Difference between revisions of "Mobile Communications/General Description of Time Variant Systems"

From LNTwww
 
(55 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Frequenzselektive Übertragungskanäle
+
|Untermenü=Frequency-Selective Transmission Channels |Vorherige Seite=Non-Frequency Selective Fading With Direct Component
|Vorherige Seite=Nichtfrequenzselektives Fading mit Direktkomponente
+
|Nächste Seite=Multipath Reception in Mobile Communications}}
|Nächste Seite=Mehrwegeempfang beim Mobilfunk
 
}}
 
  
== # ÜBERBLICK ZUM ZWEITEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 
<br>
 
<br>
Nach der Zeitvarianz wird nun der Begriff der&nbsp; '''Frequenzselektivität'''&nbsp; eingeführt und an Beispielen verdeutlicht, eine Kanaleigenschaft, die für die mobile Kommunikation ebenfalls von großer Bedeutung ist.&nbsp; Wie im gesamten Buch erfolgt die Beschreibung im äquivalenten Tiefpassbereich.  
+
After the time variance, the term&nbsp; &raquo;'''frequency selectivity'''&laquo;&nbsp; is now introduced and illustrated with examples,&nbsp; a channel property which is also of great importance for mobile communications.&nbsp; As in the entire book,&nbsp; the description is given in the equivalent low-pass range.  
  
Im Einzelnen werden behandelt:
+
It is covered in detail:
  
*der Unterschied zwischen zeitinvarianten und zeitvarianten Systemen,
+
#The&nbsp; &raquo;difference between time-invariant and time-variant systems&laquo;,
*die zeitvariante Impulsantwort als wichtige Beschreibungsfunktion zeitvarianter Systeme,
+
#the&nbsp; &raquo;time-variant impulse response&laquo;&nbsp; as an important descriptive function of time-variant systems,
*der Mehrwegeempfang als Ursache für frequenzselektives Verhalten,
+
#&raquo;multi-way reception&laquo;&nbsp; as the cause of frequency-selective behaviour,
*eine ausführliche Herleitung und Interpretation des GWSSUS–Kanalmodells,
+
#a detailed derivation and interpretation of the&nbsp; &raquo;GWSSUS channel model&laquo;,
*die Kenngrößen des GWSSUS–Modells: &nbsp; Kohärenzbandbreite, Korrelationsdauer, usw.
+
#the characteristics of the GWSSUS model: &nbsp; &raquo;coherence bandwidth,&nbsp; correlation duration&laquo;,&nbsp; etc.
  
  
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im Versuch „Mobilfunkkanal” des Praktikums „Simulation digitaler Übertragungssysteme”.&nbsp; Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
 
*dem&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/MFK.zip Windows&ndash;Programm MFK] &nbsp; ⇒ &nbsp; Link verweist auf die ZIP-Version des Programms und
 
*der zugehörigen&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Mobilfunkkanal.pdf Praktikumsanleitung] &nbsp; ⇒ &nbsp; Link verweist auf die PDF-Version (58 Seiten).
 
  
 
+
== Transfer function and impulse response ==
 
 
== Übertragungsfunktion und Impulsantwort ==
 
 
<br>
 
<br>
Die Beschreibungsgrößen eines Nachrichtenübertragungssystems wurden bereits in den Kapiteln&nbsp;
+
The description parameters of a communication system have already been described in two chapters of the book "Linear Time Variant Systems":
* [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich|Systembeschreibung im Frequenzbereich]]&nbsp; bzw.&nbsp;
+
* [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain|"System Description in Frequency Domain"]],
* [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Systembeschreibung im Zeitbereich]]&nbsp;  
+
* [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain|"System Description in Time Domain"]].&nbsp;  
 
 
  
[[File:Mob_T_2_1_S1_neu.png|right|frame|Betrachtetes LZI–System|class=fit]]
+
[[File:EN_Mob_T_2_1_S1_neu.png|right|frame|Considered LTI system|class=fit]]
  
des Buches &bdquo;Lineare zeitvariante Systeme&rdquo; eingeführt und eingehend diskutiert.&nbsp;
 
