied; Anstieg bis ca. $4.74\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $0.97\cdot 10^6$.<br>
 
(16)&nbsp;&nbsp; Nur roter Parametersatz, $l=1$ km, $B=30$ MHz, $r=0.5$, Einstellung &bdquo;Zweidrahtleitung $0.4$ mm&ldquo;:<br>
 
Anstieg bis ca. $3\cdot 10^8$ ($f$ ca. $23$ MHz), Integralwert ca. $4.55\cdot 10^9$; ohne $k_1$: $0.93\cdot 10^8$ ($f$ ca. $23$ MHz) bzw. $1.41\cdot 10^9$.<br>
 
  
==Quellenverzeichnis==
+
==Once again:&nbsp; Open Applet in new Tab==
  
{{LntAppletLink|daempfung}}
+
{{LntAppletLinkEn|attenuationCopperCables_en}}

Latest revision as of 15:25, 8 April 2023

Open Applet in new Tab         English Applet with German WIKI description

Applet Description


This applet calculates the attenuation function  $a_{\rm K}(f)$  of conducted transmission media  $($with cable length  $l)$:

  • For coaxial cables one usually uses the equation  $a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l$.
  • In contrast,  two-wire lines are often displayed in the form  $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$.
  • The conversion of the  $(k_1, \ k_2, \ k_3)$  parameters to the  $(\alpha_0, \ \alpha_1, \ \alpha_2)$  parameters for  $B = 30 \ \rm MHz$  is realized as well as the other way around.


Aside from the attenuation function  $a_{\rm K}(f)$  the applet can display:

  • the associated magnitude frequency response  $\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20},$
  • the equalizer frequency response  $\left | H_{\rm E}(f)\right | = \left | H_{\rm CRO}(f) / H_{\rm K}(f)\right | $,  that leads to a Nyquist total frequency response  $ H_{\rm CRO}(f) $,
  • the corresponding squared magnitude frequency response $\left | H_{\rm E}(f)\right |^2 $.


The integral over  $\left | H_{\rm E}(f)\right |^2 $  is a measure of the noise exaggeration of the selected Nyquist total frequency response and thus also for the expected error probability.  From this, the  »total efficiency«  $\eta_\text{K+E}$  for the channel  $($German:  Kanal$)$  plus the equalizer  $($German:  Entzerrer$)$  is calculated,  which in the applet is output in  $\rm dB$.

Through optimization of the roll-off factor  $r$  of the raised cosine frequency response  $ H_{\rm CRO}(f) $  one gets the  »channel efficiency«  $ \eta_\text{K}$.  This value indicates the deterioration of the overall system due to the attenuation function  $ a_{\rm K} (f) $  of the transmission medium.

Theoretical Background


Magnitude frequency response and attenuation function

Following relationship exists between the magnitude frequency response and the attenuation function:

$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
  1. The index  "K"  makes it clear,  that the considered LTI system is a cable  $($German: Kabel$)$.
  2. For the first calculation rule,  the attenuation function  $a_\text{K}(f)$  must be used in  $\rm dB$  $($"decibel"$)$.
  3. For the second calculation rule,  the attenuation function  $a_\text{K, Np}(f)$  must be used in  $\rm Np$  $($"Neper"$)$.
  4. The following conversions apply:   $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$   or   $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
  5. This applet exclusively uses dB values.

Attenuation function of a coaxial cable

According to  [Wel77][1]  the attenuation function of a coaxial cable of length  $l$  is given as follows:

$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
  1. It is important to note the difference between  $a_{\rm K}(f)$ in $\rm dB$  and the  "alpha"  coefficient with other pseudo–units.
  2. The attenuation function  $a_{\rm K}(f)$  is directly proportional to the cable length  $l$.
  3. $\alpha_{\rm K}(f)= a_{\rm K}(f)/l$  is referred to as the  "attenuation factor"  or  "kilometric attenuation".
  4. The frequency-independent component  $α_0$  of the attenuation factor takes into account the Ohmic losses.
  5. The frequency-proportional portion  $α_1 · f$  of the attenuation factor is due to the derivation losses  $($"crosswise loss"$)$.
  6. The dominant portion  $α_2$  goes back to the  »skin effect«,  which causes a lower current density inside the conductor compared to its surface. 
  7. As a result,  the resistance of an electric line increases with the square root of the frequency.


