Difference between revisions of "Applets:Capacity of Memoryless Digital Channels"

From LNTwww
m (Text replacement - "Biographies_and_Bibliographies/LNTwww_members_from_LÜT#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29" to "Biographies_and_Bibliographies/LNTwww_members_from_LÜT#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28at_L.C3.9CT_from_2014-2022.29")
 
(72 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{LntAppletLink|verteilungen}}  
+
{{LntAppletLinkEnDe|transinformation_en|transinformation}}
 +
  
==Programmbeschreibung==
+
==Applet Description==
 
<br>
 
<br>
In diesem Applet werden binäre&nbsp; $(M=2)$&nbsp; und ternäre&nbsp; $(M=3)$&nbsp; Kanalmodelle ohne Gedächtnis betrachtet mit jeweils&nbsp; $M$&nbsp; Eingängen&nbsp; $X$&nbsp; und&nbsp; $M$&nbsp; Ausgängen&nbsp; $Y$.&nbsp; Ein solches Nachrichtensystem ist durch die Wahrscheinlichkeitsfunktion&nbsp; $P_X(X)$&nbsp; und die Matrix&nbsp; $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm}  \vert \hspace{0.03cm} X)$&nbsp; der Übergangswahrscheinlichkeiten vollständig bestimmt.
+
In this applet,&nbsp; binary&nbsp; $(M=2)$&nbsp; and ternary&nbsp; $(M=3)$&nbsp; channel models without memory are considered with&nbsp; $M$&nbsp; possible inputs&nbsp; $(X)$&nbsp; and&nbsp; $M$&nbsp; possible outputs&nbsp; $(Y)$.&nbsp; Such a channel is completely determined by the&nbsp; "probability mass function"&nbsp; $P_X(X)$&nbsp; and the matrix&nbsp; $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm}  \vert \hspace{0.03cm} X)$&nbsp; of the&nbsp; "transition probabilities".
  
 +
For these binary and ternary systems,&nbsp; the following information-theoretic descriptive quantities are derived and clarified:
 +
*the&nbsp; "source entropy" &nbsp; $H(X)$&nbsp; and the&nbsp; "sink entropy" &nbsp; $H(Y)$,
  
Für diese binären bzw. ternären Systeme werden folgende informationstheoretische Beschreibungsgrößen hergeleitet und verdeutlicht:
+
*the&nbsp; "equivocation" &nbsp; $H(X|Y)$&nbsp; and the &nbsp; "irrelevance" &nbsp; $H(Y|X)$,
*die&nbsp; ''Quellenentropie'' &nbsp; $H(X)$&nbsp; und die&nbsp; ''Sinkenentropie'' &nbsp; $H(Y)$,
+
 
*die&nbsp; ''Äquivokation'' &nbsp; (&bdquo;Rückschlussentropie&rdquo;)&nbsp; $H(X|Y)$&nbsp; und die &nbsp; ''Irrelevanz'' (&bdquo;Streuentropie&rdquo;)&nbsp; $H(Y|X)$,
+
*the&nbsp; "joint entropy" &nbsp; $H(XY)$&nbsp; as well as the "mutual information"&nbsp; $I(X; Y)$,
*die&nbsp; ''Verbundentropie'' &nbsp; $H(XY)$&nbsp; sowie die ''Transinformation''&nbsp; (englisch:&nbsp; ''Mutual Information'')&nbsp; $I(X; Y)$,
+
 
*die&nbsp; ''Kanalkapazität'' &nbsp; als die entscheidende Kenngröße digitaler Kanalmodelle ohne Gedächtnis:  
+
*the&nbsp; "channel capacity" &nbsp; as the decisive parameter of digital channel models without memory:
 
:$$C = \max_{P_X(X)} \hspace{0.15cm}  I(X;Y)  \hspace{0.05cm}.$$  
 
:$$C = \max_{P_X(X)} \hspace{0.15cm}  I(X;Y)  \hspace{0.05cm}.$$  
  
Diese informationstheoretische Größen können sowohl in analytische geschlossener Form berechnet oder durch Auswertung von Quellen&ndash; und Sinkensymbolfolge simulativ ermittelt werden.
+
These information-theoretical quantities can be calculated both in analytic&ndash;closed form or determined simulatively by evaluation of source and sink symbol sequence.
  
==Theoretischer Hintergrund==
+
==Theoretical Background==
 
<br>
 
<br>
===Zugrunde liegendes Modell der Digitalsignalübertragung ===
+
===Underlying model of digital signal transmission ===
 +
<br>
 +
The set of possible&nbsp; &raquo;'''source symbols'''&laquo;&nbsp; is characterized by the discrete random variable&nbsp; $X$.&nbsp;
 +
*In the binary case &nbsp; &rArr; &nbsp; $M_X= |X| = 2$&nbsp; holds&nbsp; $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B} \hspace{0.05cm}\}$&nbsp; with the probability mass function &nbsp; $($ $\rm PMF)$  &nbsp; $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B}\big)$&nbsp; and the source symbol probabilities&nbsp; $p_{\rm A}$&nbsp; and&nbsp; $p_{\rm B}=1- p_{\rm A}$.
  
Die Menge der möglichen&nbsp; '''Quellensymbole'''&nbsp; wird durch die diskrete Zufallsgröße&nbsp; $X$&nbsp; charakterisiert.&nbsp;
+
*Accordingly, for a ternary source&nbsp; &rArr; &nbsp; $M_X= |X| = 3$: &nbsp; &nbsp; $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B}, \hspace{0.15cm} {\rm C} \hspace{0.05cm}\}$, &nbsp; &nbsp; $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B},\hspace{0.15cm}p_{\rm C}\big)$, &nbsp; &nbsp; $p_{\rm C}=1- p_{\rm A}-p_{\rm B}$.
*Im binären Fall &nbsp; &rArr; &nbsp; $M_X= |X| = 2$&nbsp; gilt&nbsp; $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B} \hspace{0.05cm}\}$&nbsp; mit der Wahrscheinlichkeitsfunktion&nbsp; $($englisch:&nbsp; ''Probability Mass Function'',&nbsp; $\rm PMF)$  &nbsp; $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B}\big)$&nbsp; sowie den Quellensymbolwahrscheinlichkeiten&nbsp; $p_{\rm A}$&nbsp; und&nbsp; $p_{\rm B}=1- p_{\rm A}$.
 
*Entsprechend gilt für eine Ternärquelle&nbsp; &rArr; &nbsp; $M_X= |X| = 3$: &nbsp; &nbsp; $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B}, \hspace{0.15cm} {\rm C} \hspace{0.05cm}\}$, &nbsp; &nbsp; $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B},\hspace{0.15cm}p_{\rm C}\big)$, &nbsp; &nbsp; $p_{\rm C}=1- p_{\rm A}-p_{\rm B}$.
 
  
  
Die Menge der möglichen&nbsp; '''Sinkensymbole'''&nbsp; wird durch die diskrete Zufallsgröße&nbsp; $Y$&nbsp; charakterisiert.&nbsp; Diese entstammen der gleichen Symbolmenge wie die Quellensymbole &nbsp; &rArr; &nbsp; $M_Y=M_X = M$.&nbsp; Zur Vereinfachung der nachfolgenden Beschreibung bezeichnen wir diese mit Kleinbuchstaben, zum Beispiel für&nbsp; $M=3$: &nbsp;&nbsp; $Y = \{\hspace{0.05cm}{\rm a}, \hspace{0.15cm} {\rm b}, \hspace{0.15cm} {\rm c} \hspace{0.05cm}\}$.   
+
The set of possible&nbsp; &raquo;'''sink symbols'''&laquo;&nbsp; is characterized by the discrete random variable&nbsp; $Y$.&nbsp; These come from the same symbol set as the source symbols &nbsp; &rArr; &nbsp; $M_Y=M_X = M$.&nbsp; To simplify the following description, we denote them with lowercase letters, for example, for&nbsp; $M=3$: &nbsp;&nbsp; $Y = \{\hspace{0.05cm}{\rm a}, \hspace{0.15cm} {\rm b}, \hspace{0.15cm} {\rm c} \hspace{0.05cm}\}$.   
  
Der Zusammenhang zwischen den Zufallsgrößen&nbsp; $X$&nbsp; und&nbsp; $Y$&nbsp; ist durch ein&nbsp; '''digitales Kanalmodell ohne Gedächtnis'''&nbsp; $($englisch:&nbsp; ''Discrete Memoryless Channel'',&nbsp; $\rm DMC)$&nbsp; festgelegt. Die linke  Grafik zeigt dieses für&nbsp; $M=2$&nbsp; und die rechte  Grafik für&nbsp; $M=3$.
+
The relationship between the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; is given by a &nbsp; &raquo;'''discrete memoryless channel model'''&laquo;&nbsp; $($ $\rm DMC)$.&nbsp; The left graph shows this for&nbsp; $M=2$&nbsp; and the right graph for&nbsp; $M=3$.
  
[[File:Transinf_1_neu.png|center|frame|Digitales Kanalmodell für&nbsp; $M=2$&nbsp; (links) und für&nbsp; $M=3$&nbsp; (rechts). <br>Bitte beachten Sie:&nbsp; In der rechten Grafik sind nicht alle Übergänge beschriftet]]
+
[[File:Transinf_1_neu.png|center|frame|&nbsp; $M=2$&nbsp; (left) and for&nbsp; $M=3$&nbsp; (right). &nbsp; &nbsp;  <u>Please note:</u>&nbsp; In the right graph not all transitions are labeled]]
  
Die folgende Beschreibung gilt für den einfacheren Fall&nbsp; $M=2$.&nbsp; Für die Berechnung aller informationstheoretischer Größen im nächsten Abschnitt benötigen wir außer&nbsp; $P_X(X)$&nbsp; und&nbsp;  $P_Y(Y)$&nbsp; noch die zweidimensionalen Wahrscheinlichkeitsfunktionen&nbsp; $($jeweils eine&nbsp; $2\times2$&ndash;Matrix$)$&nbsp; aller
+
The following description applies to the simpler case&nbsp; $M=2$.&nbsp; For the calculation of all information theoretic quantities in the next section we need besides&nbsp; $P_X(X)$&nbsp; and&nbsp;  $P_Y(Y)$&nbsp; the two-dimensional probability functions&nbsp; $($each a&nbsp; $2\times2$&ndash;matrix$)$&nbsp; of all
#&nbsp; [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit#Bedingte_Wahrscheinlichkeit|bedingten Wahrscheinlichkeiten]] &nbsp; &rArr; &nbsp; $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm}  \vert \hspace{0.03cm} X)$ &nbsp; &rArr; &nbsp; durch das DMC&ndash;Modell vorgegeben;
+
#&nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_probability|"conditional probabilities"]] &nbsp; &rArr; &nbsp; $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm}  \vert \hspace{0.03cm} X)$ &nbsp; &rArr; &nbsp; given by the DMC model;
#&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Verbundwahrscheinlichkeit_und_Verbundentropie|Verbundwahrscheinlichkeiten]]&nbsp; &rArr; &nbsp; $P_{XY}(X,\hspace{0.1cm}Y)$;
+
#&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Joint_probability_and_joint_entropy|"joint probabilities"]]&nbsp; &rArr; &nbsp; $P_{XY}(X,\hspace{0.1cm}Y)$;
#&nbsp; [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit#R.C3.BCckschlusswahrscheinlichkeit|Rückschlusswahrscheinlichkeiten]] &nbsp; &rArr; &nbsp; $P_{\hspace{0.01cm}X\hspace{0.03cm} \vert \hspace{0.03cm}Y}(X\hspace{0.03cm}  \vert \hspace{0.03cm} Y)$.
+
#&nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Inference_probability|"inference probabilities"]] &nbsp; &rArr; &nbsp; $P_{\hspace{0.01cm}X\hspace{0.03cm} \vert \hspace{0.03cm}Y}(X\hspace{0.03cm}  \vert \hspace{0.03cm} Y)$.
 
   
 
   
  
[[File:Transinf_2.png|right|frame|Betrachtetes Modell des Binärkanals]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1}$:&nbsp; Wir betrachten den skizzierten Binärkanal.
+
[[File:Transinf_2.png|right|frame|Considered model of the binary channel]]
* Die Verfälschungswahrscheinlichkeiten seien:
+
$\text{Example 1}$:&nbsp; We consider the sketched binary channel.
 +
* Let the falsification probabilities be:
 
    
 
    
 
:$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A}  & =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A}  =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\
 
:$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A}  & =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A}  =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\
Line 50: Line 54:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
*Außerdem gehen wir von nicht gleichwahrscheinlichen Quellensymbolen aus:
+
*Furthermore, we assume source symbols that are not equally probable:
 
   
 
   
 
:$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )=
 
:$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )=
Line 56: Line 60:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Für die Wahrscheinlichkeitsfunktion der Sinke ergibt sich somit:
+
*Thus, for the probability function of the sink we get:
 
    
 
    
 
:$$P_Y(Y) = \big [ {\rm Pr}( Y\hspace{-0.1cm} = {\rm a})\hspace{0.05cm}, \ {\rm Pr}( Y \hspace{-0.1cm}= {\rm b}) \big ] = \big ( 0.1\hspace{0.05cm},\ 0.9 \big ) \cdot  
 
:$$P_Y(Y) = \big [ {\rm Pr}( Y\hspace{-0.1cm} = {\rm a})\hspace{0.05cm}, \ {\rm Pr}( Y \hspace{-0.1cm}= {\rm b}) \big ] = \big ( 0.1\hspace{0.05cm},\ 0.9 \big ) \cdot  
Line 68: Line 72:
 
{\rm Pr}( Y \hspace{-0.1cm}= {\rm b})  =  1 - {\rm Pr}( Y \hspace{-0.1cm}= {\rm a}) = 0.545.$$
 
{\rm Pr}( Y \hspace{-0.1cm}= {\rm b})  =  1 - {\rm Pr}( Y \hspace{-0.1cm}= {\rm a}) = 0.545.$$
  
*Die Verbundwahrscheinlichkeiten&nbsp; $p_{\mu \kappa} = \text{Pr}\big[(X = μ) ∩ (Y = κ)\big]$&nbsp; zwischen Quelle und Sinke sind:
+
*The joint probabilities&nbsp; $p_{\mu \kappa} = \text{Pr}\big[(X = μ) ∩ (Y = κ)\big]$&nbsp; between source and sink are:
 
   
 
   
 
