Difference between revisions of "Aufgaben:Exercise 1.2: Distortions? Or no Distortion?"

From LNTwww
 
(26 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Qualitätskriterien
+
{{quiz-Header|Buchseite=Modulation_Methods/Quality_Criteria
 
}}
 
}}
  
[[File:P_ID949__Mod_A_1_2.png|right|frame|Betrachtete Sinkensignale für das gegebene Eingangssignal $q(t)$)]]
+
[[File:P_ID949__Mod_A_1_2.png|right|frame|Observed sink signals for the <br>given input signal &nbsp; $q(t)$]]
Die Nachrichtensysteme &nbsp;$S_1$, &nbsp;$S_2$&nbsp; und &nbsp;$S_3$&nbsp; werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal mit der Signalfrequenz $f_{\rm N} = 1\text{ kHz}$  angelegt:
+
The communication systems &nbsp;$S_1$, &nbsp;$S_2$&nbsp; and &nbsp;$S_3$&nbsp; are analyzed in terms of the distortions they cause. For this purpose, the cosine-shaped test signal with signal frequency $f_{\rm N} = 1\text{ kHz}$&nbsp; is applied to the input of each system:
 
:$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
 
:$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
  
Gemessen werden die drei Signale am Systemausgang, die in der Grafik dargestellt sind:
+
The three signals at the system output are measured, as  shown in the graph:
 
:$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
 
:$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
 
:$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
 
:$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
 
:$$v_3(t)=  1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
 
:$$v_3(t)=  1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
  
Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.
+
The noise components that are always present in practice will be assumed to be negligible here.
  
  
  
  
 
+
Hints:  
''Hinweise:''
+
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Quality_Criteria|Quality criteria]].&nbsp; Particular reference is made to the page &nbsp;  [[Modulation_Methods/Quality_Criteria#Signal.E2.80.93to.E2.80.93noise_.28power.29_ratio|Signal-to-noise power ratio]]&nbsp; and to the chapter &nbsp; [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|Non-linear distortions]]&nbsp; in the book "Linear and Time-Invariant Systems".
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
+
*For nonlinear distortion, the sink SNR is &nbsp;$ρ_v = 1/K^2$, where the distortion factor &nbsp;$K$&nbsp; is the ratio of the rms values of all harmonics to the rms value of the fundamental frequency.
*Bezug genommen wird insbesondere auf die Seite&nbsp;  [[Modulationsverfahren/Qualitätskriterien#Signal.E2.80.93zu.E2.80.93St.C3.B6r.E2.80.93Leistungsverh.C3.A4ltnis|Signal-zu-Stör-Leistungsverhältnis]]&nbsp; und auf das Kapitel&nbsp; [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]] im Buch &bdquo;Lineare zeitinvariante Systeme&rdquo;.
 
*Bei nichtlinearen Verzerrungen ist das Sinken–SNR &nbsp;$ρ_v = 1/K^2,$ wobei der Klirrfaktor &nbsp;$K$&nbsp; das Verhältnis der Effektivwerte aller Oberwellen zum Effektivwert der Grundfrequenz angibt.
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind nach dieser Messung über das System &nbsp;$S_1$&nbsp; möglich?
+
{What statements can be made about the &nbsp;$S_1$&nbsp; system after this measurement?
 
|type="[]"}
 
|type="[]"}
- $S_1$&nbsp; könnte ein ideales System sein.
+
+ $S_1$&nbsp; could be an ideal system.
+ $S_1$&nbsp; könnte ein verzerrungsfreies System sein.
+
+ $S_1$&nbsp; could be a distortionless system.
+ $S_1$&nbsp; könnte ein linear verzerrendes System sein.
+
+ $S_1$&nbsp; could be a linearly distorting system.
- $S_1$&nbsp; könnte ein nichtlinear verzerrendes System sein.
+
- $S_1$&nbsp; could be a nonlinearly distorting system.
  