  
Die wichtigsten Ergebnisse werden hier nochmals kurz zusammengefasst.<br>
+
The most important results are briefly explained again here.&nbsp; We assume a&nbsp; linear and time-invariant system &nbsp; &#8658; &nbsp; $\text{LTI system}$&nbsp; with the signal&nbsp; $s(t)$&nbsp; at the input and the output signal&nbsp; $r(t)$. &nbsp; For the sake of simplicity, let&nbsp; $s(t)$&nbsp; and&nbsp; $r(t)$&nbsp; be real.&nbsp; Then the following applies:
 +
*The system can be completely characterized by the&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_.E2.80.93_Transfer_function|$\text{transfer function}$]]&nbsp; $H(f)$&nbsp; which is also referred to as the&nbsp; "frequency response".&nbsp; By definition&nbsp;:$$H(f) = R(f)/S(f).$$
  
Vorausgesetzt wird zunächst ein&nbsp; ''lineares und zeitinvariantes System'' &nbsp; &#8658; &nbsp; '''LZI&ndash;System'''&nbsp; mit dem Signal&nbsp; $s(t)$&nbsp; am Eingang und dem Ausgangssignal&nbsp; $r(t)$.&nbsp; Der Einfachheit halber seien&nbsp; $s(t)$&nbsp; und&nbsp; $r(t)$&nbsp; reell.&nbsp; Dann gilt:
+
*Similarly, the system is defined by the&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Impulse_response|$\text{impulse response}$]]&nbsp; $h(t)$&nbsp;, which is the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|$\text{inverse Fourier transform}$]]&nbsp; of&nbsp; $H(f)$.&nbsp; &nbsp; The output signal results from the convolution:
*Das System lässt sich vollständig durch die&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Übertragungsfunktion]]&nbsp; $H(f)$&nbsp; charakterisieren.&nbsp; Man bezeichnet&nbsp; $H(f)$&nbsp; auch als den&nbsp; <i>Frequenzgang</i>.&nbsp; Definitionsgemäß gilt&nbsp;  
 
:$$H(f) = R(f)/S(f).$$
 
  
*Ebenso ist das System durch die&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort|Impulsantwort]]&nbsp; $h(t)$&nbsp; als die&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|Fourierrücktransformierte]]&nbsp; von&nbsp; $H(f)$&nbsp; vollständig gekennzeichnet.&nbsp; Das Ausgangssignal ergibt sich aus der Faltung:
+
::<math>r(t) = s(t) \star h(t) \hspace{0.4cm} {\rm with} \hspace{0.4cm} h(t)
 
 
::<math>r(t) = s(t) \star h(t) \hspace{0.4cm} {\rm mit} \hspace{0.4cm} h(t)
 
 
  \hspace{0.2cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.2cm} H(f)   
 
  \hspace{0.2cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.2cm} H(f)   
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definitionen:}$&nbsp;
+
$\text{Definitions:}$&nbsp; &nbsp; The following input signals are suitable for detecting the linear distortions caused by&nbsp; $H(f)$&nbsp; or &nbsp; $h(t)$:&nbsp;
 