The constants for the  »standard coaxial cable«  with a 2.6 mm inner diameter and a 9.5 mm outer diameter   ⇒  short  Coax (2.6/9.5 mm)  are:

$$\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$

The same applies to the  »small coaxial cable«   ⇒  short Coax (1.2/4.4 mm):

$$\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
  • These values ​​can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the FTZ in Darmstadt – see [Wel77][1].
  • They are valid for a temperature of  $\rm 20^\circ \C$  $\rm (293\ K)$  and frequencies greater than  $\text{200 kHz}$.


Attenuation function of a two–wired line

According to  [PW95][2]  the attenuation function of a two–wired line of length  $l$  is given as follows:

$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$

This function is not directly interpretable,  but it is a phenomenological description.

[PW95][2]also provides the constants determined by measurement results:

  • $d = 0.35 \ {\rm mm}$:   $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
  • $d = 0.40 \ {\rm mm}$:   $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
  • $d = 0.50 \ {\rm mm}$:   $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$,
  • $d = 0.60 \ {\rm mm}$:   $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$.


From these numerical values one recognizes:

  • The attenuation factor  $α(f)$  and the attenuation function  $a_{\rm K}(f) = α(f) · l$  depend significantly on the pipe diameter.  The cables laid since 1994 with  $d = 0.35 \ \rm mm$  and  $d = 0.5\ \rm mm$  have a  $10\%$  greater attenuation factor than the older lines with  $d = 0.4\ \rm mm$  or  $d= 0.6\ \rm mm$.
  • However,  this smaller diameter,  which is based on the manufacturing and installation costs,  significantly reduces the range  $l_{\rm max}$  of the transmission systems used on these lines,  so that in the worst case scenario expensive intermediate regenerators have to be used.
  • The current transmission methods for copper lines prove only a relatively narrow frequency band,  for example  $120\ \rm kHz$  with  »ISDN«  and» $\approx 1100 \ \rm kHz$  with  »DSL«.  For  $f = 1 \ \rm MHz$  the attenuation factor of a 0.4 mm cable is around  $20 \ \rm dB/km$,  so that even with a cable length of  $l = 4 \ \rm km$  the attenuation does not exceed  $80 \ \rm dB$.


Conversion between $k$ and $\alpha$ parameters

The  $k$–parameters of the attenuation factor   ⇒   $\alpha_{\rm I} (f)$  can be converted into corresponding  $\alpha$–parameters   ⇒   $\alpha_{\rm II} (f)$:

$$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm with} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.$$

As a criterion of this conversion,  we assume that the quadratic deviation of these two functions is minimal within a bandwidth  $B$:

$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$

It is obvious that  $α_0 = k_1$.  The parameters  $α_1$  and  $α_2$  are dependent on the underlying bandwidth  $B$  and are:

$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$

In the opposite direction the conversion rule for the exponent is:

$$k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Auxiliary variable: }A = \frac{2} {3} \cdot \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$

With this result you can specify  $ k_2 $  with each of the above equations.

$\text{Example 1:}$ 

  1. For  $k_3 = 1$  $($frequency-proportional attenuation factor$)$  we get   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
  2. For  $k_3 = 0.5$  $($skin effect$)$  we get the coefficients:   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
  3. For  $k_3 < 0.5$  we get a negative  $\alpha_1$   ⇒   conversion is only possible for  $0.5 \le k_3 \le 1$.
  4. For  $0.5 \le k_3 \le 1$  we get the coefficients  $\alpha_1 > 0$  and  $\alpha_2 > 0$,  which are also dependent on  $B/f_0$.
  5. From  $\alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz$   ⇒   $k_3 = 0.63$,  $k_2 = 2.9 \ \rm dB/km$.