  
{Schreiben Sie das zweite Signal in der Form &nbsp;$v_2(t) = α · q(t - τ)$&nbsp; und bestimmen Sie dessen Kenngrößen.
+
{Write the second signal in the form &nbsp;$v_2(t) = α · q(t - τ)$&nbsp; and determine its paramaters.
 
|type="{}"}
 
|type="{}"}
 
$\alpha \ = \ $  { 0.707 3% }
 
$\alpha \ = \ $  { 0.707 3% }
 
$τ \ = \ $ { 125 3% } $\ \rm &micro; s$
 
$τ \ = \ $ { 125 3% } $\ \rm &micro; s$
  
{Welche Aussagen sind nach dieser Messung über das System &nbsp;$S_2$&nbsp; möglich?
+
{What statements can be made about the &nbsp;$S_2$&nbsp; system after this measurement?
 
|type="[]"}
 
|type="[]"}
- $S_2$&nbsp; könnte ein ideales System sein.
+
- $S_2$&nbsp; could be an ideal system.
+ $S_2$&nbsp; könnte ein verzerrungsfreies System sein.
+
+ $S_2$&nbsp; could be a distortionless system.
+ $S_2$&nbsp; könnte ein linear verzerrendes System sein.
+
+ $S_2$&nbsp; could be a linearly distorting system.
- $S_2$&nbsp; könnte ein nichtlinear verzerrendes System sein.
+
- $S_2$&nbsp; could be a nonlinearly distorting system.
  
{Von welcher Art sind die Verzerrungen beim System &nbsp;$S_3$?
+
{What kind of distortions are present in System &nbsp;$S_3$?
|type="[]"}
+
|type="()"}
- Es handelt sich um lineare Verzerrungen.
+
- They are linear distortions.
+ Es handelt sich um nichtlineare Verzerrungen.
+
+ They are nonlinear distortions.
  
{Berechnen Sie das Sinken–SNR &nbsp;$ρ_{v3}$&nbsp; von System &nbsp;$S_3$.
+
{Calculate the sink SNR &nbsp;$ρ_{v3}$&nbsp; of System &nbsp;$S_3$.
 
|type="{}"}
 
|type="{}"}
 
$ρ_{v3} \ = \ $ { 25 3% }
 
$ρ_{v3} \ = \ $ { 25 3% }
Line 60: Line 58:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1, 2 und 3</u>:
+
'''(1)''' <u>Answers 1, 2 and 3</u> are correct:
*Das System $S_1$ könnte durchaus ein ideales System sein, nämlich dann, wenn für alle Frequenzen $f_{\rm N}$ die Bedingung $v(t) = q(t)$ erfüllt wäre.  
+
*System&nbsp; $S_1$&nbsp; could well be an ideal system, namely if for all frequencies $f_{\rm N}$&nbsp; the condition &nbsp; $v(t) = q(t)$&nbsp; were satisfied.  
*Auch die zweite Alternative ist möglich, da das ideale System ein Sonderfall der verzerrungsfreien Systeme darstellt.  
+
*The second alternative is also possible, since the ideal system is a special case of distortion-free systems.
*Würde bei einer anderen Nachrichtenfrequenz $f_{\rm N} \ne 1$ kHz die Bedingung $v(t) = q(t)$ allerdings nicht erfüllt, so würde ein linear verzerrendes System vorliegen, dessen Frequenzgang bei der Frequenz $f_{\rm N}$ zufällig gleich 1 wäre.  
+
*However, if at a different message frequency  $f_{\rm N} \ne 1$&nbsp; kHz the condition &nbsp; $v(t) = q(t)$&nbsp; were not satisfied, then a linearly distorting system would exist whose frequency response would happen to be equal to $1$&nbsp; at frequency $f_{\rm N}$&nbsp;.  
*Dagegen kann ein nichtlinear verzerrendes System (Vorschlag 4) aufgrund fehlender Oberwellen ausgeschlossen werden.  
+
*In contrast, a nonlinearly distorting system (Answer 4) can be excluded due to the lack of harmonics.  
 +
 
  
  
'''(2)'''&nbsp; Entsprechend den Ausführungen im Kapitel „Harmonische Schwingung” im Buch „Signaldarstellung” gelten folgende Gleichungen:
+
'''(2)'''&nbsp; Following the explanations in the chapter "Harmonic Oscillation" in the book "Signal Representation" the following equations apply:
 