:$$\begin{align*}p_{\rm Aa} & =  p_{\rm a} \cdot p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.095\hspace{0.05cm},\hspace{0.5cm}p_{\rm Ab} =  p_{\rm b} \cdot p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.005\hspace{0.05cm},\\
 
:$$\begin{align*}p_{\rm Aa} & =  p_{\rm a} \cdot p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.095\hspace{0.05cm},\hspace{0.5cm}p_{\rm Ab} =  p_{\rm b} \cdot p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.005\hspace{0.05cm},\\
Line 81: Line 85:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
 
   
 
   
* Für die Rückschlusswahrscheinlichkeiten erhält man:
+
* For the inference probabilities one obtains:
  
 
:$$\begin{align*}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}a} & =  p_{\rm Aa}/p_{\rm a} = 0.095/0.455 = 0.2088\hspace{0.05cm},\hspace{0.5cm}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}b}  =  p_{\rm Ab}/p_{\rm b} = 0.005/0.545 = 0.0092\hspace{0.05cm},\\
 
:$$\begin{align*}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}a} & =  p_{\rm Aa}/p_{\rm a} = 0.095/0.455 = 0.2088\hspace{0.05cm},\hspace{0.5cm}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}b}  =  p_{\rm Ab}/p_{\rm b} = 0.005/0.545 = 0.0092\hspace{0.05cm},\\
Line 93: Line 97:
 
\end{pmatrix} \hspace{0.05cm}.$$ }}
 
\end{pmatrix} \hspace{0.05cm}.$$ }}
 
<br clear=all><br><br>
 
<br clear=all><br><br>
===Definition und Interpretation verschiedener Entropiefunktionen ===
+
===Definition and interpretation of various entropy functions ===
 
+
<br>
Im&nbsp; [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen|$\rm LNTwww$&ndash;Theorieteil]]&nbsp; werden alle für 2D&ndash;Zufallsgrößen relevanten Entropien definiert, die auch für die Digitalsignalübertragung gelten.&nbsp; Zudem finden Sie dort zwei Schaubilder, die den Zusammenhang zwischen den einzelnen Entropien illustrieren.&nbsp;  
+
In the&nbsp; [[Information_Theory/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen|"theory section"]],&nbsp; all entropies relevant for two-dimensional random quantities are defined, which also apply to digital signal transmission.&nbsp; In addition, you will find two diagrams illustrating the relationship between the individual entropies.&nbsp;  
*Für die Digitalsignalübertragung ist die rechte Darstellung zweckmäßig, bei der die Richtung von der Quelle&nbsp; $X$&nbsp; zur Sinke&nbsp; $Y$&nbsp; erkennbar ist.&nbsp;  
+
*For digital signal transmission the right representation is appropriate, where the direction from source&nbsp; $X$&nbsp; to the sink&nbsp; $Y$&nbsp; is recognizable.&nbsp;  
*Wir interpretieren nun ausgehend von dieser Grafik die einzelnen informationstheoretischen Größen.  
+
*We now interpret the individual information-theoretical quantities on the basis of this diagram.
  
  
[[File:P_ID2781__Inf_T_3_3_S2.png|center|frame|Zwei informationstheoretische Modelle für die Digitalsignalübertragung.
+
[[File:EN_Inf_T_3_3_S2_vers2.png|EN_Inf_T_4_2_S2.png|center|frame|Two information-theoretic models for digital signal transmission.
<br>Bitte beachten Sie:&nbsp; In der rechten Grafik ist&nbsp; $H_{XY}$&nbsp; nicht darstellbar]]
+
<br> &nbsp; &nbsp; <u>Please note:</u>&nbsp; In the right graph&nbsp; $H_{XY}$&nbsp; cannot be represented]]
  
*Die&nbsp; '''Quellenentropie'''&nbsp; (englisch:&nbsp; ''Source Entropy''&nbsp;)&nbsp; $H(X)$&nbsp; bezeichnet den mittleren Informationsgehalt der Quellensymbolfolge.&nbsp; Mit dem Symbolumfang&nbsp; $|X|$&nbsp; gilt:
+
*The&nbsp; &raquo;'''source entropy'''&laquo;&nbsp; $H(X)$&nbsp; denotes the average information content of the source symbol sequence.&nbsp; With the symbol set size&nbsp; $|X|$&nbsp; applies:
 
   
 
   
 
:$$H(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(X)}\right ] \hspace{0.1cm}
 
:$$H(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(X)}\right ] \hspace{0.1cm}
Line 110: Line 114:
 
  P_X(x_{\mu}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(x_{\mu})} \hspace{0.05cm}.$$
 
  P_X(x_{\mu}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(x_{\mu})} \hspace{0.05cm}.$$
  
*Die&nbsp; '''Äquivokation'''&nbsp; (auch&nbsp; ''Rückschlussentropie'' genannt, englisch:&nbsp; ''Equivocation''&nbsp;)&nbsp; $H(X|Y)$&nbsp; gibt den mittleren Informationsgehalt an, den ein Betrachter, der über die Sinke&nbsp; $Y$&nbsp; genau Bescheid weiß, durch Beobachtung der Quelle&nbsp; $X$&nbsp; gewinnt:
+
*The&nbsp; &raquo;'''equivocation'''&laquo;&nbsp; $H(X|Y)$&nbsp; indicates the average information content that an observer who knows exactly about the sink&nbsp; $Y$&nbsp; gains by observing the source&nbsp; $X$&nbsp;:
 
   
 
   
 
:$$H(X|Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}X\hspace{-0.01cm}|\hspace{-0.01cm}Y}(X\hspace{-0.01cm} |\hspace{0.03cm} Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|}  
 
:$$H(X|Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}X\hspace{-0.01cm}|\hspace{-0.01cm}Y}(X\hspace{-0.01cm} |\hspace{0.03cm} Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|}  
Line 117: Line 121:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Die Äquivokation ist der Anteil der Quellenentropie&nbsp; $H(X)$, der durch Kanalstörungen&nbsp; (bei digitalem Kanal:&nbsp; Übertragungsfehler)&nbsp; verloren geht.&nbsp; Es verbleibt die&nbsp; '''Transinformation'''&nbsp; (englisch:&nbsp; ''Mutual Information'')&nbsp; $I(X; Y)$, die zur Sinke gelangt:
+
*The equivocation is the portion of the source entropy&nbsp; $H(X)$&nbsp; that is lost due to channel interference&nbsp; (for digital channel: transmission errors).&nbsp; The&nbsp; &raquo;'''mutual information'''&laquo;&nbsp; $I(X; Y)$&nbsp; remains, which reaches the sink:
 
   
 
   
 
:$$I(X;Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)}{P_X(X) \cdot P_Y(Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|}  
 
:$$I(X;Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)}{P_X(X) \cdot P_Y(Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|}  
Line 123: Line 127:
 
  \hspace{0.05cm} = H(X) - H(X|Y) \hspace{0.05cm}.$$
 
  \hspace{0.05cm} = H(X) - H(X|Y) \hspace{0.05cm}.$$
  
'''Hallo Veronika, bitte diese Gleichung an Beispielen überprüfen und mir zeigen, wie es geht. Ich stelle mich zu blöd!'''
+
*The&nbsp; &raquo;'''irrelevance'''&laquo;&nbsp; $H(Y|X)$&nbsp; indicates the average information content that an observer who knows exactly about the source&nbsp; $X$&nbsp; gains by observing the sink&nbsp; $Y$:
 
 
*Die&nbsp; '''Irrelevanz'''&nbsp; (manchmal auch&nbsp; ''Streuentropie''&nbsp; genannt, englisch:&nbsp; ''Irrelevance'')&nbsp; $H(Y|X)$&nbsp; gibt den mittleren Informationsgehalt an, den ein Betrachter, der über die Quelle&nbsp; $X$&nbsp; genau Bescheid weiß, durch Beobachtung der Sinke&nbsp; $Y$&nbsp; gewinnt:
 
 
   
 
   
 
:$$H(Y|X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{-0.01cm}X}(Y\hspace{-0.01cm} |\hspace{0.03cm} X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|}  
 
:$$H(Y|X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{-0.01cm}X}(Y\hspace{-0.01cm} |\hspace{0.03cm} X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|}  
Line 132: Line 134:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Die&nbsp; '''Sinkenentropie'''&nbsp; $H(Y)$, der mittlere Informationsgehalt der Sinke, ist die Summe aus der nützlichen Transinformation&nbsp; $I(X; Y)$&nbsp; und der Irrelevanz&nbsp; $H(Y|X)$, die ausschließlich von Kanalfehlern herrührt:
+
*The&nbsp; &raquo;'''sink entropy'''&laquo;&nbsp; $H(Y)$, the mean information content of the sink.&nbsp; $H(Y)$&nbsp; is the sum of the useful mutual information&nbsp; $I(X; Y)$&nbsp; and the useless irrelevance&nbsp; $H(Y|X)$, which comes exclusively from channel errors:
 
  
 
  
 
:$$H(Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_Y(Y)}\right ] \hspace{0.1cm}
 
:$$H(Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_Y(Y)}\right ] \hspace{0.1cm}
Line 138: Line 140:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Die&nbsp; '''Verbundentropie'''&nbsp; $H(XY)$&nbsp; gibt ist den mittleren Informationsgehalt der 2D&ndash;Zufallsgröße&nbsp; $XY$&nbsp;an.&nbsp sie beschreibt zudem eine obere Schranke für die Summe aus Quellenentropie und Sinkenentropie:
+
*The&nbsp; &raquo;'''joint entropy'''&laquo;&nbsp; $H(XY)$&nbsp; is the average information content of the 2D random quantity&nbsp; $XY$.&nbsp; It also describes an upper bound for the sum of source entropy and sink entropy:
  
:$$H(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] = \sum_{\mu = 1}^{M}  \hspace{0.1cm} \sum_{\kappa = 1}^{K} \hspace{0.1cm}
+
:$$H(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] = \sum_{\mu = 1}^{|X|}  \hspace{0.1cm} \sum_{\kappa = 1}^{|Y|} \hspace{0.1cm}
 
  P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa}) \cdot {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa})}\le H(X) + H(Y) \hspace{0.05cm}.$$  
 
  P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa}) \cdot {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa})}\le H(X) + H(Y) \hspace{0.05cm}.$$  
  
[[File:Transinf_2.png|right|frame|Betrachtetes Modell des Binärkanals]]
+
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2}$:&nbsp; Es gelten die gleichen Voraussetzungen wie für das&nbsp; [[Applets:Transinformation_bei_binären_und_ternären_Nachrichtensystemen#Zugrunde_liegendes_Modell_der_Digitalsignal.C3.BCbertragung|$\text{Beispiel 1}$]]:&nbsp;
+
[[File:Transinf_2.png|right|frame|Considered model of the binary channel]]
 +
$\text{Example 2}$:&nbsp; The same requirements as for&nbsp; [[Applets:Capacity_of_Memoryless_Digital_Channels#Underlying_model_of_digital_signal_transmission|$\text{Example 1}$]] apply:&nbsp;
  
'''(1)'''&nbsp; Die Quellensymbole sind nicht gleichwahrscheinlich:  
+
'''(1)'''&nbsp; The source symbols are not equally probable:
 
:$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )=
 
:$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )=
 
\big ( 0.1,\ 0.9 \big )
 
\big ( 0.1,\ 0.9 \big )
 
\hspace{0.05cm}.$$  
 
\hspace{0.05cm}.$$  
'''(2)'''&nbsp; Die Verfälschungswahrscheinlichkeiten seien:   
+
'''(2)'''&nbsp; Let the falsification probabilities be:   
 
:$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A}  & =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A}  =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\
 
:$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A}  & =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A}  =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\
 
p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B}  & =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.40\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B}  =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.60\end{align*}$$
 
p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B}  & =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.40\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B}  =  {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.60\end{align*}$$
Line 161: Line 164:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
[[File:Inf_T_1_1_S4_vers2.png|frame|Binäre Entropiefunktion als Funktion von&nbsp; $p$|right]]
+
[[File:Inf_T_1_1_S4_vers2.png|frame|Binary entropy function as a function of&nbsp; $p$|right]]
*Wegen Voraussetzung&nbsp; '''(1)'''&nbsp; erhält man so für die Quellenentropie mit der&nbsp; [[Informationstheorie/Gedächtnislose_Nachrichtenquellen#Bin.C3.A4re_Entropiefunktion|binären Entropiefunktion]]&nbsp; $H_{\rm bin}(p)$:&nbsp;
+
*Because of condition&nbsp; '''(1)'''&nbsp; we obtain for the source entropy with the&nbsp; [[Information_Theory/Discrete_Memoryless_Sources#Binary_entropy_function|"binary entropy function"]]&nbsp; $H_{\rm bin}(p)$:&nbsp;
  
 
:$$H(X) =  p_{\rm A} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm A}\hspace{0.1cm} } + p_{\rm B} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_{\rm B} }= H_{\rm bin} (p_{\rm A}) = H_{\rm bin} (0.1)= 0.469 \ {\rm bit}
 
:$$H(X) =  p_{\rm A} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm A}\hspace{0.1cm} } + p_{\rm B} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_{\rm B} }= H_{\rm bin} (p_{\rm A}) = H_{\rm bin} (0.1)= 0.469 \ {\rm bit}
 
\hspace{0.05cm};$$
 
\hspace{0.05cm};$$
  
::$$H_{\rm bin} (p) =  p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + (1 - p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1 - p} \hspace{0.5cm}{\rm (Einheit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}oder\hspace{0.15cm}bit/Symbol)}
+
::$$H_{\rm bin} (p) =  p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + (1 - p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1 - p} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/symbol)}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* Entsprechend gilt für die Sinkenentropie mit der PMF&nbsp; $P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b} \big )=
+
* Correspondingly, for the sink entropy with PMF&nbsp; $P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b} \big )=
 
\big ( 0.455,\ 0.545 \big )$:
 
\big ( 0.455,\ 0.545 \big )$:
 
:$$H(Y) =  H_{\rm bin} (0.455)= 0.994 \ {\rm bit}
 
:$$H(Y) =  H_{\rm bin} (0.455)= 0.994 \ {\rm bit}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Als nächstes berechnen wir die Verbundentropie:
+
*Next, we calculate the joint entropy:
 
:$$H(XY) =  p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm} }+ p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }+p_{\rm Ba} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ba}\hspace{0.1cm} }+ p_{\rm Bb} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Bb}\hspace{0.1cm} }$$
 
:$$H(XY) =  p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm} }+ p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }+p_{\rm Ba} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ba}\hspace{0.1cm} }+ p_{\rm Bb} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Bb}\hspace{0.1cm} }$$
 