+
*a&nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Dirac_delta_or_impulse|$\text{Dirac delta}$]]&nbsp; or&nbsp; "impulse":
Um die durch&nbsp; $H(f)$&nbsp; bzw.&nbsp; $h(t)$&nbsp; entstehenden linearen Verzerrungen zu erkennen, eignen sich die folgenden Eingangssignale:
+
:$$s(t) = \delta(t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  &nbsp; r(t) = \delta(t) \star h(t)= h(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response,}$$   
*ein&nbsp; [[Signaldarstellung/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Diracimpuls|Diracimpuls]]: &nbsp;&nbsp;  
+
*a&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Step_response|$\text{step function}$]]&nbsp; or&nbsp; "Heaviside step function":  
:$$s(t) = \delta(t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  &nbsp; r(t) = \delta(t) \star h(t)= h(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \text{Impulsantwort,}$$   
+
:$$s(t) = \gamma(t) \hspace{0.3cm}\Rightarrow \hspace{0.35cm}  &nbsp; r(t) = \gamma(t) \star h(t)\hspace{1.5cm}\Rightarrow \hspace{0.3cm} \text{step response,}$$
*eine&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Sprungantwort|Sprungfunktion]]:  
+
*a&nbsp; [[Signal_Representation/Discrete-Time_Signal_Representation#Dirac_comb_in_time_and_frequency_domain|$\text{Dirac comb}$]]&nbsp; or&nbsp; "Dirac delta train":  
:$$s(t) = \gamma(t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  &nbsp; r(t) = \gamma(t) \star h(t)\hspace{1.5cm}\Rightarrow \hspace{0.3cm} \text{Sprungantwort,}$$
+
:$$s(t) = p_\delta(t) \hspace{0.25cm}\Rightarrow \hspace{0.3cm}  &nbsp; r(t) = p_\delta(t) \star h(t)\hspace{1.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response train.}$$}}
*ein&nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Diracpuls]]:  
 
:$$s(t) = p_\delta(t) \hspace{0.25cm}\Rightarrow \hspace{0.3cm}  &nbsp; r(t) = p_\delta(t) \star h(t)\hspace{1.3cm}\Rightarrow \hspace{0.3cm} \text{Pulsantwort.}$$}}
 
 
   
 
   
  
  
Dagegen ist ein Gleichsignal&nbsp; $s(t) = A$&nbsp; nicht geeignet, die Frequenzabhängigkeit des LZI&ndash;Systems sichtbar werden zu lassen:&nbsp; <br> &nbsp; &nbsp; Bei einem Tiefpass&ndash;System wäre dann das Ausgangssignal unabhängig von&nbsp; $H(f)$&nbsp; stets konstant: &nbsp; &nbsp; $r(t) = A \cdot H(f= 0)$.<br>
+
On the other hand, a DC signal&nbsp; $s(t) = A$&nbsp; is not suitable to make the frequency dependence of the LTI system visible: &nbsp; <br>&nbsp; &rArr; &nbsp; With a low-pass system the output signal would then be always constant, independent of&nbsp; $H(f)$:&nbsp; &nbsp; &nbsp; $r(t) = A \cdot H(f= 0)$.<br>
  
Auf der nächsten Seite betrachten wir als Eingangssignal&nbsp; $s(t)$&nbsp; einen Diracpuls&nbsp; $p_\delta(t)$:&nbsp; <br> &nbsp; &nbsp; Hiermit lassen sich die Gemeinsamkeiten und Unterschiede zwischen zeitinvarianten und zeitvarianten Systemen sehr anschaulich darstellen.<br>
+
In the next section we consider a Dirac delta train&nbsp; $p_\delta(t)$&nbsp; as an input signal&nbsp; $s(t)$: &nbsp; <br>&nbsp; &rArr; &nbsp; Hereby the similarities and differences between time-invariant and time-variant systems can be shown clearly.<br>
  
<i>Hinweis:</i> &nbsp; Die Eigenschaften von&nbsp; $H(f)$&nbsp; und&nbsp; $h(t)$&nbsp; werden im Lernvideo&nbsp; [[Einige_Anmerkungen_zur_Übertragungsfunktion_(Lernvideo)|Einige Anmerkungen zur Übertragungsfunktion]]&nbsp; ausführlich behandelt.<br>
+
<i>Note:</i>&nbsp; The properties of&nbsp; $H(f)$&nbsp; and&nbsp; $h(t)$&nbsp; are covered in detail in the&nbsp; $\text{LNTwww learning video}$&nbsp; (in German language):<br> &nbsp; &nbsp;
 +
[https://www.lntwww.de/Eigenschaften_des_%C3%9Cbertragungskanals_(Lernvideo) "Eigenschaften des Übertragungskanals"] &nbsp; &rArr; &nbsp; "Some remarks on the transfer function".<br>
  