:$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm}  
 
:$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$
 
\Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$
Angewandt auf das vorliegende Beispiel erhält man
+
*Applied to the present example, one obtains
 
:$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$
 
:$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$
Der Dämpfungsfaktor des Systems hat somit den Wert $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, und für die Phase gilt:
+
*The damping ratio of the system thus takes the value &nbsp; $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, and the following applies to the phase:
 
:$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} =  {\pi}/{4}\hspace{0.05cm}.$$
 
:$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} =  {\pi}/{4}\hspace{0.05cm}.$$
Die Umformung $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$ erlaubt Aussagen über die Laufzeit:
+
*The transformation &nbsp; $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$&nbsp; enables claims about the running time:
 
:$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm &micro; s}}\hspace{0.05cm}.$$
 
:$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 2 und 3</u>:
 
*Das System $S_2$ ist nach den Ausführungen zur Teilaufgabe '''(1)''' weder ideal noch nichtlinear verzerrend.
 
*Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von $α$ und $τ$&nbsp; für alle Frequenzen erhalten bleiben oder nicht.
 
*Mit einer einzigen Messung bei nur einer Frequenz kann allerdings diese Frage nicht geklärt werden.
 
  
 +
'''(3)'''&nbsp; <u>Answers 2 and 3</u> are correct:
 +
*Applying the logic from subtask '''(1)''', the system &nbsp; $S_2$&nbsp; is neither ideal nor nonlinearly distorting.
 +
*In contrast, options 2 and 3 are possible, depending on whether the calculated values of $α$&nbsp; and $τ$ &nbsp; are preserved for all frequencies or not.
 +
*However, with just a single measurement at only one frequency, this cannot be clarified.
 +
 +
 +
 +
'''(4)'''&nbsp; The signal&nbsp; $v_3(t)$&nbsp; contains a third order harmonic.  Therefore, the distortion is nonlinear &rArr; &nbsp;<u>Answer 2</u>.
  
'''(4)'''&nbsp; Das Signal $v_3(t)$ beinhaltet eine Oberwelle dritter Ordnung. Deshalb ist die Verzerrung nichtlinear  &nbsp; &rArr; &nbsp;<u>Lösungsvorschlag 2</u>.
 
  
  
'''(5)'''&nbsp; Mit den Amplituden $A_1 = 1.5 \ \rm V$ und $A_3 = -0.3\ \rm  V$ erhält man für den Klirrfaktor:
+
'''(5)'''&nbsp; The amplitudes &nbsp; $A_1 = 1.5 \ \rm V$&nbsp; and&nbsp; $A_3 = -0.3\ \rm  V$&nbsp; give the distortion factor:
 
:$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
 
:$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
Deshalb beträgt das Sinken–SNR entsprechend der angegebenen Gleichung $ρ_{v3} = 1/K_3^{ 2 } = 25$.  
+
*Therefore, according to the given equation, the sink SNR is &nbsp; $ρ_{v3} = 1/K_3^{ 2 } = 25$.
 +
 
 +
 
 +
The same result is obtained from the more general calculation.
  
Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung. Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor:
+
*From the amplitudes of the source signal and the fundamental wave of the sink signal, we get a frequency-independent damping factor of:
 
:$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
 
:$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb: &nbsp; $\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$ Damit ergibt sich die Verzerrungsleistung:
+
*Therefore, the error signal coming from the nonlinear distortions is: &nbsp;  
 +
:$$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
 +
*This gives a distortion power of:
 
:$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
 
:$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
Mit der Leistung des Quellensignals,
+
*Together with the power of the source signal,
 
:$$P_{q}=  {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
 
:$$P_{q}=  {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
erhält man unter Berücksichtigung des gerade berechneten Dämpfungsfaktors $ \alpha = 0.75 $:
+
:and taking into account the damping factor $ \alpha = 0.75 $ just calculated, we obtain:&nbsp;
 
:$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$
 
:$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$
  
Line 107: Line 114:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^1.2 Qualitätskriterien^]]
+
[[Category:Modulation Methods: Exercises|^1.2 Quality Criteria^]]

Latest revision as of 17:16, 10 April 2022

Observed sink signals for the
given input signal   $q(t)$

The communication systems  $S_1$,  $S_2$  and  $S_3$  are analyzed in terms of the distortions they cause. For this purpose, the cosine-shaped test signal with signal frequency $f_{\rm N} = 1\text{ kHz}$  is applied to the input of each system:

$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$

The three signals at the system output are measured, as shown in the graph:

$$v_1(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) = 1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t + 1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)= 1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$

The noise components that are always present in practice will be assumed to be negligible here.