:$$\Rightarrow \hspace{0.3cm}H(XY) =    0.095 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.095 } +0.005 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.005 }+0.36 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.36 }+0.54 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.54 }= 1.371 \ {\rm bit}
 
:$$\Rightarrow \hspace{0.3cm}H(XY) =    0.095 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.095 } +0.005 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.005 }+0.36 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.36 }+0.54 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.54 }= 1.371 \ {\rm bit}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Entsprechend dem oberen linken Schaubild sind somit auch die restlichen informationstheoretischen Größen berechenbar:
+
According to the upper left diagram, the remaining information-theoretic quantities are thus also computable:
[[File:Transinf_4.png|right|frame|Informationstheoretisches Modell für&nbsp; $\text{Beispiel 2}$]]
+
[[File:Transinf_4.png|right|frame|Information-theoretic model for&nbsp; $\text{Example 2}$]]
  
*die&nbsp; '''Äquivokation'''&nbsp; (oder Rückschlussentropie):
+
*the&nbsp; &raquo;'''equivocation'''&laquo;:
 
   
 
   
 
:$$H(X \vert Y) \hspace{-0.01cm} =\hspace{-0.01cm}  H(XY) \hspace{-0.01cm} -\hspace{-0.01cm}  H(Y) \hspace{-0.01cm}  = \hspace{-0.01cm}  1.371\hspace{-0.01cm}  -\hspace{-0.01cm}  0.994\hspace{-0.01cm} =\hspace{-0.01cm}  0.377\ {\rm bit}
 
:$$H(X \vert Y) \hspace{-0.01cm} =\hspace{-0.01cm}  H(XY) \hspace{-0.01cm} -\hspace{-0.01cm}  H(Y) \hspace{-0.01cm}  = \hspace{-0.01cm}  1.371\hspace{-0.01cm}  -\hspace{-0.01cm}  0.994\hspace{-0.01cm} =\hspace{-0.01cm}  0.377\ {\rm bit}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
*die '''Irrelevanz'''&nbsp; (oder Streuentropie):
+
*the &raquo;'''irrelevance'''&laquo;:
 
   
 
   
 
:$$H(Y \vert X) = H(XY) - H(X)  = 1.371 - 0.994 = 0.902\ {\rm bit}
 
:$$H(Y \vert X) = H(XY) - H(X)  = 1.371 - 0.994 = 0.902\ {\rm bit}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*die&nbsp; '''Transinformation'''&nbsp; (englisch&nbsp; ''Mutual Information''):
+
*the&nbsp; &raquo;'''mutual information'''&laquo;&nbsp;:
 
   
 
   
 
:$$I(X;Y) = H(X) + H(Y) - H(XY)  = 0.469 + 0.994 - 1.371 = 0.092\ {\rm bit}
 
:$$I(X;Y) = H(X) + H(Y) - H(XY)  = 0.469 + 0.994 - 1.371 = 0.092\ {\rm bit}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
Die Ergebnisse sind in nebenstehender Grafik  zusammengefasst.  
+
The results are summarized in the graph.  
  
''Anmerkung'':&nbsp; Äquivokation und Irrelevanz könnte man (allerdfings mit Mehraufwand) auch direkt aus den entsprechenden Wahrscheinlichkeitsfunktionen berechnen, zum Beispiel:
+
<u>Note</u>:&nbsp; Equivocation and irrelevance could also be computed (but with extra effort) directly from the corresponding probability functions, for example:
 
    
 
    
 
:$$H(Y \vert X) = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.05cm}\in \hspace{0.05cm}XY} \hspace{-0.2cm} P_{XY}(x,\hspace{0.05cm}y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}\vert \hspace{0.03cm}X}
 
:$$H(Y \vert X) = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.05cm}\in \hspace{0.05cm}XY} \hspace{-0.2cm} P_{XY}(x,\hspace{0.05cm}y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}\vert \hspace{0.03cm}X}
Line 208: Line 211:
  
  
[[File:Transinf_3.png|right|frame|Betrachtetes Modell des Ternärkanals:<br>Rote Übergänge stehen für&nbsp; $p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}C} = q$&nbsp; und blaue für&nbsp; $p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}A}  =\text{...}= p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}C}= (1-q)/2$]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 3}$:&nbsp; Nun betrachten wir ein Übertragungssystem mit&nbsp; $M_X = M_Y = M=3$.&nbsp;
+
[[File:Transinf_3.png|right|frame|Considered model of the ternary channel:<br> &nbsp; &nbsp; Red transitions represent&nbsp; $p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}C} = q$&nbsp; and<br> &nbsp; &nbsp;  blue ones for&nbsp; $p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}A}  =\text{...}= p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}C}= (1-q)/2$]]
 +
$\text{Example 3}$:&nbsp; Now we consider a transmission system with&nbsp; $M_X = M_Y = M=3$.&nbsp;
  
'''(1)'''&nbsp; Die Quellensymbole seien gleichwahrscheinlich:  
+
'''(1)'''&nbsp; Let the source symbols be equally probable:
 
:$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B},\ p_{\rm C} \big )=
 
:$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B},\ p_{\rm C} \big )=
 
\big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(X)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit}
 
\big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(X)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
'''(2)'''&nbsp; Das Kanalmodell ist symmetrisch &nbsp; &rArr; &nbsp; auch die Sinkensymbole sind gleichwahrscheinlich:  
+
'''(2)'''&nbsp; The channel model is symmetric &nbsp; &rArr; &nbsp; the sink symbols are also equally probable:
 
:$$P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b},\ p_{\rm c} \big )=
 
:$$P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b},\ p_{\rm c} \big )=
 
\big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(Y)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit}
 
\big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(Y)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
'''(3)'''&nbsp; Die Verbundwahrscheinlichkeiten ergeben sich wie folgt:  
+
'''(3)'''&nbsp; The joint probabilities are obtained as follows:
 
:$$p_{\rm Aa}= p_{\rm Bb}= p_{\rm Cc}= q/M,$$
 
:$$p_{\rm Aa}= p_{\rm Bb}= p_{\rm Cc}= q/M,$$
 
:$$p_{\rm Ab}= p_{\rm Ac}= p_{\rm Ba}= p_{\rm Bc} = p_{\rm Ca}= p_{\rm Cb} = (1-q)/(2M)$$
 
:$$p_{\rm Ab}= p_{\rm Ac}= p_{\rm Ba}= p_{\rm Bc} = p_{\rm Ca}= p_{\rm Cb} = (1-q)/(2M)$$
 
:$$\Rightarrow\hspace{0.30cm}H(XY) =  3 \cdot p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm}  }+6 \cdot p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }= \
 
:$$\Rightarrow\hspace{0.30cm}H(XY) =  3 \cdot p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm}  }+6 \cdot p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }= \
 
\text{...} \ = q \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{q }+ (1-q) \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{(1-q)/2 }.$$
 
\text{...} \ = q \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{q }+ (1-q) \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{(1-q)/2 }.$$
[[File:Transinf_10.png|right|frame|Einige Ergebnisse zum&nbsp; $\text{Beispiel 3}$]]  
+
[[File:Transinf_10.png|right|frame|Some results for&nbsp; $\text{Example 3}$]]  
'''(4)'''&nbsp; Für die Transinformation erhält man nach einigen Umformungen unter Berücksichtigung der Gleichung&nbsp;
+
'''(4)'''&nbsp; For the mutual information we get after some transformations considering the equation&nbsp;
 
:$$I(X;Y) = H(X) + H(Y) - H(XY)\text{:}$$
 
:$$I(X;Y) = H(X) + H(Y) - H(XY)\text{:}$$
:$$I(X;Y) = {\rm log_2}\ (M) - (1-q) -H_{\rm bin}(q).$$
+
:$$\Rightarrow \hspace{0.3cm} I(X;Y) = {\rm log_2}\ (M) - (1-q) -H_{\rm bin}(q).$$
* Bei fehlerfreier Ternärübertragung&nbsp; $(q=1)$&nbsp; gilt&nbsp; $I(X;Y) = H(X) = H(Y)={\rm log_2}\hspace{0.1cm}3$.
+
* For error-free ternary transfer&nbsp; $(q=1)$&nbsp; holds&nbsp; $I(X;Y) = H(X) = H(Y)={\rm log_2}\hspace{0.1cm}3$.
* Mit&nbsp; $q=0.8$&nbsp; sinkt die Transinformaion schon auf&nbsp; $I(X;Y) = 0.663$&nbsp; und mit&nbsp; $q=0.5$&nbsp; auf&nbsp; $0.085$&nbsp; bit.
+
 
*Der ungünstigste Fall aus informationstheoretischer Sicht ist&nbsp; $q=1/3$&nbsp; &rArr; &nbsp; $I(X;Y) = 0$.
+
* With&nbsp; $q=0.8$&nbsp; the mutual information already decreases to&nbsp; $I(X;Y) = 0.663$,&nbsp; with&nbsp; $q=0.5$&nbsp; to&nbsp; $0.085$&nbsp; bit.
*Dagegen ist der aus der aus Sicht der Übertragungstheorie ungünstigste Fall&nbsp; $q=0$&nbsp; &rArr; &nbsp; &bdquo;kein einziges Übertragungssymbol kommt richtig an&rdquo;&nbsp; aus informationstheoretischer Sicht gar nicht so schlecht.
+
 
* Um dieses gute Ergebnis nutzen zu können, ist allerdings sendeseitig eine Kanalcodierung erforderlich. }}
+
*The worst case from the point of view of information theory is&nbsp; $q=1/3$&nbsp; &rArr; &nbsp; $I(X;Y) = 0$.
 +
 
 +
*On the other hand, the worst case from the point of view of transmission theory is&nbsp; $q=0$&nbsp; &rArr; &nbsp; "not a single transmission symbol arrives correctly"&nbsp; is not so bad from the point of view of information theory.
 +
 
 +
* In order to be able to use this good result, however, channel coding is required at the transmitting end. }}
 
<br><br>
 
<br><br>
===Definition und Bedeutung der Kanalkapazität ===  
+
===Definition and meaning of channel capacity ===  
 
+
<br>
Berechnet man die Transinformation&nbsp; $I(X, Y)$&nbsp; wie zuletzt im&nbsp; $\text{Beispiel 2}$&nbsp; ausgeführt,&nbsp; so hängt diese nicht nur vom diskreten gedächtnislosen Kanal&nbsp; (englisch:&nbsp; ''Discrete Memoryless Channel'',&nbsp; kurz DMC)&nbsp; ab, sondern auch von der Quellenstatistik   &nbsp;  ⇒  &nbsp;  $P_X(X)$&nbsp; ab.&nbsp; Ergo: &nbsp; '''Die Transinformation'''&nbsp; $I(X, Y)$&nbsp;''' ist keine reine Kanalkenngröße'''.
+
If one calculates the mutual information&nbsp; $I(X, Y)$&nbsp; as explained in&nbsp; $\text{Example 2}$,&nbsp; then this depends not only on the discrete memoryless channel&nbsp; $\rm (DMC)$,&nbsp; but also on the source statistic   &nbsp;  ⇒  &nbsp;  $P_X(X)$.&nbsp; Ergo: &nbsp; '''The mutual information'''&nbsp; $I(X, Y)$&nbsp;''' is not a pure channel characteristic'''.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Die von&nbsp; [https://de.wikipedia.org/wiki/Claude_Shannon Claude E. Shannon]&nbsp; eingeführte&nbsp; '''Kanalkapazität'''&nbsp; (englisch:&nbsp; ''Channel Capacity'')&nbsp; lautet gemäß seinem Standardwerk&nbsp; [Sha48]<ref name = ''Sha48''>Shannon, C.E.: ''A Mathematical Theory of Communication''. In: Bell Syst. Techn. J. 27 (1948), S. 379-423 und S. 623-656.</ref>:
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''channel capacity'''&laquo;&nbsp; introduced by&nbsp; [https://en.wikipedia.org/wiki/Claude_Shannon $\text{Claude E. Shannon}$]&nbsp; according to his standard work&nbsp; [Sha48]<ref name = ''Sha48''>Shannon, C.E.:&nbsp; A Mathematical Theory of Communication.[[File:Transinf_1_neu.png|center|frame|&nbsp; $M=2$&nbsp; (left) and for&nbsp; $M=3$&nbsp; (right). &nbsp; &nbsp;  <u>Please note:</u>&nbsp; In the right graph not all transitions are labeled]] In: Bell Syst. Techn. J. 27 (1948), S. 379-423 und S. 623-656.</ref>:
 
   
 
   
 
:$$C = \max_{P_X(X)} \hspace{0.15cm}  I(X;Y)  \hspace{0.05cm}.$$
 
:$$C = \max_{P_X(X)} \hspace{0.15cm}  I(X;Y)  \hspace{0.05cm}.$$
  
Oft wird die Zusatzeinheit „bit/Kanalzugriff” hinzugefügt,&nbsp; bei englischen Texten „bit/use”.&nbsp; Da nach dieser Definition stets die bestmögliche Quellenstatistik zugrunde liegt,&nbsp; hängt&nbsp; $C$&nbsp; nur von den Kanaleigenschaften &nbsp; ⇒ &nbsp; $P_{Y \vert X}(Y \vert X)$ ab,&nbsp; nicht jedoch von der Quellenstatistik &nbsp; ⇒ &nbsp; $P_X(X)$.&nbsp; }}
+
*The additional unit&nbsp; "bit/use"&nbsp; is often added.&nbsp; Since according to this definition the best possible source statistics are always the basis:
 +
 
 +
:&rArr; &nbsp; $C$&nbsp; depends only on the channel properties &nbsp; ⇒ &nbsp; $P_{Y \vert X}(Y \vert X)$ &nbsp; but not on the source statistics &nbsp; ⇒ &nbsp; $P_X(X)$.&nbsp; }}
  