  
== Zeitinvariante vs. zeitvariante Kanäle ==
+
 
 +
== Time&ndash;invariant vs. time&ndash;variant channels ==
 
<br>
 
<br>
Die Grafik soll den Unterschied zwischen einem zeitinvarianten Kanal (&bdquo;'''LZI'''&rdquo;) und einem zeitvarianten Kanal (&bdquo;'''LZV'''&rdquo;) verdeutlichen.<br>
+
The graphic is intended to illustrate the difference between a linear time&ndash;invariant channel&nbsp; $\rm (LTI)$&nbsp; and a linear time&ndash;variant channel &nbsp; $\rm (LTV)$&nbsp;.<br>
  
[[File:P ID2142 Mob T 2 1 S2 v1.png|right|frame|Zeitinvarianter und zeitvarianter Kanal|class=fit]]
+
[[File:EN_Mob_T_2_1_S2.png|right|frame|Time&ndash;invariant and time&ndash;variant channel|class=fit]]
  
Man erkennt aus dieser Darstellung:
+
One can see from this illustration:
*Das Sendesignal&nbsp; $s(t)$&nbsp; ist hier ein Diracpuls&nbsp; $p_\delta(t)$, also eine unendliche Folge von Diracimpulsen in äquidistanten Abständen&nbsp; $T$, alle mit dem Gewicht&nbsp; $1$&nbsp; (siehe obere Grafik):
+
*The transmitted signal&nbsp; $s(t)$&nbsp; is a Dirac delta train&nbsp; $p_\delta(t)$, i.e. an infinite sequence of Dirac deltas in equidistant intervals&nbsp; $T$,&nbsp; all with the weight&nbsp; $1$&nbsp; (see upper graph):
  
 
::<math>s(t) = p_{\rm \delta} (t) = \sum_{n = -\infty}^{+\infty} {\rm \delta} (t - n \cdot T)
 
::<math>s(t) = p_{\rm \delta} (t) = \sum_{n = -\infty}^{+\infty} {\rm \delta} (t - n \cdot T)
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Grün markiert ist der Diracimpuls bei&nbsp; $t = 0$. Mit&nbsp; $s(t) = {\rm \delta}(t)$&nbsp; ist das Signal am Kanalausgang gleich&nbsp; $r(t) = h(t)$&nbsp; entsprechend der grünen Hinterlegung. Vorausgesetzt wird zunächst, dass die Ausdehnung der Impulsantwort&nbsp; $h(t)$&nbsp; kleiner ist als $T$.<br>
+
*The Dirac delta at&nbsp; $t = 0$&nbsp; is marked in green. The signal at the channel output is equal to&nbsp; $r(t) = h(t)$&nbsp;, with&nbsp; $s(t) = {\rm \delta}(t)$&nbsp;, also indicated in green. &nbsp; As a condition, it is assumed that the extension of the impulse response&nbsp; $h(t)$&nbsp; is smaller than $T$.<br>.
  
*Für das gesamte Empfangssignal nach dem LZI&ndash;Kanal gemäß der mittleren Grafik kann dann geschrieben werden:
+
*The entire received signal after the LTI channel, according to the middle graph, can then be written as:
  
 
::<math>r(t) = p_{\rm \delta} (t) \star h(t) = \sum_{n = -\infty}^{+\infty} h (t - n \cdot T)
 