Channel influence on the binary Nyquistent equalization

Going by the block diagram:  Between the Dirac delta source and the  $($threshold$)$  decision are the frequency responses for the

Simplified block diagram of the optimal Nyquist equalizer
Frequency Response with raised cosine
    Note:   $f_{\rm Nyq} = [f_1 + f_2]/2 =1/(2T)$
  • transmitter  $($German:  $\rm S$ender$)$  ⇒  $H_{\rm S}(f)$,
  • channel  $($German: $\rm K$anal$)$  ⇒  $H_{\rm K}(f)$,  and
  • receiver  $($German:  $\rm E$mpfänger$)$   ⇒  $H_{\rm E}(f)$.


In this applet

  • we neglect the influence of the transmitted pulse form   ⇒   $H_{\rm S}(f) \equiv 1$   ⇒   Dirac delta shaped transmitted signal $s(t)$,  and
  • presuppose a binary Nyquist system with raised cosine around the frequency  $f_{\rm Nyq}$:
$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$

This means:  The  »first Nyquist criterion« is met
⇒   Timely successive pulses do not disturb each other
⇒   there are no »intersymbol interferences«.

In the case of white Gaussian noise, the transmission quality is thus determined solely by the noise power in front of the receiver:

$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{with}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$

The lowest possible noise performance results with

  1. an ideal channel   ⇒   $H_{\rm K}(f) \equiv 1$,  and
  2. a rectangular $H_{\rm CRO}(f) \equiv 1$  in  $|f| \le f_{\rm Nyq}$:
$$\Rightarrow \hspace{0.5cm}P_\text{N, min} = P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ] = N_0 \cdot f_{\rm Nyq} .$$

$\text{Definitions:}$ 

  • As a quality criterion for a given system we use the total efficiency with respect to the channel $\rm (K)$ and the receiver $\rm (E)$:
$$\eta_\text{K+E} = \frac{P_{\rm N} \ \big [\text{Optimal system: Channel }H_{\rm K}(f) \equiv 1,\ \text{Roll-off factor } r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{Given system: Channel }H_{\rm K}(f), \ \text{Roll-off factor }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$

This quality criterion is specified in the applet for both parameter sets in logarithm form:   $10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB$.

  • Through variation and optimization of the receiver   ⇒   roll-off factor $r$ we get the channel efficiency:
$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+E} .$$


Square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $

$\text{Example 2:}$  The graph shows the square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $ with $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f) / \left \vert H_{\rm K}(f)\right \vert$ for the following boundary conditions:

  • Attenuation function of the channel:   $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,
  • Nyquist frequency:   $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off factor $r = 0.5$


This results in the following consequences:

  • In the area up to $f_{1} = 10 \ \text{MHz: }$ $H_{\rm CRO}(f) = 1$   ⇒   $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (see yellow area).
  • The flank of $H_{\rm CRO}(f)$ is only effective from $f_{1}$ to $f_{2} = 30 \ {\rm MHz}$ and $\left \vert H_{\rm E}(f)\right \vert ^2$ decreases more and more.
  • The maximum of $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ at $f_{\rm max} \approx 11.5 \ {\rm MHz}$ is twice the value of $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
  • The integral over $\left \vert H_{\rm E}(f)\right \vert ^2$ is a measure of the effective noise power. In the current example this is $4.6$ times bigger than the minimal noise power (for $a_{\rm K}(f) = 0 \ {\rm dB}$ and $r=1$)   ⇒   $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$

Exercises

Applet Kabeldaempfung 6 version1.png
  • First choose an exercise number $1$ ... $11$.
  • An exercise description is displayed.
  • Parameter values are adjusted to the respective exercises.
  • Click "Show solution" to display the solution.
  • Exercise description and solution are in English.