  
Shannon benötigte die Kanalbeschreibungsgröße&nbsp; $C$&nbsp; zur Formulierung des Kanalcodierungstheorems eines der Highlights der von ihm begründeten Informationstheorie.
+
Shannon needed the quantity&nbsp; $C$&nbsp; to formulate the&nbsp; "Channel Coding Theorem"&nbsp; &nbsp; one of the highlights of the information theory he founded.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Shannons Kanalcodierungstheorem:}$&nbsp;  
+
$\text{Shannon's Channel Coding Theorem:}$&nbsp;  
*Zu jedem Übertragungskanal mit der Kanalkapazität&nbsp; $C > 0$&nbsp; existiert (mindestens) ein&nbsp; $(k, n)$–Blockcode,&nbsp; dessen (Block–)Fehlerwahrscheinlichkeit gegen Null geht,&nbsp; so lange die Coderate&nbsp; $R = k/n$&nbsp; kleiner oder gleich der Kanalkapazität ist: &nbsp; $R ≤ C.$
+
*For every transmission channel with channel capacity&nbsp; $C > 0$,&nbsp; there exists&nbsp; $($at least$)$&nbsp; one&nbsp; $(k,\ n)$&nbsp; block code,&nbsp; whose&nbsp; $($block$)$&nbsp; error probability approaches zero&nbsp; as long as the code rate&nbsp; $R = k/n$&nbsp; is less than or equal to the channel capacity: &nbsp;  
* Voraussetzung hierfür ist allerdings,&nbsp; dass für die Blocklänge dieses Codes gilt: &nbsp; $n → ∞.$
+
:$$R ≤ C.$$
 +
* The prerequisite for this,&nbsp; however,&nbsp;  is that the following applies to the block length of this code: &nbsp;  
 +
:$$n → ∞.$$
  
 +
$\text{Reverse of Shannon's channel coding theorem:}$&nbsp;
 +
 +
:If the rate&nbsp;  $R$&nbsp; of the&nbsp; $(n$,&nbsp; $k)$ block code used is larger than the channel capacity&nbsp; $C$,&nbsp; then an arbitrarily small block error probability can never be achieved.}}
  
$\text{Umkehrschluss von Shannons Kanalcodierungstheorem:}$&nbsp;
 
 
Ist die Rate&nbsp;  $R$&nbsp; des verwendeten&nbsp; $(n$, $k)$–Blockcodes größer als die Kanalkapazität&nbsp; $C$,&nbsp; so ist niemals eine beliebig kleine Blockfehlerwahrscheinlichkeit nicht erreichbar.}}
 
  
  
[[File:Transinf_9.png|right|frame|Informationsheoretischer Größen für <br>verschiedene&nbsp; $p_{\rm A}$&nbsp; und&nbsp; $p_{\rm B}= 1- p_{\rm A}$ ]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 4}$:&nbsp; Wir betrachten den gleichen diskreten gedächtnislosen Kanal wie im &nbsp;$\text{Beispiel 2}$.&nbsp;
+
[[File:Transinf_9.png|right|frame|Information-theoretic quantities for <br>different&nbsp; $p_{\rm A}$&nbsp; and&nbsp; $p_{\rm B}= 1- p_{\rm A}$ ]]
In diesem&nbsp;$\text{Beispiel 2}$&nbsp; wurden die Symbolwahrscheinlichkeiten&nbsp; $p_{\rm A} = 0.1$&nbsp; und&nbsp; $p_{\rm B}= 1- p_{\rm A}=0.9$&nbsp; vorausgesetzt.&nbsp; Damit ergab sich die Transinformation zu&nbsp;  $I(X;Y)= 0.092$&nbsp; bit/Kanalzugriff &nbsp; &rArr; &nbsp; siehe erste Zeile, vierte Spalte in der Tabelle.
+
$\text{Example 4}$:&nbsp; We consider the same discrete memoryless channel as in &nbsp;$\text{Example 2}$.&nbsp;  
 +
*The symbol probabilities&nbsp; $p_{\rm A} = 0.1$&nbsp; and&nbsp; $p_{\rm B}= 1- p_{\rm A}=0.9$&nbsp; were assumed.&nbsp;  
  
Die&nbsp; '''Kanalkapazität'''&nbsp; ist die Transinformation&nbsp; $I(X, Y)$&nbsp; bei bestmöglichen Symbolwahrscheinlichkeiten&nbsp; $p_{\rm A} = 0.55$&nbsp; und&nbsp; $p_{\rm B}= 1- p_{\rm A}=0.45$:
+
*The mutual information is&nbsp; $I(X;Y)= 0.092$&nbsp; bit/channel use &nbsp; &rArr; &nbsp; first row,&nbsp; see fourth column in the table.
:$$C = \max_{P_X(X)} \hspace{0.15cm}  I(X;Y) = 0.284 \ \rm bit/Kanalzugriff \hspace{0.05cm}.$$
 
  
Aus der Tabelle erkennt man weiter&nbsp; (auf die Zusatzeinheit &bdquo;bit/Kanalzugriff&bdquo; verzichten wir im Folgenden):
 
*Der Parameter&nbsp; $p_{\rm A} = 0.1$&nbsp; war sehr ungünstig gewählt, weil beim vorliegenden Kanal das Symbol&nbsp; $\rm A$&nbsp; mehr verfälscht wird als&nbsp; $\rm B$.&nbsp; Schon mit&nbsp; $p_{\rm A} = 0.9$&nbsp; ergibt sich ein etwas besserer Wert:&nbsp; $I(X; Y)=0.130$.
 
*Aus dem gleichen Grund liefert&nbsp; $p_{\rm A} = 0.55$,&nbsp; $p_{\rm B} = 0.45$&nbsp; ein etwas besseres Ergebnis als gleichwahrscheinliche Symbole&nbsp; $p_{\rm A} = p_{\rm B} =0.5$.
 
*Je unsymmetrischer der Kanal ist, um so mehr weicht die optimale Wahrscheinlichkeitsfunktion&nbsp; $P_X(X)$&nbsp; von der Gleichverteilung ab.&nbsp; Im Umkehrschluss:&nbsp; Bei symmetrischem Kanal ergibt sich stets die Gleichverteilung.}}
 
  
 +
The&nbsp; &raquo;'''channel capacity'''&laquo;&nbsp; is the mutual information&nbsp; $I(X, Y)$&nbsp; with best possible symbol probabilities<br> &nbsp; &nbsp; $p_{\rm A} = 0.55$&nbsp; and&nbsp; $p_{\rm B}= 1- p_{\rm A}=0.45$:
 +
:$$C = \max_{P_X(X)} \hspace{0.15cm}  I(X;Y) = 0.284 \ \rm bit/channel \hspace{0.05cm} access \hspace{0.05cm}.$$
  
Der Ternärkanal von &nbsp;$\text{Beispiel 3}$&nbsp; ist symmetrisch.&nbsp; Deshalb ist hier&nbsp; $P_X(X) = \big ( 1/3,\ 1/3,\ 1/3 \big )$&nbsp; für jeden&nbsp; $q$&ndash;Wert optimal, und die in der Ergebnistabelle angegebene Transinformation&nbsp; $I(X;Y)$&nbsp; ist gleichzeitig die Kanalkapazität&nbsp; $C$.
+
From the table you can see further&nbsp; $($we do without the additional unit "bit/channel use" in the following$)$:
 +
#The parameter&nbsp; $p_{\rm A} = 0.1$&nbsp; was chosen very unfavorably,&nbsp; because with the present channel the symbol&nbsp; $\rm A$&nbsp; is more falsified than&nbsp; $\rm B$.&nbsp;  
 +
#Already with&nbsp; $p_{\rm A} = 0.9$&nbsp; the mutual information results in a somewhat better value:&nbsp; $I(X; Y)=0.130$.
 +
#For the same reason&nbsp; $p_{\rm A} = 0.55$,&nbsp; $p_{\rm B} = 0.45$&nbsp; gives a slightly better result than equally probable symbols&nbsp; $(p_{\rm A} = p_{\rm B} =0.5)$.
 +
#The more asymmetric the channel is,&nbsp; the more the optimal probability function&nbsp; $P_X(X)$&nbsp; deviates from the uniform distribution.&nbsp; Conversely:&nbsp; If the channel is symmetric,&nbsp; the uniform distribution is always obtained.}}
  
  
 +
The ternary channel of &nbsp;$\text{Example 3}$&nbsp; is symmetric.&nbsp; Therefore here&nbsp; $P_X(X) = \big ( 1/3,\ 1/3,\ 1/3 \big )$&nbsp; is optimal for each&nbsp; $q$&ndash;value,&nbsp; and the mutual information&nbsp;  $I(X;Y)$&nbsp; given in the result table is at the same time the channel capacity&nbsp;  $C$. 
  
  
  
==Versuchsdurchführung==
 
  
[[File:Exercises_binomial_fertig.png|right]]
+
==Exercises==
*Wählen Sie zunächst die Nummer '''1''' ... '''?''' der zu bearbeitenden Aufgabe.
+
<br>
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
+
*First, select the number&nbsp; $(1,\ 2,  \text{...} \ )$&nbsp; of the task to be processed.&nbsp; The number&nbsp; "$0$"&nbsp; corresponds to a "Reset":&nbsp; Same setting as at program start.
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
+
*A task description is displayed.&nbsp; The parameter values are adjusted.&nbsp; Solution after pressing "Show Solution".
*Bei allen Entropiewerten müsste die Einheit "bit/use" hizugefügt werden.
+
*Source symbols are denoted by uppercase letters&nbsp; (binary:&nbsp; $\rm A$,&nbsp; $\rm B$),&nbsp; sink symbols by lowercase letters&nbsp; ($\rm a$,&nbsp; $\rm b$).&nbsp; Error-free transmission:&nbsp; $\rm A \rightarrow a$.  
 +
*For all entropy values, the unit "bit/use" would have to be added.
  
  
Die Nummer '''0''' entspricht einem &bdquo;Reset&rdquo;:
+
{{BlueBox|TEXT=
*Gleiche Einstellung wie beim Programmstart.
+
'''(1)'''&nbsp; Let&nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; and&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$.&nbsp; What is the channel model?&nbsp; What are the entropies&nbsp; $H(X), \, H(Y)$&nbsp; and the mutual information&nbsp; $I(X;\, Y)$?}}
*Ausgabe eines &bdquo;Reset&ndash;Textes&rdquo; mit weiteren Erläuterungen zum Applet.
 
  
 +
:*&nbsp; Considered is the BSC model&nbsp; (Binary Symmetric Channel).&nbsp; Because of&nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; it holds for the entropies:&nbsp; $H(X) = H(Y) = 1$.
 +
:*&nbsp; Because of&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$&nbsp; eqivocation and irrelevance are also equal:&nbsp; $H(X \vert Y) = H(Y \vert X) = H_{\rm bin}(p_{\rm b \vert A}) = H_{\rm bin}(0.1) =0.469$.
 +
:*&nbsp; The mutual information is&nbsp; $I(X;\, Y) = H(X) - H(X \vert Y)= 1-H_{\rm bin}(p_{\rm b \vert A}) = 0.531$&nbsp; and the joint entropy is&nbsp; $H(XY) =1.469$.
 +
 
 +
{{BlueBox|TEXT=
 +
'''(2)'''&nbsp; Let further&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$, but now the symbol probability is&nbsp; $p_{\rm A} = 0. 9$.&nbsp; What is the capacity&nbsp; $C_{\rm BSC}$&nbsp; of the BSC channel with&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B}$?<br>&nbsp; &nbsp; &nbsp; &nbsp;
 +
Which&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B}$&nbsp; leads to the largest possible channel capacity and which&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B}$&nbsp; leads to the channel capacity&nbsp; $C_{\rm BSC}=0$?}}
  
 +
:*&nbsp; The capacity&nbsp; $C_{\rm BSC}$&nbsp; is equal to the maximum mutual information&nbsp; $I(X;\, Y)$&nbsp; considering the optimal symbol probabilities.
 +
:*&nbsp; Due to the symmetry of the BSC model&nbsp; equally probable symbols&nbsp; $(p_{\rm A} = p_{\rm B} = 0.5)$&nbsp; lead to the optimum &nbsp; &rArr; &nbsp; $C_{\rm BSC}=0.531$.
 +
:*&nbsp; The best is the&nbsp; "ideal channel"&nbsp; $(p_{\rm b \vert A} = p_{\rm a \vert B} = 0)$&nbsp; &rArr; &nbsp; $C_{\rm BSC}=1$. &nbsp; The worst BSC channel results with&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.5$ &nbsp; &rArr; &nbsp; $C_{\rm BSC}=0$.
 +
:*&nbsp; But also with &nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 1$&nbsp; we get&nbsp; $C_{\rm BSC}=1$.&nbsp; Here all symbols are inverted, which is information theoretically the same as&nbsp; $\langle Y_n \rangle \equiv \langle X_n \rangle$.
  
 +
{{BlueBox|TEXT=
 +
'''(3)'''&nbsp; Let&nbsp; $p_{\rm A} = p_{\rm B} = 0.5$,&nbsp; $p_{\rm b \vert A} = 0.05$&nbsp; and&nbsp; $ p_{\rm a \vert B} = 0.4$. &nbsp; Interpret the results in comparison to the experiment&nbsp; $(1)$&nbsp; and to the&nbsp; $\text{example 2}$&nbsp; in the theory section.}}
  
{{BlaueBox|TEXT=
+
:*&nbsp; Unlike the experiment&nbsp; $(1)$&nbsp; no BSC channel is present here.&nbsp; Rather, the channel considered here is asymmetric:&nbsp; $p_{\rm b \vert A} \ne p_{\rm a \vert B}$.
'''(1)'''&nbsp; Es gelte&nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; und&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$.&nbsp;Welches Kanalmodell liegt vor?&nbsp; Wie lauten die Entropien&nbsp; $H(X), \, H(Y)$&nbsp; und die Transinformation&nbsp; $I(X;\, Y)$?}}
+
:*&nbsp; According to&nbsp; $\text{Example 2}$&nbsp; it holds for&nbsp; $p_{\rm A} = 0.1,\ p_{\rm B} = 0.9$: &nbsp; &nbsp; $H(X)= 0.469$,&nbsp; $H(Y)= 0.994$,&nbsp; $H(X \vert Y)=0.377$,&nbsp; $H(Y \vert X)=0.902$,&nbsp; $I(X;\vert Y)=0.092$.
 +
:*&nbsp; Now it holds&nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; and we get&nbsp; $H(X)=1,000$,&nbsp; $H(Y)=0.910$,&nbsp; $H(X \vert Y)=0.719$,&nbsp; $H(Y \vert X)=0.629$,&nbsp; $I(X;\ Y)=0.281$.
 +
:*&nbsp; All output values depend significantly on&nbsp; $p_{\rm A}$&nbsp; and&nbsp; $p_{\rm B}=1-p_{\rm A}$&nbsp; except for the conditional probabilities&nbsp; ${\rm Pr}(Y \vert X)\in \{\hspace{0.05cm}0.95,\ 0.05,\ 0.4,\ 0.6\hspace{0.05cm} \}$.
  