::<math>r(t) = p_{\rm \delta} (t) \star h(t) = \sum_{n = -\infty}^{+\infty} h (t - n \cdot T)
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Bei einem zeitvarianten Kanal &nbsp; &#8658; &nbsp; untere Grafik ist diese Gleichung nicht anwendbar. In jedem Zeitintervall ergibt sich nun nämlich eine andere Signalform.  
+
*For a time-variant channel (lower graph) this equation is not applicable.&nbsp; In each time interval, a (slightly) different signal shape is obtained.  
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Bei einem &nbsp;'''zeitvarianten Kanal'''&nbsp; kann man keine einparametrige Impulsantwort&nbsp; $h(t)$&nbsp; und somit auch keine Übertragungsfunktion&nbsp; $H(f)$&nbsp; angeben.}}<br>
+
$\text{Conclusion:}$&nbsp; With a &nbsp; &raquo;'''time-variant channel'''&laquo; &nbsp; you cannot specify neither a one-parameter impulse response&nbsp; $h(t)$&nbsp; nor a transfer function&nbsp; $H(f)$&nbsp;.}}<br>
  
<i>Hinweis:</i> &nbsp; Das Lernvideo&nbsp; [[Eigenschaften_des_Übertragungskanals_(Lernvideo)|Eigenschaften des Übertragungskanals]]&nbsp; beschreibt die Unterschiede zwischen LZV&ndash; und LZI&ndash;Systemen.<br>
+
<i>Note:</i>&nbsp; The differences between LTI and LTV systems are clarified with the&nbsp; $\text{LNTwww learning video}$&nbsp; (in German language):<br> &nbsp; &nbsp;
 +
[https://www.lntwww.de/Eigenschaften_des_%C3%9Cbertragungskanals_(Lernvideo) "Eigenschaften des Übertragungskanals"] &nbsp; &rArr; &nbsp; "Some remarks on the transfer function".<br>
  
== Zweidimensionale Impulsantwort ==
+
 
 +
== Two-dimensional impulse response==
 
<br>
 
<br>
Zur Kennzeichnung einer zeitvarianten Impulsantwort  verwendet man einen zweiten Parameter und bildet die Impulsantwort vorzugsweise in einem dreidimensionalen Koordinatensystem ab.<br>
+
[[File:EN_Mob_T_2_1_S3.png|right|frame|Two-dimensional impulse response|class=fit]]
 +
 
 +
To identify a time-variant impulse response, a second parameter is used and the impulse response is preferably mapped in a three-dimensional coordinate system.<br>
  
[[File:P ID2143 Mob T 2 1 S3 v1.png|right|frame|Zweidimensionale Impulsantwort|class=fit]]
+
The condition for this is that the channel is still linear.&nbsp; One speaks then of a&nbsp; $\text{LTV system}$&nbsp;&nbsp; ("linear time-variant").  
Voraussetzung hierfür ist, dass der Kanal weiterhin linear ist; man spricht dann von einem&nbsp; '''LZV&ndash;System'''&nbsp; (linear zeitvariant).  
 
  
Es gelten folgende Zusammenhänge:
+
The following relations apply:
  
::<math>\text{LZI:}\hspace{0.5cm}  r(t) = \int_{-\infty}^{+\infty} h(\tau)  \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau  \hspace{0.05cm},</math>
+
::<math>\text{LTI:}\hspace{0.5cm}  r(t) = \int_{-\infty}^{+\infty} h(\tau)  \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau  \hspace{0.05cm},</math>
::<math>\text{LZV:}\hspace{0.5cm}  r(t) \hspace{-0.1cm}  =  \hspace{-0.1cm} \int_{-\infty}^{+\infty} h(\tau, \hspace{0.1cm}t)  \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau  \hspace{0.05cm}.</math>
+
::<math>\text{LTV:}\hspace{0.5cm}  r(t) \hspace{-0.1cm}  =  \hspace{-0.1cm} \int_{-\infty}^{+\infty} h(\tau, \hspace{0.1cm}t)  \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau  \hspace{0.05cm}.</math>
 