Number "0" is a "Reset" button:

  • Sets parameters to initial values (like after loading the section).
  • Displays a "Reset text" to further describe the applet.


In the following desctiption Blue means the left parameter set (blue in the applet), and Red means the right parameter set (red in the applet). For parameters that are marked with an apostrophe the unit is not displayed. For example we write ${\alpha_2}' =2$   for   $\alpha_2 =2\, {\rm dB} / ({\rm km \cdot \sqrt{MHz} })$.

(1)  First set Blue to $\text{Coax (1.2/4.4 mm)}$ and then to $\text{Coax (2.6/9.5 mm)}$. The cable length is $l_{\rm Blue}= 5\ \rm km$.

Interpret $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$, in particular the functional values $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ and $\vert H_{\rm K}(f = 0) \vert$.


$\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately with }\sqrt{f}\text{ and the magnitude frequency response decreases similarly to an exponential function};$ $\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$

$\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$

(2)  Set Blue to $\text{Coax (2.6/9.5 mm)}$ and $l_{\rm Blue} = 5\ \rm km$. How is $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ affected by $\alpha_0$, $\alpha_1$ und $\alpha_2$?


$\Rightarrow\hspace{0.3cm}\alpha_2\text{ is dominant due to the skin effect. The contributions of } \alpha_0\text{ (ca. 0.1 dB) and }\alpha_1 \text{ (ca. 0.6 dB) are comparatively small.}$

(3)  Additionally, set Red to $\text{Two–wired Line (0.5 mm)}$ and $l_{\rm Red} = 1\ \rm km$. What is the resulting value for $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?

Up to what length $l_{\rm Red}$ does the red attenuation function stay under the blue one?


$\Rightarrow\hspace{0.3cm}\text{Red curve: }a_{\rm K}(f = f_\star) = 87.5 {\ \rm dB} \text{. The condition above is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = 61.3 {\ \rm dB}.$

(4)  Set Red to ${k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km$ and vary the Parameter $0.5 \le k_3 \le 1$.

How do the parameters affect $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$?


$\Rightarrow\hspace{0.3cm}\text{With }k_2\text {being constant, }a_{\rm K}(f)\text{ increases with bigger values of }k_3\text{ and }\vert H_{\rm K}(f) \vert \text{ decreases faster and faster. With }k_3 =1: a_{\rm K}(f)\text{ rises linearly.}$

$\hspace{1.15cm}\text{With }k_3 \to 0.5, \text{ the attenuation function is more and more determined by the skin effect, same as in the coaxial cable.}$

(5)  Set Red to $\text{Two–wired Line (0.5 mm)}$ and Blue to $\text{Conversion of Red}$. For the length use $l_{\rm Red} = l_{\rm Blue} = 1\ \rm km$.

Analyse and interpret the displayed functions $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$.


$\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.$

$\hspace{1.15cm}\text{The resulting parameters from the conversion are }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.$

(6)  We assume the settings of (5). Which parts of the attenuation function are due to ohmic loss, lateral losses and skin effect?


$\Rightarrow\hspace{0.3cm}\text{Solution based on '''Blue''': }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0\text{: }83.7\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0 \text{ and } \alpha_1\text{: }60.9\ {\rm dB}.$

$\hspace{1.15cm}\text{For a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than for a coaxial cable.}$

(7)  Set Blue to ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ and Red to ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km$. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.5$.

How big are the total efficiency $\eta_\text{K+E}$ and the channel efficiency $\eta_\text{K}$?


$\Rightarrow\hspace{0.3cm}10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideal system) and }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: DC signal attenuation only)}$.

$\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.$

(8)  The same settings apply as in (7). Under what transmission power $P_{\rm red}$ with respect to $P_{\rm blue}$ do both systems achieve the same error probability?