:*&nbsp; Betrachtet wird das BSC&ndash;Modell&nbsp; (Binary Symmetric Channel).&nbsp; Wegen&nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; gilt für die Quellen&ndash; und die Sinkenentropie:&nbsp; $H(X) = H(Y) = 1$.
+
{{BlueBox|TEXT=
:*&nbsp; Wegen&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$&nbsp; sind auch Äqivokation und Irrelevanz gleich:&nbsp; $H(X \vert Y) = H(Y \vert X) = H_{\rm bin}(p_{\rm b \vert A}) = H_{\rm bin}(0.1) =0.469$.
+
'''(4)'''&nbsp; Let further&nbsp; $p_{\rm A} = p_{\rm B}$,&nbsp; $p_{\rm b \vert A} = 0.05$,&nbsp; $ p_{\rm a \vert B} = 0.4$.&nbsp; What differences do you see in terms of analytical calculation and "simulation"&nbsp; $(N=10000)$.}}
:*&nbsp; Die Transinformation ist&nbsp; $I(X;\, Y) = H(X) - H(X \vert Y)= 1-H_{\rm bin}(p_{\rm b \vert A}) = 0.531$&nbsp; und die Verbundentropie ist&nbsp; $H(XY) =1.469$.  
+
 
 +
:*&nbsp; The joint probabilities are&nbsp; $p_{\rm Aa} =0.475$,&nbsp; $p_{\rm Ab} =0.025$,&nbsp; $p_{\rm Ba} =0.200$,&nbsp;$p_{\rm Bb} =0.300$.&nbsp; Simulation:&nbsp; Approximation by relative frequencies:
 +
:*&nbsp; For example, for&nbsp; $N=10000$:&nbsp; $h_{\rm Aa} =0.4778$,&nbsp; $h_{\rm Ab} =0.0264$,&nbsp; $h_{\rm Ba} =0.2039$,&nbsp;$h_{\rm Bb} =0.2919$.&nbsp; After pressing&nbsp; "New sequence"&nbsp; slightly different values.
 +
:*&nbsp; For all subsequent calculations, no principal difference between theory and simulation, except&nbsp; $p \to h$.&nbsp; Examples:&nbsp;
 +
:*&nbsp; $p_{\rm A} = 0.5 \to h_{\rm A}=h_{\rm Aa} + h_{\rm Ab} =0.5042$,&nbsp; $p_b = 0.325 \to h_{\rm b}=h_{\rm Ab} + h_{\rm Bb} =0. 318$,&nbsp; $p_{b|A} = 0.05 \to h_{\rm b|A}=h_{\rm Ab}/h_{\rm A} =0.0264/0.5042= 0.0524$,&nbsp;
 +
:*&nbsp; $p_{\rm A|b} = 0.0769 \to h_{\rm A|b}=h_{\rm Ab}/h_{\rm b} =0.0264/0.318= 0.0830$.&nbsp; Thus, this simulation yields&nbsp; $I_{\rm Sim}(X;\ Y)=0.269$&nbsp; instead of&nbsp; $I(X;\ Y)=0.281$.
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(2)'''&nbsp; Es gelten weiter&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$, aber nun&nbsp; $p_{\rm A} = 0.9$.&nbsp; Wie groß ist die Kapazität&nbsp; $C_{\rm BSC}$&nbsp; des BSC&ndash;Kanals mit&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B}$?
+
'''(5)'''&nbsp; Setting according to&nbsp; $(4)$.&nbsp; How does&nbsp; $I_{\rm Sim}(X;\ Y)$&nbsp; differ  from&nbsp; $I(X;\ Y) = 0.281$&nbsp; for&nbsp; $N=10^3$,&nbsp; $10^4$,&nbsp; $10^5$&nbsp;?&nbsp; In each case, averaging over ten realizations.  }} 
:Welches&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B}$&nbsp; führen zur größtmöglichen Kanalkapazität und welches&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B}$&nbsp; zur Kanalkapazität&nbsp; $C_{\rm BSC}=0$?}}
+
:*&nbsp; $N=10^3$: &nbsp; $0.232 \le I_{\rm Sim} \le 0.295$, &nbsp; mean:&nbsp; $0.263$ &nbsp; # &nbsp; $N=10^4$: &nbsp; $0.267 \le I_{\rm Sim} \le 0.293$, &nbsp; mean:&nbsp; $0.279$ &nbsp; # &nbsp; $N=10^5$: &nbsp; $0.280 \le I_{\rm Sim} \le 0.285$ &nbsp; mean:&nbsp; $0.282$.
 +
:*&nbsp; With&nbsp; $N=10^6$&nbsp; for this channel, the simulation result differs from the theoretical value by less than&nbsp; $\pm 0.001$.&nbsp;
  
:*&nbsp; Die Kapazität&nbsp; $C_{\rm BSC}$&nbsp; ist gleich der maximalen Transinformation&nbsp; $I(X;\, Y)$&nbsp; unter Berücksichtigung der optimalen Symbolwahrscheinlichkeiten.
+
{{BlueBox|TEXT=
:*&nbsp; Aufgrund der Symmetrie des des BSC&ndash;Modells&nbsp; führen gleichwahrscheinliche Symbole&nbsp; $(p_{\rm A} = p_{\rm B} = 0.5)$&nbsp; zum Optimum &nbsp; &rArr; &nbsp; $C_{\rm BSC}=0.531$.
+
'''(6)'''&nbsp; What is the capacity&nbsp; $C_6$&nbsp; of this channel with&nbsp; $p_{\rm b \vert A} = 0.05$,&nbsp; $ p_{\rm a \vert B} = 0.4$?&nbsp; Is the error probability&nbsp; $0$&nbsp; possible with the code rate&nbsp; $R=0.3$? }}
:*&nbsp; Am besten ist natürlich der ideale Kanal&nbsp; $(p_{\rm A} = p_{\rm B} = 0)$&nbsp; &rArr; &nbsp; $C_{\rm BSC}=1$.&nbsp; Der schlesteste BSC&ndash;Kanal ist durch&nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; festgelegt &nbsp; &rArr; &nbsp;  $C_{\rm BSC}=0$. 
 
  
 +
:*&nbsp; $C_6=0.284$&nbsp; is the maximum of&nbsp; $I(X;\ Y)$&nbsp; for &nbsp; $p_{\rm A} =0.55$&nbsp; &rArr; &nbsp;$p_{\rm B} =0. 45$.&nbsp; Simulation over&nbsp; ten times&nbsp; $N=10^5$:&nbsp; $0.281 \le I_{\rm Sim}(X;\ Y) \le 0.289$.
 +
:*&nbsp; With the code rate&nbsp; $R=0.3 > C_6$&nbsp; an arbitrarily small block error probability is not achievable even with the best possible coding.
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(3)'''&nbsp; Es gelten weiter die Einstellungen von '''(1)'''. Wie unterscheiden sich der Mittelwert $m_1$ und die Streuung $\sigma$ der beiden Binomialverteilungen?
+
'''(7)'''&nbsp; Now let&nbsp; $p_{\rm A} = p_{\rm B}$,&nbsp; $p_{\rm b \vert A} = 0$,&nbsp; $ p_{\rm a \vert B} = 0.5$. &nbsp; What property does this asymmetric channel exhibit?&nbsp; What values result for&nbsp; $H(X)$,&nbsp; $H(X \vert Y)$,&nbsp; $I(X;\ Y)$&nbsp;? }}
:Welche Unterschiede ergeben sich  zwischen beiden Verteilungen hinsichtlich Mittelwert $m_1$ und Varianz $\sigma^2$?}}
 
  
 +
:*&nbsp; The symbol&nbsp; $\rm A$&nbsp; is never falsified, the symbol&nbsp; $\rm B$&nbsp; with (information theoretically) maximum falsification probability&nbsp; $ p_{\rm a \vert B} = 0.5$
 +
:*&nbsp; The total falsification probability is&nbsp; $ {\rm Pr} (Y_n \ne X_n)= p_{\rm A} \cdot p_{\rm b \vert A} + p_{\rm B} \cdot p_{\rm a \vert B}= 0.25$&nbsp; &rArr; &nbsp; about&nbsp; $25\%$&nbsp; of the output sink symbols are "purple".
 +
:*&nbsp; Joint probabilities:&nbsp; $p_{\rm Aa}= 1/2,\ p_{\rm Ab}= 0,\ p_{\rm Ba}= p_{\rm Bb}= 1/4$,&nbsp; &nbsp; Inference probabilities: &nbsp; $p_{\rm A \vert a}= 1,\ p_{\rm B \vert a}= 0,\ p_{\rm A \vert b}= 1/3,\ p_{\rm B \vert b}= 2/3$.
 +
:*&nbsp; From this we get for equivocation&nbsp; $H(X \vert Y)=0.689$; &nbsp; with source entropy&nbsp; $H(X)= 1$ &nbsp; &rArr; &nbsp; $I(X;\vert Y)=H(X)-H(X \vert Y)=0.311$.
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Mittelwert:}\hspace{0.2cm}m_\text{1} = I \cdot p\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m_\text{1, Blau} = 5 \cdot 0.4\underline{ = 2 =}  \ m_\text{1, Rot} = 10 \cdot 0.2; $
+
{{BlueBox|TEXT=
 +
'''(8)'''&nbsp; What is the capacity&nbsp; $C_8$&nbsp; of this channel with&nbsp; $p_{\rm b \vert A} = 0.05$,&nbsp; $ p_{\rm a \vert B} = 035$?&nbsp; Is the error probability&nbsp; $0$&nbsp; possible with the code rate&nbsp; $R=0.3$? }}
  
$\hspace{1.85cm}\text{Streuung:}\hspace{0.4cm}\sigma = \sqrt{I \cdot p \cdot (1-p)} = \sqrt{m_1 \cdot (1-p)}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_{\rm Blau} = \sqrt{2 \cdot 0.6} =1.095 < \sigma_{\rm Rot} = \sqrt{2 \cdot 0.8} = 1.265.$
+
:*&nbsp; $C_8=0.326$&nbsp; is the maximum of&nbsp; $I(X;\ Y)$&nbsp; for &nbsp; $p_{\rm A} =0.55$.&nbsp; Thus, because of&nbsp; $C_8 >R=0.3 $&nbsp; an arbitrarily small block error probability is achievable.
 +
:*&nbsp; The only difference compared to&nbsp; $(6)$ &nbsp; &rArr; &nbsp; $C_6=0.284 < 0.3$&nbsp; is the slightly smaller falsification probability&nbsp; $ p_{\rm a \vert B} = 0.35$&nbsp; instead of&nbsp; $ p_{\rm a \vert B} = 0.4$.
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(4)'''&nbsp; Setzen Sie '''Blau''': Binomialverteilung $(I=15, p=0.3)$ und '''Rot''': Poissonverteilung $(\lambda=4.5)$.
+
'''(9)'''&nbsp; We consider the ideal ternary channel:&nbsp; $p_{\rm a \vert A} = p_{\rm b \vert B}=p_{\rm c \vert C}=1$.&nbsp; What is its capacity&nbsp; $C_9$?&nbsp; What is the maximum mutual information displayed by the program? }}
:Welche Unterschiede ergeben sich  zwischen beiden Verteilungen hinsichtlich Mittelwert $m_1$ und Varianz $\sigma^2$?}}
 
  
 +
:*&nbsp; Due to the symmetry of the channel model, equally probable symbols&nbsp; $(p_{\rm A} = p_{\rm B}=p_{\rm C}=1/3)$&nbsp; lead to the channel capacity:&nbsp; $C_9 = \log_2\ (3) = 1.585$.
 +
:*&nbsp; Since in the program all parameter values can only be entered with a resolution of&nbsp; $0.05$&nbsp;, for&nbsp; $I(X;\ Y)$&nbsp; this maximum value is not reached.
 +
:*&nbsp; Possible approximations:&nbsp; $p_{\rm A} = p_{\rm B}= 0.3, \ p_{\rm C}=0.4$&nbsp; &rArr; &nbsp; $I(X;\ Y)= 1. 571$ &nbsp; &nbsp; # &nbsp; &nbsp; $p_{\rm A} = p_{\rm B}= 0.35, \ p_{\rm C}=0.3$&nbsp; &rArr; &nbsp; $I(X;\ Y)= 1.581$. 
 +
 +
{{BlueBox|TEXT=
 +
'''(10)'''&nbsp; Let the source symbols be (nearly) equally probable.&nbsp; Interpret the other settings and the results.  }}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Beide Verteilungern haben gleichen Mittelwert:}\hspace{0.2cm}m_\text{1, Blau} = I \cdot p\ = 15 \cdot 0.3\hspace{0.15cm}\underline{ = 4.5 =} \ m_\text{1, Rot} = \lambda$;
+
:*&nbsp; The falsification probabilities are&nbsp; $p_{\rm b \vert A} = p_{\rm c \vert B}=p_{\rm a \vert C}=1$ &nbsp; &rArr; &nbsp; no single sink symbol is equal to the source symbol.
 +
:*&nbsp; This cyclic mapping has no effect on the channel capacity:&nbsp; $C_{10} = C_9 = 1.585$.&nbsp; The program returns&nbsp; ${\rm Max}\big[I(X;\ Y)\big]= 1.581$.
  
$\hspace{1.85cm} \text{Binomialverteilung: }\hspace{0.2cm} \sigma_\text{Blau}^2 = m_\text{1, Blau} \cdot (1-p)\hspace{0.15cm}\underline { = 3.15} \le \text{Poissonverteilung: }\hspace{0.2cm} \sigma_\text{Rot}^2 = \lambda\hspace{0.15cm}\underline { = 4.5}$;
+
{{BlueBox|TEXT=
 +
'''(11)'''&nbsp; We consider up to and including&nbsp; $(13)$&nbsp; the same ternary source. &nbsp; What results are obtained for&nbsp; $p_{\rm b \vert A} = p_{\rm c \vert B}=p_{\rm a \vert C}=0.2$&nbsp; and&nbsp; $p_{\rm c \vert A} = p_{\rm a \vert B}=p_{\rm b \vert C}=0$?  }}
 +
:*&nbsp; Each symbol can only be falsified into one of the two possible other symbols.&nbsp; From&nbsp; $p_{\rm b \vert A} = p_{\rm c \vert B}=p_{\rm a \vert C}=0.2$&nbsp; it follows&nbsp; $p_{\rm a \vert A} = p_{\rm b \vert B}=p_{\rm c \vert C}=0.8$.
 +
:*&nbsp; This gives us for the maximum mutual information&nbsp; ${\rm Max}\big[I(X;\ Y)\big]= 0.861$&nbsp; and for the channel capacity a slightly larger value:&nbsp; $C_{11} \gnapprox 0.861$.
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(5)'''&nbsp; Es gelten die Einstellungen von '''(4)'''. Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(\gt 10)$ und ${\rm Pr}(z \gt 15)$?}}
+
'''(12)'''&nbsp; How do the results change if each symbol is &nbsp; $80\%$&nbsp; transferred correctly and &nbsp; $10\%$&nbsp; falsified each in one of the other two symbols?    }}
 +
:*&nbsp; Although the probability of correct transmission is with&nbsp; $80\%$&nbsp; as large as in&nbsp; '''(11)''', here the channel capacity&nbsp; $C_{12} \gnapprox 0.661$ is smaller.
 +
:*&nbsp; If one knows for the channel&nbsp; $(11)$&nbsp; that&nbsp; $X = \rm A$&nbsp; has been falsified, one also knows&nbsp; $Y = \rm b$.&nbsp; But not for channel&nbsp; $(12)$&nbsp;  &rArr; &nbsp; the channel is less favorable.
  