<br clear=all>
 
<br clear=all>
Zur letzten Gleichung und obiger Grafik ist anzumerken:
+
Regarding the last equation and the above graph, it should be noted
*Der Parameter&nbsp; $\tau$&nbsp; gibt die&nbsp; '''Verzögerungszeit'''&nbsp; zur Kennzeichnung der Zeitdispersion  an. Durch Ausschreiben der Faltungsoperation ist es gelungen, dass&nbsp; $\tau$&nbsp; auch der Parameter der LZI&ndash;Impulsantwort ist. Auf den letzten Seiten wurde noch von&nbsp; $h(t)$&nbsp; gesprochen.<br>
+
*The parameter&nbsp; $\tau$&nbsp; specifies the &nbsp; &raquo;'''delay time'''&laquo; &nbsp; to denote the time dispersion.&nbsp; By writing out the convolution operation, it was possible to make&nbsp; $\tau$&nbsp; also the parameter of the LTI impulse response.&nbsp; In the last sections we spoke about&nbsp; $h(t)$&nbsp;.<br>
  
*Der zweite Parameter der Impulsantwort bzw. die zweite Achse kennzeichnet die&nbsp; '''absolute Zeit'''&nbsp; $t$, die unter anderem zur Beschreibung der Zeitvarianz herangezogen wird. Zu unterschiedlichen Zeiten&nbsp; $t$&nbsp; hat die Impulsantwort&nbsp; $h(\tau, \hspace{0.05cm}t)$&nbsp; eine andere Form.<br>
+
*The second parameter of the impulse response or the second axis marks the &nbsp; &raquo;'''absolute time'''&laquo;&nbsp; $t$, which is used, among other things, to describe the time variance.&nbsp; At different times&nbsp; $t$&nbsp; the impulse response&nbsp; $h(\tau, \hspace{0.05cm}t)$&nbsp; has a different form.<br>
  
*Eine Besonderheit der 2D&ndash;Darstellung ist, dass die&nbsp; $t$&ndash;Achse stets zeitdiskret  (bei Vielfachen von $T$) aufgetragen wird, während die&nbsp; $\tau$&ndash;Achse wie im gezeigten Beispiel zeitkontinuierlich sein kann. Im Mobilfunk wird&nbsp; $h(\tau, \hspace{0.05cm}t_0)$&nbsp; aber meist auch zeitdiskret hinsichtlich&nbsp; $\tau$&nbsp; angenommen (&bdquo;Echos&rdquo;).
+
*A peculiarity of the 2D representation is that the&nbsp; $t$&ndash;axis is always plotted discrete-timely&nbsp; $($at multiples of&nbsp; $T)$&nbsp; while the&nbsp; $\tau$&ndash;axis can be continuous in time as in the example shown. &nbsp; However, in mobile communications, a discrete-time &nbsp; $h(\tau, \hspace{0.05cm}t_0)$&nbsp; with respect to&nbsp; $\tau$&nbsp; is assumed $($"echoes"$)$.
  
*Die LZV&ndash;Gleichung ist nur anwendbar, wenn die zeitliche Veränderung des Kanals (im Bild durch den Parameter&nbsp; $T$&nbsp; gekennzeichnet) langsam erfolgt im Vergleich zur maximalen Verzögerung&nbsp; $\tau_{\rm max}$. Im Mobilfunk ist diese Bedingung &nbsp; &#8658; &nbsp; $\tau_{\rm max} < T$ &nbsp; fast immer erfüllt.
+
*The LTV equation is only applicable if the change of the channel&nbsp; $($marked in the figure by the parameter&nbsp; $T)$&nbsp; proceeds slowly in comparison to the maximum delay &nbsp; $\tau_{\rm max}$.&nbsp; In mobile communications this condition &nbsp; &#8658; &nbsp; $\tau_{\rm max} < T$ &nbsp; is almost always fulfilled.
  