$\Rightarrow\hspace{0.3cm}\text{We need to achieve }10 \cdot \lg {P_{\rm Red}}/{P_{\rm Blue}} = 2 \ {\rm dB} \ \ \Rightarrow \ \ {P_{\rm Red}}/{P_{\rm Blue}} = 10^{0.2} = 1.585.$

(9)  Set Blue to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ and Red to "Inactive". Additionally set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.

How does $\vert H_{\rm E}(f) \vert$ look like? Calculate the total efficiency $\eta_\text{K+E}$ and the channel efficiency$\eta_\text{K}$.


$\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For } f > 25 {\ \rm MHz: }\vert H_{\rm E}(f) \vert = 0.\text{ In between, the effect of the CRO edge can be observed.}$

$\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.7 \text{ is already set }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$

(10)  Set Blue to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ and Red to "Inactive". Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.

How big is $\vert H_{\rm E}(f = 0) \vert$? What is the maximum value of $\vert H_{\rm E}(f) \vert$? Calculate the channel efficiency $\eta_\text{K}$.


$\Rightarrow\hspace{0.3cm}\vert H_{\rm E}(f = 0) \vert = \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ and the maximum value } \vert H_{\rm E}(f) \vert \text{ is approximately }37500\text{ for }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},$

$\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$

(11) The same settings apply as in (10) and $r= 0.17$. Vary the cable length up to $l_{\rm blue} = 10 \ \rm km$.

How much do the maximum value of $\vert H_{\rm E}(f) \vert$, the channel efficiency $\eta_\text{K}$ and the optimal rolloff factor $r_{\rm opt}$ change?


$\Rightarrow\hspace{0.3cm}\text{The maximum value of } \vert H_{\rm E}(f) \vert \text{ increases and }10 \cdot \lg \ \eta_\text{K} \text{ decreases more and more.}$

$\hspace{0.95cm}\text{At 10 km length } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) \vert = 352000 \approx \vert H_{\rm E}(f =0)\vert$.

Applet Manual

Applet Kabeldaempfung 5 version2.png

    (A)     Preselection for blue parameter set

    (B)     Input of the $\alpha$ parameters via sliders

    (C)     Preselection for red parameter set

    (D)     Input of the $k$ parameters via sliders

    (E)     Input of the parameters $f_{\rm Nyq}$ and $r$

    (F)     Selection for the graphic display

    (G)     Display $a_\text{K}(f)$, $|H_\text{K}(f)|$, $|H_\text{E}(f)|$, ...

    (H)     Scaling factor $H_0$ for $|H_\text{E}(f)|$, $|H_\text{E}(f)|^2$

    (I)     Selection of the frequency $f_\star$ for numeric values

    (J)     Numeric values for blue parameter set

    (K)     Numeric values for red parameter set

    (L)     Output system efficiency $\eta_\text{K+E}$ in dB

    (M)     Store & Recall of settings

    (N)     Exercise section

    (O)     Variation of the graphic display:$\hspace{0.5cm}$"$+$" (Zoom in), $\hspace{0.5cm}$ "$-$" (Zoom out) $\hspace{0.5cm}$ "$\rm o$" (Reset) $\hspace{0.5cm}$ "$\leftarrow$" (Move left), etc.

Other options for graphic display:

  • Hold shift and scroll: Zoom in on/out of coordinate system,
  • Hold shift and left click: Move the coordinate system.

About the Authors

This interactive calculation was designed and realized at the  Lehrstuhl für Nachrichtentechnik  of the  Technische Universität München.

  • The original version was created in 2009 by  Sebastian Seitz  as part of his Diploma thesis using "FlashMX–Actionscript" (Supervisor: Günter Söder ).
  • In 2018 this Applet was redesigned and updated to "HTML5" by  Jimmy He  as part of his Bachelor's thesis (Supervisor:  Tasnád Kernetzky) .


Once again:  Open Applet in new Tab

Open Applet in new Tab

  1. 1.0 1.1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
  2. 2.0 2.1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.