 +
{{BlueBox|TEXT=
 +
'''(13)'''&nbsp; Let the falsification probabilities now be&nbsp; $p_{\rm b \vert A} = p_{\rm c \vert A} = p_{\rm a \vert B} = p_{\rm c \vert B}=p_{\rm a \vert C}=p_{\rm b \vert C}=0.5$.&nbsp; Interpret this redundancy-free ternary channel.  }}
 +
:*&nbsp; No single sink symbol is equal to its associated source symbol; with respect to the other two symbols, a &nbsp;$50\hspace{-0.1cm}:\hspace{-0.1cm}50$&nbsp; decision must be made.
 +
:*&nbsp; Nevertheless, here the channel capacity is &nbsp;$C_{13} \gnapprox 0.584$&nbsp; only slightly smaller than in the previous experiment:&nbsp; $C_{12} \gnapprox 0.661$.
 +
:*&nbsp; The channel capacity&nbsp; $C=0$&nbsp; results for the redundancy-free ternary channel exactly for the case where all nine falsification probabilities are equal to&nbsp; $1/3$&nbsp;.
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomial: }\hspace{0.2cm} {\rm Pr}(z  \gt 10) = 1 - {\rm Pr}(\le 10) = 1 - 0.9993 = 0.0007;\hspace{0.3cm} {\rm Pr}(z \gt 15) = 0 \ {\rm (exakt)}$.
+
{{BlueBox|TEXT=
 +
'''(14)'''&nbsp; What is the capacity $C_{14}$ of the ternary channel with&nbsp; $p_{\rm b \vert A} = p_{\rm a \vert B}= 0$&nbsp; and&nbsp; $p_{\rm c \vert A} = p_{\rm c \vert B} = p_{\rm a \vert C}=p_{\rm b \vert C}=0. 1$&nbsp; &rArr; &nbsp; $p_{\rm a \vert A} = p_{\rm b \vert B}=0.9$, &nbsp; $p_{\rm c \vert C} =0.8$?    }}
 +
:*&nbsp; With the default&nbsp; $p_{\rm A}=p_{\rm B}=0.2$ &nbsp; &rArr; &nbsp; $p_{\rm C}=0.6$&nbsp; we get&nbsp; $I(X;\ Y)= 0.738$.&nbsp; Now we are looking for "better" symbol probabilities.
 +
:*&nbsp; From the symmetry of the channel, it is obvious that&nbsp; $p_{\rm A}=p_{\rm B}$&nbsp; is optimal.&nbsp; The channel capacity&nbsp; $C_{14}=0.995$&nbsp; is obtained for&nbsp; $p_{\rm A}=p_{\rm B}=0.4$ &nbsp; &rArr; &nbsp; $p_{\rm C}=0.2$.
 +
:*&nbsp; Example:&nbsp; Ternary transfer if the middle symbol&nbsp; $C$&nbsp; can be distorted in two directions, but the outer symbols can only be distorted in one direction at a time.
 +
<br><br>
  
$\hspace{1.85cm}\text{Poisson: }\hspace{0.2cm} {\rm Pr}(z  \gt 10) = 1 - 0.9933 = 0.0067;\hspace{0.3cm}{\rm Pr}(z \gt 15) \gt  0 \ ( \approx 0)$
+
==Applet Manual==
 +
<br>
 +
[[File:Anleitung_transinformation.png|left|600px|frame|Screenshot of the German version]]
 +
<br><br><br><br>
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Select whether &nbsp;"analytically"&nbsp; or &nbsp;"by simulation"
  
$\hspace{1.85cm} \text{Näherung: }\hspace{0.2cm}{\rm Pr}(z \gt 15) \ge {\rm Pr}(z = 16) = \lambda^{16}/{16!}\approx 2 \cdot 10^{-22}$.
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Setting of the parameter&nbsp; $N$&nbsp; for the simulation
  
{{BlaueBox|TEXT=
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Option to select&nbsp;"binary source"&nbsp; or &nbsp;"ternary source"
'''(6)'''&nbsp; Es gelten weiter die Einstellungen von '''(4)'''. Mit welchen Parametern ergeben sich symmetrische Verteilungen um $m_1$?}}
 
  
 +
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Setting of the symbol probabilities
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomialverung mit }p = 0.5\text{:  }p_\mu =  {\rm Pr}(z  = \mu)\text{ symmetrisch um } m_1 = I/2 = 7.5 \ ⇒  \ p_μ = p_{I–μ}\ ⇒  \  p_8 = p_7, \ p_9 = p_6,  \text{usw.}$
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Setting of the transition probabilities
  
$\hspace{1.85cm}\text{Die Poissonverteilung wird dagegen nie symmetrisch, da sie sich bis ins Unendliche erstreckt!}$
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Numerical output of different probabilities
  
==Zur Handhabung des Applets==
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Two diagrams with the information theoretic quantities
[[File:Handhabung_binomial.png|left|600px]]
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Vorauswahl für blauen Parametersatz
 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parametereingabe $I$ und $p$ per Slider
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Output of an exemplary source symbol sequence
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Vorauswahl für roten Parametersatz
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Associated simulated sink symbol sequence
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parametereingabe $\lambda$ per Slider
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Exercise area:  Selection, questions, sample solutions
 +
<br clear=all>
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Graphische Darstellung der Verteilungen
+
==About the Authors==
 +
<br>
 +
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ $\text{Institute for Communications Engineering}$]&nbsp; at the&nbsp; [https://www.tum.de/en $\text{Technical University of Munich}$].
 +
*The first version was created in 2010 by&nbsp; [[Biographies_and_Bibliographies/Students_involved_in_LNTwww#Martin_V.C3.B6lkl_.28Diplomarbeit_LB_2010.29|Martin Völkl]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript”.&nbsp; Supervisor:&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LNT#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28at_LNT_since_1974.29|Günter Söder]]&nbsp; and&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LNT#Dr.-Ing._Klaus_Eichin_.28at_LNT_from_1972-2011.29|Klaus Eichin]].
 +
 +
*In 2020 the program was redesigned via HTML5/JavaScript by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Veronika_Hofmann_.28Ingenieurspraxis_Math_2020.29|Veronika Hofmann]]&nbsp;  (Ingenieurspraxis Mathematik, Supervisor:&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LÜT#Benedikt_Leible.2C_M.Sc._.28at_L.C3.9CT_since_2017.29|Benedikt Leible]]&nbsp; and&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LÜT#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28at_L.C3.9CT_from_2014-2022.29|Tasnád Kernetzky]].
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Momentenausgabe für blauen Parametersatz
+
*Last revision and English version 2021 by&nbsp; [[Biographies_and_Bibliographies/Students_involved_in_LNTwww#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp;  
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Momentenausgabe für roten Parametersatz
+
*The conversion of this applet was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ $\text{Studienzuschüsse}$]&nbsp; $($TUM Department of Electrical and Computer Engineering$)$.&nbsp; $\text{Many thanks}$.
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Variation der grafischen Darstellung
 
  
  
$\hspace{1.5cm}$&bdquo;$+$&rdquo; (Vergrößern),
+
==Once again: Open Applet in new Tab==
 
 
$\hspace{1.5cm}$ &bdquo;$-$&rdquo; (Verkleinern)
 
 
 
$\hspace{1.5cm}$ &bdquo;$\rm o$&rdquo; (Zurücksetzen)
 
 
 
$\hspace{1.5cm}$ &bdquo;$\leftarrow$&rdquo; (Verschieben nach links),  usw.
 
 
 
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Ausgabe von ${\rm Pr} (z = \mu)$ und ${\rm Pr} (z  \le \mu)$
 
 
 
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung
 
<br clear=all>
 
<br>'''Andere Möglichkeiten zur Variation der grafischen Darstellung''':
 
*Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
 
*Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
 
 
 
==Über die Autoren==
 
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 
*Die erste Version wurde 2003 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
*2018 wurde das Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]]  (Bachelorarbeit, Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] )  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
 
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
+
{{LntAppletLinkEnDe|transinformation_en|transinformation}}
  
{{LntAppletLink|verteilungen}}
+
==References==

Latest revision as of 11:17, 26 October 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


In this applet,  binary  $(M=2)$  and ternary  $(M=3)$  channel models without memory are considered with  $M$  possible inputs  $(X)$  and  $M$  possible outputs  $(Y)$.  Such a channel is completely determined by the  "probability mass function"  $P_X(X)$  and the matrix  $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm} \vert \hspace{0.03cm} X)$  of the  "transition probabilities".

For these binary and ternary systems,  the following information-theoretic descriptive quantities are derived and clarified:

  • the  "source entropy"   $H(X)$  and the  "sink entropy"   $H(Y)$,
  • the  "equivocation"   $H(X|Y)$  and the   "irrelevance"   $H(Y|X)$,
  • the  "joint entropy"   $H(XY)$  as well as the "mutual information"  $I(X; Y)$,
  • the  "channel capacity"   as the decisive parameter of digital channel models without memory:
$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$

These information-theoretical quantities can be calculated both in analytic–closed form or determined simulatively by evaluation of source and sink symbol sequence.

Theoretical Background


Underlying model of digital signal transmission


The set of possible  »source symbols«  is characterized by the discrete random variable  $X$. 

  • In the binary case   ⇒   $M_X= |X| = 2$  holds  $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B} \hspace{0.05cm}\}$  with the probability mass function   $($ $\rm PMF)$   $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B}\big)$  and the source symbol probabilities  $p_{\rm A}$  and  $p_{\rm B}=1- p_{\rm A}$.
  • Accordingly, for a ternary source  ⇒   $M_X= |X| = 3$:     $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B}, \hspace{0.15cm} {\rm C} \hspace{0.05cm}\}$,     $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B},\hspace{0.15cm}p_{\rm C}\big)$,     $p_{\rm C}=1- p_{\rm A}-p_{\rm B}$.


The set of possible  »sink symbols«  is characterized by the discrete random variable  $Y$.  These come from the same symbol set as the source symbols   ⇒   $M_Y=M_X = M$.  To simplify the following description, we denote them with lowercase letters, for example, for  $M=3$:    $Y = \{\hspace{0.05cm}{\rm a}, \hspace{0.15cm} {\rm b}, \hspace{0.15cm} {\rm c} \hspace{0.05cm}\}$.

The relationship between the random variables  $X$  and  $Y$  is given by a   »discrete memoryless channel model«  $($ $\rm DMC)$.  The left graph shows this for  $M=2$  and the right graph for  $M=3$.

  $M=2$  (left) and for  $M=3$  (right).     Please note:  In the right graph not all transitions are labeled

The following description applies to the simpler case  $M=2$.  For the calculation of all information theoretic quantities in the next section we need besides  $P_X(X)$  and  $P_Y(Y)$  the two-dimensional probability functions  $($each a  $2\times2$–matrix$)$  of all

  1.   "conditional probabilities"   ⇒   $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm} \vert \hspace{0.03cm} X)$   ⇒   given by the DMC model;
  2.   "joint probabilities"  ⇒   $P_{XY}(X,\hspace{0.1cm}Y)$;
  3.   "inference probabilities"   ⇒   $P_{\hspace{0.01cm}X\hspace{0.03cm} \vert \hspace{0.03cm}Y}(X\hspace{0.03cm} \vert \hspace{0.03cm} Y)$.


Considered model of the binary channel

$\text{Example 1}$:  We consider the sketched binary channel.

  • Let the falsification probabilities be:
$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\ p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.40\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.60\end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{\hspace{0.01cm}Y\hspace{0.05cm} \vert \hspace{0.05cm}X}(Y\hspace{0.05cm} \vert \hspace{0.05cm} X) = \begin{pmatrix} 0.95 & 0.05\\ 0.4 & 0.6 \end{pmatrix} \hspace{0.05cm}.$$
  • Furthermore, we assume source symbols that are not equally probable:
$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )= \big ( 0.1,\ 0.9 \big ) \hspace{0.05cm}.$$
  • Thus, for the probability function of the sink we get:
$$P_Y(Y) = \big [ {\rm Pr}( Y\hspace{-0.1cm} = {\rm a})\hspace{0.05cm}, \ {\rm Pr}( Y \hspace{-0.1cm}= {\rm b}) \big ] = \big ( 0.1\hspace{0.05cm},\ 0.9 \big ) \cdot \begin{pmatrix} 0.95 & 0.05\\ 0.4 & 0.6 \end{pmatrix} $$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}( Y \hspace{-0.1cm}= {\rm a}) = 0.1 \cdot 0.95 + 0.9 \cdot 0.4 = 0.455\hspace{0.05cm},\hspace{1.0cm} {\rm Pr}( Y \hspace{-0.1cm}= {\rm b}) = 1 - {\rm Pr}( Y \hspace{-0.1cm}= {\rm a}) = 0.545.$$
  • The joint probabilities  $p_{\mu \kappa} = \text{Pr}\big[(X = μ) ∩ (Y = κ)\big]$  between source and sink are:
$$\begin{align*}p_{\rm Aa} & = p_{\rm a} \cdot p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.095\hspace{0.05cm},\hspace{0.5cm}p_{\rm Ab} = p_{\rm b} \cdot p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.005\hspace{0.05cm},\\ p_{\rm Ba} & = p_{\rm a} \cdot p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} = 0.360\hspace{0.05cm}, \hspace{0.5cm}p_{\rm Bb} = p_{\rm b} \cdot p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = 0.540\hspace{0.05cm}. \end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{XY}(X,\hspace{0.1cm}Y) = \begin{pmatrix} 0.095 & 0.005\\ 0.36 & 0.54 \end{pmatrix} \hspace{0.05cm}.$$
  • For the inference probabilities one obtains:
$$\begin{align*}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}a} & = p_{\rm Aa}/p_{\rm a} = 0.095/0.455 = 0.2088\hspace{0.05cm},\hspace{0.5cm}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}b} = p_{\rm Ab}/p_{\rm b} = 0.005/0.545 = 0.0092\hspace{0.05cm},\\ p_{\rm B\hspace{0.03cm}\vert \hspace{0.03cm}a} & = p_{\rm Ba}/p_{\rm a} = 0.36/0.455 = 0.7912\hspace{0.05cm},\hspace{0.5cm}p_{\rm B\hspace{0.03cm}\vert \hspace{0.03cm}b} = p_{\rm Bb}/p_{\rm b} = 0.54/0.545 = 0.9908\hspace{0.05cm} \end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{\hspace{0.01cm}X\hspace{0.05cm} \vert \hspace{0.05cm}Y}(X\hspace{0.05cm} \vert \hspace{0.05cm} Y) = \begin{pmatrix} 0.2088 & 0.0092\\ 0.7912 & 0.9908 \end{pmatrix} \hspace{0.05cm}.$$




Definition and interpretation of various entropy functions


In the  "theory section",  all entropies relevant for two-dimensional random quantities are defined, which also apply to digital signal transmission.  In addition, you will find two diagrams illustrating the relationship between the individual entropies. 