*Je nachdem, ob man das erste Fourierintegral auf den Parameter&nbsp; $\tau$&nbsp; oder&nbsp; $t$&nbsp; anwendet, kommt man zu unterschiedlichen Spektralfunktionen. In der&nbsp; [[Aufgabe_2.1Z:_2D-Frequenz-_und_2D-Zeitdarstellung|Aufgabe 2.1Z]]&nbsp; wird beispielsweise die zeitvariante&nbsp; '''2D&ndash;Übertragungsfunktion'''&nbsp; betrachtet:
+
*Selecting whether to apply the first Fourier integral to the parameter&nbsp; $\tau$&nbsp; or&nbsp; $t$&nbsp; leads to different spectral functions.&nbsp; In the&nbsp; [[Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations|"Exercise 2.1Z"]]&nbsp; for example, the time-variant  &nbsp; &raquo;'''two-dimensional transfer function'''&laquo;&nbsp; is considered:
  
 
::<math>H(f,\hspace{0.05cm} t)
 
::<math>H(f,\hspace{0.05cm} t)
Line 123: Line 114:
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
[[Aufgaben:Aufgabe_2.1:_Zweidimensionale_Impulsantwort|Aufgabe 2.1: Zweidimensionale Impulsantwort]]
+
[[Aufgaben:Exercise 2.1: Two-Dimensional Impulse Response]]
  
[[Aufgabe_2.1Z:_2D-Frequenz-_und_2D-Zeitdarstellung|Aufgabe 2.1Z: 2D-Frequenz- und 2D-Zeitdarstellung]]
+
[[Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:41, 29 January 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


After the time variance, the term  »frequency selectivity«  is now introduced and illustrated with examples,  a channel property which is also of great importance for mobile communications.  As in the entire book,  the description is given in the equivalent low-pass range.

It is covered in detail:

  1. The  »difference between time-invariant and time-variant systems«,
  2. the  »time-variant impulse response«  as an important descriptive function of time-variant systems,
  3. »multi-way reception«  as the cause of frequency-selective behaviour,
  4. a detailed derivation and interpretation of the  »GWSSUS channel model«,
  5. the characteristics of the GWSSUS model:   »coherence bandwidth,  correlation duration«,  etc.


Transfer function and impulse response


The description parameters of a communication system have already been described in two chapters of the book "Linear Time Variant Systems":

Considered LTI system


The most important results are briefly explained again here.  We assume a  linear and time-invariant system   ⇒   $\text{LTI system}$  with the signal  $s(t)$  at the input and the output signal  $r(t)$.   For the sake of simplicity, let  $s(t)$  and  $r(t)$  be real.  Then the following applies:

  • The system can be completely characterized by the  $\text{transfer function}$  $H(f)$  which is also referred to as the  "frequency response".  By definition :$$H(f) = R(f)/S(f).$$
\[r(t) = s(t) \star h(t) \hspace{0.4cm} {\rm with} \hspace{0.4cm} h(t) \hspace{0.2cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.2cm} H(f) \hspace{0.05cm}.\]

$\text{Definitions:}$    The following input signals are suitable for detecting the linear distortions caused by  $H(f)$  or   $h(t)$: 

$$s(t) = \delta(t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}   r(t) = \delta(t) \star h(t)= h(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response,}$$
$$s(t) = \gamma(t) \hspace{0.3cm}\Rightarrow \hspace{0.35cm}   r(t) = \gamma(t) \star h(t)\hspace{1.5cm}\Rightarrow \hspace{0.3cm} \text{step response,}$$
$$s(t) = p_\delta(t) \hspace{0.25cm}\Rightarrow \hspace{0.3cm}   r(t) = p_\delta(t) \star h(t)\hspace{1.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response train.}$$


On the other hand, a DC signal  $s(t) = A$  is not suitable to make the frequency dependence of the LTI system visible:  
  ⇒   With a low-pass system the output signal would then be always constant, independent of  $H(f)$:      $r(t) = A \cdot H(f= 0)$.

In the next section we consider a Dirac delta train  $p_\delta(t)$  as an input signal  $s(t)$:  
  ⇒   Hereby the similarities and differences between time-invariant and time-variant systems can be shown clearly.

Note:  The properties of  $H(f)$  and  $h(t)$  are covered in detail in the  $\text{LNTwww learning video}$  (in German language):
    "Eigenschaften des Übertragungskanals"   ⇒   "Some remarks on the transfer function".


Time–invariant vs. time–variant channels


The graphic is intended to illustrate the difference between a linear time–invariant channel  $\rm (LTI)$  and a linear time–variant channel   $\rm (LTV)$ .