Hints:

  • This exercise belongs to the chapter  Quality criteria.  Particular reference is made to the page   Signal-to-noise power ratio  and to the chapter   Non-linear distortions  in the book "Linear and Time-Invariant Systems".
  • For nonlinear distortion, the sink SNR is  $ρ_v = 1/K^2$, where the distortion factor  $K$  is the ratio of the rms values of all harmonics to the rms value of the fundamental frequency.


Questions

1

What statements can be made about the  $S_1$  system after this measurement?

$S_1$  could be an ideal system.
$S_1$  could be a distortionless system.
$S_1$  could be a linearly distorting system.
$S_1$  could be a nonlinearly distorting system.

2

Write the second signal in the form  $v_2(t) = α · q(t - τ)$  and determine its paramaters.

$\alpha \ = \ $

$τ \ = \ $

$\ \rm µ s$

3

What statements can be made about the  $S_2$  system after this measurement?

$S_2$  could be an ideal system.
$S_2$  could be a distortionless system.
$S_2$  could be a linearly distorting system.
$S_2$  could be a nonlinearly distorting system.

4

What kind of distortions are present in System  $S_3$?

They are linear distortions.
They are nonlinear distortions.

5

Calculate the sink SNR  $ρ_{v3}$  of System  $S_3$.

$ρ_{v3} \ = \ $


Solution

(1) Answers 1, 2 and 3 are correct:

  • System  $S_1$  could well be an ideal system, namely if for all frequencies $f_{\rm N}$  the condition   $v(t) = q(t)$  were satisfied.
  • The second alternative is also possible, since the ideal system is a special case of distortion-free systems.
  • However, if at a different message frequency $f_{\rm N} \ne 1$  kHz the condition   $v(t) = q(t)$  were not satisfied, then a linearly distorting system would exist whose frequency response would happen to be equal to $1$  at frequency $f_{\rm N}$ .
  • In contrast, a nonlinearly distorting system (Answer 4) can be excluded due to the lack of harmonics.


(2)  Following the explanations in the chapter "Harmonic Oscillation" in the book "Signal Representation" the following equations apply:

$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$
  • Applied to the present example, one obtains
$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$
  • The damping ratio of the system thus takes the value   $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, and the following applies to the phase:
$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = {\pi}/{4}\hspace{0.05cm}.$$
  • The transformation   $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$  enables claims about the running time:
$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm µ s}}\hspace{0.05cm}.$$


(3)  Answers 2 and 3 are correct:

  • Applying the logic from subtask (1), the system   $S_2$  is neither ideal nor nonlinearly distorting.
  • In contrast, options 2 and 3 are possible, depending on whether the calculated values of $α$  and $τ$   are preserved for all frequencies or not.
  • However, with just a single measurement at only one frequency, this cannot be clarified.


(4)  The signal  $v_3(t)$  contains a third order harmonic. Therefore, the distortion is nonlinear ⇒  Answer 2.


(5)  The amplitudes   $A_1 = 1.5 \ \rm V$  and  $A_3 = -0.3\ \rm V$  give the distortion factor:

$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$
  • Therefore, according to the given equation, the sink SNR is   $ρ_{v3} = 1/K_3^{ 2 } = 25$.


The same result is obtained from the more general calculation.

  • From the amplitudes of the source signal and the fundamental wave of the sink signal, we get a frequency-independent damping factor of:
$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$
  • Therefore, the error signal coming from the nonlinear distortions is:  
$$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
  • This gives a distortion power of:
$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$
  • Together with the power of the source signal,
$$P_{q}= {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$
and taking into account the damping factor $ \alpha = 0.75 $ just calculated, we obtain: 
$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$