  • For digital signal transmission the right representation is appropriate, where the direction from source  $X$  to the sink  $Y$  is recognizable. 
  • We now interpret the individual information-theoretical quantities on the basis of this diagram.


Two information-theoretic models for digital signal transmission.
    Please note:  In the right graph  $H_{XY}$  cannot be represented
  • The  »source entropy«  $H(X)$  denotes the average information content of the source symbol sequence.  With the symbol set size  $|X|$  applies:
$$H(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(X)}\right ] \hspace{0.1cm} = -{\rm E} \big [ {\rm log}_2 \hspace{0.1cm}{P_X(X)}\big ] \hspace{0.2cm} =\hspace{0.2cm} \sum_{\mu = 1}^{|X|} P_X(x_{\mu}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(x_{\mu})} \hspace{0.05cm}.$$
  • The  »equivocation«  $H(X|Y)$  indicates the average information content that an observer who knows exactly about the sink  $Y$  gains by observing the source  $X$ :
$$H(X|Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}X\hspace{-0.01cm}|\hspace{-0.01cm}Y}(X\hspace{-0.01cm} |\hspace{0.03cm} Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|} P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}X\hspace{-0.01cm}|\hspace{0.03cm}Y} (\hspace{0.05cm}x_{\mu}\hspace{0.03cm} |\hspace{0.05cm} y_{\kappa})} \hspace{0.05cm}.$$
  • The equivocation is the portion of the source entropy  $H(X)$  that is lost due to channel interference  (for digital channel: transmission errors).  The  »mutual information«  $I(X; Y)$  remains, which reaches the sink:
$$I(X;Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)}{P_X(X) \cdot P_Y(Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|} P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa})}{P_{\hspace{0.05cm}X}(\hspace{0.05cm}x_{\mu}) \cdot P_{\hspace{0.05cm}Y}(\hspace{0.05cm}y_{\kappa})} \hspace{0.05cm} = H(X) - H(X|Y) \hspace{0.05cm}.$$
  • The  »irrelevance«  $H(Y|X)$  indicates the average information content that an observer who knows exactly about the source  $X$  gains by observing the sink  $Y$:
$$H(Y|X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{-0.01cm}X}(Y\hspace{-0.01cm} |\hspace{0.03cm} X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|} P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.03cm}X} (\hspace{0.05cm}y_{\kappa}\hspace{0.03cm} |\hspace{0.05cm} x_{\mu})} \hspace{0.05cm}.$$
  • The  »sink entropy«  $H(Y)$, the mean information content of the sink.  $H(Y)$  is the sum of the useful mutual information  $I(X; Y)$  and the useless irrelevance  $H(Y|X)$, which comes exclusively from channel errors:
$$H(Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_Y(Y)}\right ] \hspace{0.1cm} = -{\rm E} \big [ {\rm log}_2 \hspace{0.1cm}{P_Y(Y)}\big ] \hspace{0.2cm} =I(X;Y) + H(Y|X) \hspace{0.05cm}.$$
  • The  »joint entropy«  $H(XY)$  is the average information content of the 2D random quantity  $XY$.  It also describes an upper bound for the sum of source entropy and sink entropy:
$$H(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] = \sum_{\mu = 1}^{|X|} \hspace{0.1cm} \sum_{\kappa = 1}^{|Y|} \hspace{0.1cm} P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa}) \cdot {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa})}\le H(X) + H(Y) \hspace{0.05cm}.$$


Considered model of the binary channel

$\text{Example 2}$:  The same requirements as for  $\text{Example 1}$ apply: 

(1)  The source symbols are not equally probable:

$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )= \big ( 0.1,\ 0.9 \big ) \hspace{0.05cm}.$$

(2)  Let the falsification probabilities be:

$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\ p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.40\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.60\end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{\hspace{0.01cm}Y\hspace{0.05cm} \vert \hspace{0.05cm}X}(Y\hspace{0.05cm} \vert \hspace{0.05cm} X) = \begin{pmatrix} 0.95 & 0.05\\ 0.4 & 0.6 \end{pmatrix} \hspace{0.05cm}.$$
Binary entropy function as a function of  $p$
$$H(X) = p_{\rm A} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm A}\hspace{0.1cm} } + p_{\rm B} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_{\rm B} }= H_{\rm bin} (p_{\rm A}) = H_{\rm bin} (0.1)= 0.469 \ {\rm bit} \hspace{0.05cm};$$
$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + (1 - p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1 - p} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/symbol)} \hspace{0.05cm}.$$
  • Correspondingly, for the sink entropy with PMF  $P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b} \big )= \big ( 0.455,\ 0.545 \big )$:
$$H(Y) = H_{\rm bin} (0.455)= 0.994 \ {\rm bit} \hspace{0.05cm}.$$
  • Next, we calculate the joint entropy:
$$H(XY) = p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm} }+ p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }+p_{\rm Ba} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ba}\hspace{0.1cm} }+ p_{\rm Bb} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Bb}\hspace{0.1cm} }$$
$$\Rightarrow \hspace{0.3cm}H(XY) = 0.095 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.095 } +0.005 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.005 }+0.36 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.36 }+0.54 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.54 }= 1.371 \ {\rm bit} \hspace{0.05cm}.$$

According to the upper left diagram, the remaining information-theoretic quantities are thus also computable:

Information-theoretic model for  $\text{Example 2}$
  • the  »equivocation«:
$$H(X \vert Y) \hspace{-0.01cm} =\hspace{-0.01cm} H(XY) \hspace{-0.01cm} -\hspace{-0.01cm} H(Y) \hspace{-0.01cm} = \hspace{-0.01cm} 1.371\hspace{-0.01cm} -\hspace{-0.01cm} 0.994\hspace{-0.01cm} =\hspace{-0.01cm} 0.377\ {\rm bit} \hspace{0.05cm},$$
  • the »irrelevance«:
$$H(Y \vert X) = H(XY) - H(X) = 1.371 - 0.994 = 0.902\ {\rm bit} \hspace{0.05cm}.$$
  • the  »mutual information« :
$$I(X;Y) = H(X) + H(Y) - H(XY) = 0.469 + 0.994 - 1.371 = 0.092\ {\rm bit} \hspace{0.05cm},$$

The results are summarized in the graph.

Note:  Equivocation and irrelevance could also be computed (but with extra effort) directly from the corresponding probability functions, for example:

$$H(Y \vert X) = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.05cm}\in \hspace{0.05cm}XY} \hspace{-0.2cm} P_{XY}(x,\hspace{0.05cm}y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}\vert \hspace{0.03cm}X} (\hspace{0.05cm}y\hspace{0.03cm} \vert \hspace{0.05cm} x)}= p_{\rm Aa} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} } + p_{\rm Ab} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} } + p_{\rm Ba} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} } + p_{\rm Bb} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} } = 0.902 \ {\rm bit} \hspace{0.05cm}.$$


Considered model of the ternary channel:
    Red transitions represent  $p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}C} = q$  and
    blue ones for  $p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}A} =\text{...}= p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}C}= (1-q)/2$

$\text{Example 3}$:  Now we consider a transmission system with  $M_X = M_Y = M=3$. 

(1)  Let the source symbols be equally probable:

$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B},\ p_{\rm C} \big )= \big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(X)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit} \hspace{0.05cm}.$$

(2)  The channel model is symmetric   ⇒   the sink symbols are also equally probable:

$$P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b},\ p_{\rm c} \big )= \big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(Y)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit} \hspace{0.05cm}.$$

(3)  The joint probabilities are obtained as follows:

$$p_{\rm Aa}= p_{\rm Bb}= p_{\rm Cc}= q/M,$$
$$p_{\rm Ab}= p_{\rm Ac}= p_{\rm Ba}= p_{\rm Bc} = p_{\rm Ca}= p_{\rm Cb} = (1-q)/(2M)$$
$$\Rightarrow\hspace{0.30cm}H(XY) = 3 \cdot p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm} }+6 \cdot p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }= \ \text{...} \ = q \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{q }+ (1-q) \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{(1-q)/2 }.$$
Some results for  $\text{Example 3}$

(4)  For the mutual information we get after some transformations considering the equation 

$$I(X;Y) = H(X) + H(Y) - H(XY)\text{:}$$
$$\Rightarrow \hspace{0.3cm} I(X;Y) = {\rm log_2}\ (M) - (1-q) -H_{\rm bin}(q).$$
  • For error-free ternary transfer  $(q=1)$  holds  $I(X;Y) = H(X) = H(Y)={\rm log_2}\hspace{0.1cm}3$.
  • With  $q=0.8$  the mutual information already decreases to  $I(X;Y) = 0.663$,  with  $q=0.5$  to  $0.085$  bit.
  • The worst case from the point of view of information theory is  $q=1/3$  ⇒   $I(X;Y) = 0$.
  • On the other hand, the worst case from the point of view of transmission theory is  $q=0$  ⇒   "not a single transmission symbol arrives correctly"  is not so bad from the point of view of information theory.
  • In order to be able to use this good result, however, channel coding is required at the transmitting end.



Definition and meaning of channel capacity


If one calculates the mutual information  $I(X, Y)$  as explained in  $\text{Example 2}$,  then this depends not only on the discrete memoryless channel  $\rm (DMC)$,  but also on the source statistic   ⇒   $P_X(X)$.  Ergo:   The mutual information  $I(X, Y)$  is not a pure channel characteristic.

$\text{Definition:}$  The  »channel capacity«  introduced by  $\text{Claude E. Shannon}$  according to his standard work  [Sha48][1]:

$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$
  • The additional unit  "bit/use"  is often added.  Since according to this definition the best possible source statistics are always the basis:
⇒   $C$  depends only on the channel properties   ⇒   $P_{Y \vert X}(Y \vert X)$   but not on the source statistics   ⇒   $P_X(X)$. 


Shannon needed the quantity  $C$  to formulate the  "Channel Coding Theorem"  –  one of the highlights of the information theory he founded.

$\text{Shannon's Channel Coding Theorem:}$ 

  • For every transmission channel with channel capacity  $C > 0$,  there exists  $($at least$)$  one  $(k,\ n)$  block code,  whose  $($block$)$  error probability approaches zero  as long as the code rate  $R = k/n$  is less than or equal to the channel capacity:  
$$R ≤ C.$$
  • The prerequisite for this,  however,  is that the following applies to the block length of this code:  
$$n → ∞.$$

$\text{Reverse of Shannon's channel coding theorem:}$ 

If the rate  $R$  of the  $(n$,  $k)$ block code used is larger than the channel capacity  $C$,  then an arbitrarily small block error probability can never be achieved.


Information-theoretic quantities for
different  $p_{\rm A}$  and  $p_{\rm B}= 1- p_{\rm A}$

$\text{Example 4}$:  We consider the same discrete memoryless channel as in  $\text{Example 2}$. 

  • The symbol probabilities  $p_{\rm A} = 0.1$  and  $p_{\rm B}= 1- p_{\rm A}=0.9$  were assumed. 
  • The mutual information is  $I(X;Y)= 0.092$  bit/channel use   ⇒   first row,  see fourth column in the table.


The  »channel capacity«  is the mutual information  $I(X, Y)$  with best possible symbol probabilities
    $p_{\rm A} = 0.55$  and  $p_{\rm B}= 1- p_{\rm A}=0.45$:

$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = 0.284 \ \rm bit/channel \hspace{0.05cm} access \hspace{0.05cm}.$$

From the table you can see further  $($we do without the additional unit "bit/channel use" in the following$)$:

  1. The parameter  $p_{\rm A} = 0.1$  was chosen very unfavorably,  because with the present channel the symbol  $\rm A$  is more falsified than  $\rm B$. 
  2. Already with  $p_{\rm A} = 0.9$  the mutual information results in a somewhat better value:  $I(X; Y)=0.130$.
  3. For the same reason  $p_{\rm A} = 0.55$,  $p_{\rm B} = 0.45$  gives a slightly better result than equally probable symbols  $(p_{\rm A} = p_{\rm B} =0.5)$.
  4. The more asymmetric the channel is,  the more the optimal probability function  $P_X(X)$  deviates from the uniform distribution.  Conversely:  If the channel is symmetric,  the uniform distribution is always obtained.


The ternary channel of  $\text{Example 3}$  is symmetric.  Therefore here  $P_X(X) = \big ( 1/3,\ 1/3,\ 1/3 \big )$  is optimal for each  $q$–value,  and the mutual information  $I(X;Y)$  given in the result table is at the same time the channel capacity  $C$.



Exercises


  • First, select the number  $(1,\ 2, \text{...} \ )$  of the task to be processed.  The number  "$0$"  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values are adjusted.  Solution after pressing "Show Solution".
  • Source symbols are denoted by uppercase letters  (binary:  $\rm A$,  $\rm B$),  sink symbols by lowercase letters  ($\rm a$,  $\rm b$).  Error-free transmission:  $\rm A \rightarrow a$.
  • For all entropy values, the unit "bit/use" would have to be added.