Time–invariant and time–variant channel

One can see from this illustration:

  • The transmitted signal  $s(t)$  is a Dirac delta train  $p_\delta(t)$, i.e. an infinite sequence of Dirac deltas in equidistant intervals  $T$,  all with the weight  $1$  (see upper graph):
\[s(t) = p_{\rm \delta} (t) = \sum_{n = -\infty}^{+\infty} {\rm \delta} (t - n \cdot T) \hspace{0.05cm}.\]
  • The Dirac delta at  $t = 0$  is marked in green. The signal at the channel output is equal to  $r(t) = h(t)$ , with  $s(t) = {\rm \delta}(t)$ , also indicated in green.   As a condition, it is assumed that the extension of the impulse response  $h(t)$  is smaller than $T$.
    .
  • The entire received signal after the LTI channel, according to the middle graph, can then be written as:
\[r(t) = p_{\rm \delta} (t) \star h(t) = \sum_{n = -\infty}^{+\infty} h (t - n \cdot T) \hspace{0.05cm}.\]
  • For a time-variant channel (lower graph) this equation is not applicable.  In each time interval, a (slightly) different signal shape is obtained.


$\text{Conclusion:}$  With a   »time-variant channel«   you cannot specify neither a one-parameter impulse response  $h(t)$  nor a transfer function  $H(f)$ .


Note:  The differences between LTI and LTV systems are clarified with the  $\text{LNTwww learning video}$  (in German language):
    "Eigenschaften des Übertragungskanals"   ⇒   "Some remarks on the transfer function".


Two-dimensional impulse response


Two-dimensional impulse response

To identify a time-variant impulse response, a second parameter is used and the impulse response is preferably mapped in a three-dimensional coordinate system.

The condition for this is that the channel is still linear.  One speaks then of a  $\text{LTV system}$   ("linear time-variant").

The following relations apply:

\[\text{LTI:}\hspace{0.5cm} r(t) = \int_{-\infty}^{+\infty} h(\tau) \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau \hspace{0.05cm},\]
\[\text{LTV:}\hspace{0.5cm} r(t) \hspace{-0.1cm} = \hspace{-0.1cm} \int_{-\infty}^{+\infty} h(\tau, \hspace{0.1cm}t) \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}.\]


Regarding the last equation and the above graph, it should be noted

  • The parameter  $\tau$  specifies the   »delay time«   to denote the time dispersion.  By writing out the convolution operation, it was possible to make  $\tau$  also the parameter of the LTI impulse response.  In the last sections we spoke about  $h(t)$ .
  • The second parameter of the impulse response or the second axis marks the   »absolute time«  $t$, which is used, among other things, to describe the time variance.  At different times  $t$  the impulse response  $h(\tau, \hspace{0.05cm}t)$  has a different form.
  • A peculiarity of the 2D representation is that the  $t$–axis is always plotted discrete-timely  $($at multiples of  $T)$  while the  $\tau$–axis can be continuous in time as in the example shown.   However, in mobile communications, a discrete-time   $h(\tau, \hspace{0.05cm}t_0)$  with respect to  $\tau$  is assumed $($"echoes"$)$.
  • The LTV equation is only applicable if the change of the channel  $($marked in the figure by the parameter  $T)$  proceeds slowly in comparison to the maximum delay   $\tau_{\rm max}$.  In mobile communications this condition   ⇒   $\tau_{\rm max} < T$   is almost always fulfilled.
  • Selecting whether to apply the first Fourier integral to the parameter  $\tau$  or  $t$  leads to different spectral functions.  In the  "Exercise 2.1Z"  for example, the time-variant   »two-dimensional transfer function«  is considered:
\[H(f,\hspace{0.05cm} t) \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) \hspace{0.05cm}.\]


Exercises for the chapter

Exercise 2.1: Two-Dimensional Impulse Response

Exercise 2.1Z: 2D-Frequency and 2D-Time Representations