(1)  Let  $p_{\rm A} = p_{\rm B} = 0.5$  and  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$.  What is the channel model?  What are the entropies  $H(X), \, H(Y)$  and the mutual information  $I(X;\, Y)$?

  •   Considered is the BSC model  (Binary Symmetric Channel).  Because of  $p_{\rm A} = p_{\rm B} = 0.5$  it holds for the entropies:  $H(X) = H(Y) = 1$.
  •   Because of  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$  eqivocation and irrelevance are also equal:  $H(X \vert Y) = H(Y \vert X) = H_{\rm bin}(p_{\rm b \vert A}) = H_{\rm bin}(0.1) =0.469$.
  •   The mutual information is  $I(X;\, Y) = H(X) - H(X \vert Y)= 1-H_{\rm bin}(p_{\rm b \vert A}) = 0.531$  and the joint entropy is  $H(XY) =1.469$.

(2)  Let further  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$, but now the symbol probability is  $p_{\rm A} = 0. 9$.  What is the capacity  $C_{\rm BSC}$  of the BSC channel with  $p_{\rm b \vert A} = p_{\rm a \vert B}$?
        Which  $p_{\rm b \vert A} = p_{\rm a \vert B}$  leads to the largest possible channel capacity and which  $p_{\rm b \vert A} = p_{\rm a \vert B}$  leads to the channel capacity  $C_{\rm BSC}=0$?

  •   The capacity  $C_{\rm BSC}$  is equal to the maximum mutual information  $I(X;\, Y)$  considering the optimal symbol probabilities.
  •   Due to the symmetry of the BSC model  equally probable symbols  $(p_{\rm A} = p_{\rm B} = 0.5)$  lead to the optimum   ⇒   $C_{\rm BSC}=0.531$.
  •   The best is the  "ideal channel"  $(p_{\rm b \vert A} = p_{\rm a \vert B} = 0)$  ⇒   $C_{\rm BSC}=1$.   The worst BSC channel results with  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.5$   ⇒   $C_{\rm BSC}=0$.
  •   But also with   $p_{\rm b \vert A} = p_{\rm a \vert B} = 1$  we get  $C_{\rm BSC}=1$.  Here all symbols are inverted, which is information theoretically the same as  $\langle Y_n \rangle \equiv \langle X_n \rangle$.

(3)  Let  $p_{\rm A} = p_{\rm B} = 0.5$,  $p_{\rm b \vert A} = 0.05$  and  $ p_{\rm a \vert B} = 0.4$.   Interpret the results in comparison to the experiment  $(1)$  and to the  $\text{example 2}$  in the theory section.

  •   Unlike the experiment  $(1)$  no BSC channel is present here.  Rather, the channel considered here is asymmetric:  $p_{\rm b \vert A} \ne p_{\rm a \vert B}$.
  •   According to  $\text{Example 2}$  it holds for  $p_{\rm A} = 0.1,\ p_{\rm B} = 0.9$:     $H(X)= 0.469$,  $H(Y)= 0.994$,  $H(X \vert Y)=0.377$,  $H(Y \vert X)=0.902$,  $I(X;\vert Y)=0.092$.
  •   Now it holds  $p_{\rm A} = p_{\rm B} = 0.5$  and we get  $H(X)=1,000$,  $H(Y)=0.910$,  $H(X \vert Y)=0.719$,  $H(Y \vert X)=0.629$,  $I(X;\ Y)=0.281$.
  •   All output values depend significantly on  $p_{\rm A}$  and  $p_{\rm B}=1-p_{\rm A}$  except for the conditional probabilities  ${\rm Pr}(Y \vert X)\in \{\hspace{0.05cm}0.95,\ 0.05,\ 0.4,\ 0.6\hspace{0.05cm} \}$.

(4)  Let further  $p_{\rm A} = p_{\rm B}$,  $p_{\rm b \vert A} = 0.05$,  $ p_{\rm a \vert B} = 0.4$.  What differences do you see in terms of analytical calculation and "simulation"  $(N=10000)$.

  •   The joint probabilities are  $p_{\rm Aa} =0.475$,  $p_{\rm Ab} =0.025$,  $p_{\rm Ba} =0.200$, $p_{\rm Bb} =0.300$.  Simulation:  Approximation by relative frequencies:
  •   For example, for  $N=10000$:  $h_{\rm Aa} =0.4778$,  $h_{\rm Ab} =0.0264$,  $h_{\rm Ba} =0.2039$, $h_{\rm Bb} =0.2919$.  After pressing  "New sequence"  slightly different values.
  •   For all subsequent calculations, no principal difference between theory and simulation, except  $p \to h$.  Examples: 
  •   $p_{\rm A} = 0.5 \to h_{\rm A}=h_{\rm Aa} + h_{\rm Ab} =0.5042$,  $p_b = 0.325 \to h_{\rm b}=h_{\rm Ab} + h_{\rm Bb} =0. 318$,  $p_{b|A} = 0.05 \to h_{\rm b|A}=h_{\rm Ab}/h_{\rm A} =0.0264/0.5042= 0.0524$, 
  •   $p_{\rm A|b} = 0.0769 \to h_{\rm A|b}=h_{\rm Ab}/h_{\rm b} =0.0264/0.318= 0.0830$.  Thus, this simulation yields  $I_{\rm Sim}(X;\ Y)=0.269$  instead of  $I(X;\ Y)=0.281$.

(5)  Setting according to  $(4)$.  How does  $I_{\rm Sim}(X;\ Y)$  differ from  $I(X;\ Y) = 0.281$  for  $N=10^3$,  $10^4$,  $10^5$ ?  In each case, averaging over ten realizations.

  •   $N=10^3$:   $0.232 \le I_{\rm Sim} \le 0.295$,   mean:  $0.263$   #   $N=10^4$:   $0.267 \le I_{\rm Sim} \le 0.293$,   mean:  $0.279$   #   $N=10^5$:   $0.280 \le I_{\rm Sim} \le 0.285$   mean:  $0.282$.
  •   With  $N=10^6$  for this channel, the simulation result differs from the theoretical value by less than  $\pm 0.001$. 

(6)  What is the capacity  $C_6$  of this channel with  $p_{\rm b \vert A} = 0.05$,  $ p_{\rm a \vert B} = 0.4$?  Is the error probability  $0$  possible with the code rate  $R=0.3$?

  •   $C_6=0.284$  is the maximum of  $I(X;\ Y)$  for   $p_{\rm A} =0.55$  ⇒  $p_{\rm B} =0. 45$.  Simulation over  ten times  $N=10^5$:  $0.281 \le I_{\rm Sim}(X;\ Y) \le 0.289$.
  •   With the code rate  $R=0.3 > C_6$  an arbitrarily small block error probability is not achievable even with the best possible coding.

(7)  Now let  $p_{\rm A} = p_{\rm B}$,  $p_{\rm b \vert A} = 0$,  $ p_{\rm a \vert B} = 0.5$.   What property does this asymmetric channel exhibit?  What values result for  $H(X)$,  $H(X \vert Y)$,  $I(X;\ Y)$ ?

  •   The symbol  $\rm A$  is never falsified, the symbol  $\rm B$  with (information theoretically) maximum falsification probability  $ p_{\rm a \vert B} = 0.5$
  •   The total falsification probability is  $ {\rm Pr} (Y_n \ne X_n)= p_{\rm A} \cdot p_{\rm b \vert A} + p_{\rm B} \cdot p_{\rm a \vert B}= 0.25$  ⇒   about  $25\%$  of the output sink symbols are "purple".
  •   Joint probabilities:  $p_{\rm Aa}= 1/2,\ p_{\rm Ab}= 0,\ p_{\rm Ba}= p_{\rm Bb}= 1/4$,    Inference probabilities:   $p_{\rm A \vert a}= 1,\ p_{\rm B \vert a}= 0,\ p_{\rm A \vert b}= 1/3,\ p_{\rm B \vert b}= 2/3$.
  •   From this we get for equivocation  $H(X \vert Y)=0.689$;   with source entropy  $H(X)= 1$   ⇒   $I(X;\vert Y)=H(X)-H(X \vert Y)=0.311$.

(8)  What is the capacity  $C_8$  of this channel with  $p_{\rm b \vert A} = 0.05$,  $ p_{\rm a \vert B} = 035$?  Is the error probability  $0$  possible with the code rate  $R=0.3$?

  •   $C_8=0.326$  is the maximum of  $I(X;\ Y)$  for   $p_{\rm A} =0.55$.  Thus, because of  $C_8 >R=0.3 $  an arbitrarily small block error probability is achievable.
  •   The only difference compared to  $(6)$   ⇒   $C_6=0.284 < 0.3$  is the slightly smaller falsification probability  $ p_{\rm a \vert B} = 0.35$  instead of  $ p_{\rm a \vert B} = 0.4$.

(9)  We consider the ideal ternary channel:  $p_{\rm a \vert A} = p_{\rm b \vert B}=p_{\rm c \vert C}=1$.  What is its capacity  $C_9$?  What is the maximum mutual information displayed by the program?

  •   Due to the symmetry of the channel model, equally probable symbols  $(p_{\rm A} = p_{\rm B}=p_{\rm C}=1/3)$  lead to the channel capacity:  $C_9 = \log_2\ (3) = 1.585$.
  •   Since in the program all parameter values can only be entered with a resolution of  $0.05$ , for  $I(X;\ Y)$  this maximum value is not reached.
  •   Possible approximations:  $p_{\rm A} = p_{\rm B}= 0.3, \ p_{\rm C}=0.4$  ⇒   $I(X;\ Y)= 1. 571$     #     $p_{\rm A} = p_{\rm B}= 0.35, \ p_{\rm C}=0.3$  ⇒   $I(X;\ Y)= 1.581$.

(10)  Let the source symbols be (nearly) equally probable.  Interpret the other settings and the results.

  •   The falsification probabilities are  $p_{\rm b \vert A} = p_{\rm c \vert B}=p_{\rm a \vert C}=1$   ⇒   no single sink symbol is equal to the source symbol.
  •   This cyclic mapping has no effect on the channel capacity:  $C_{10} = C_9 = 1.585$.  The program returns  ${\rm Max}\big[I(X;\ Y)\big]= 1.581$.

(11)  We consider up to and including  $(13)$  the same ternary source.   What results are obtained for  $p_{\rm b \vert A} = p_{\rm c \vert B}=p_{\rm a \vert C}=0.2$  and  $p_{\rm c \vert A} = p_{\rm a \vert B}=p_{\rm b \vert C}=0$?

  •   Each symbol can only be falsified into one of the two possible other symbols.  From  $p_{\rm b \vert A} = p_{\rm c \vert B}=p_{\rm a \vert C}=0.2$  it follows  $p_{\rm a \vert A} = p_{\rm b \vert B}=p_{\rm c \vert C}=0.8$.
  •   This gives us for the maximum mutual information  ${\rm Max}\big[I(X;\ Y)\big]= 0.861$  and for the channel capacity a slightly larger value:  $C_{11} \gnapprox 0.861$.

(12)  How do the results change if each symbol is   $80\%$  transferred correctly and   $10\%$  falsified each in one of the other two symbols?

  •   Although the probability of correct transmission is with  $80\%$  as large as in  (11), here the channel capacity  $C_{12} \gnapprox 0.661$ is smaller.
  •   If one knows for the channel  $(11)$  that  $X = \rm A$  has been falsified, one also knows  $Y = \rm b$.  But not for channel  $(12)$  ⇒   the channel is less favorable.

(13)  Let the falsification probabilities now be  $p_{\rm b \vert A} = p_{\rm c \vert A} = p_{\rm a \vert B} = p_{\rm c \vert B}=p_{\rm a \vert C}=p_{\rm b \vert C}=0.5$.  Interpret this redundancy-free ternary channel.

  •   No single sink symbol is equal to its associated source symbol; with respect to the other two symbols, a  $50\hspace{-0.1cm}:\hspace{-0.1cm}50$  decision must be made.
  •   Nevertheless, here the channel capacity is  $C_{13} \gnapprox 0.584$  only slightly smaller than in the previous experiment:  $C_{12} \gnapprox 0.661$.
  •   The channel capacity  $C=0$  results for the redundancy-free ternary channel exactly for the case where all nine falsification probabilities are equal to  $1/3$ .

(14)  What is the capacity $C_{14}$ of the ternary channel with  $p_{\rm b \vert A} = p_{\rm a \vert B}= 0$  and  $p_{\rm c \vert A} = p_{\rm c \vert B} = p_{\rm a \vert C}=p_{\rm b \vert C}=0. 1$  ⇒   $p_{\rm a \vert A} = p_{\rm b \vert B}=0.9$,   $p_{\rm c \vert C} =0.8$?

  •   With the default  $p_{\rm A}=p_{\rm B}=0.2$   ⇒   $p_{\rm C}=0.6$  we get  $I(X;\ Y)= 0.738$.  Now we are looking for "better" symbol probabilities.
  •   From the symmetry of the channel, it is obvious that  $p_{\rm A}=p_{\rm B}$  is optimal.  The channel capacity  $C_{14}=0.995$  is obtained for  $p_{\rm A}=p_{\rm B}=0.4$   ⇒   $p_{\rm C}=0.2$.
  •   Example:  Ternary transfer if the middle symbol  $C$  can be distorted in two directions, but the outer symbols can only be distorted in one direction at a time.



Applet Manual


Screenshot of the German version





    (A)     Select whether  "analytically"  or  "by simulation"

    (B)     Setting of the parameter  $N$  for the simulation

    (C)     Option to select "binary source"  or  "ternary source"

    (D)     Setting of the symbol probabilities

    (E)     Setting of the transition probabilities

    (F)     Numerical output of different probabilities

    (G)     Two diagrams with the information theoretic quantities

    (H)     Output of an exemplary source symbol sequence

    (I)     Associated simulated sink symbol sequence

    (J)     Exercise area: Selection, questions, sample solutions

About the Authors


This interactive calculation tool was designed and implemented at the  $\text{Institute for Communications Engineering}$  at the  $\text{Technical University of Munich}$.

  • Last revision and English version 2021 by  Carolin Mirschina  in the context of a working student activity. 
  • The conversion of this applet was financially supported by  $\text{Studienzuschüsse}$  $($TUM Department of Electrical and Computer Engineering$)$.  $\text{Many thanks}$.


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen

References

  1. Shannon, C.E.:  A Mathematical Theory of Communication.
      $M=2$  (left) and for  $M=3$  (right).     Please note:  In the right graph not all transitions are labeled
    In: Bell Syst. Techn. J. 27 (1948), S. 379-423 und S. 623-656.