Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"

From LNTwww
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Die Charakteristika von GSM
+
{{quiz-Header|Buchseite=Mobile_Communications/Characteristics_of_GSM
 
}}
 
}}
  
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
+
[[File:EN_Mob_A_3_5.png|right|frame|Different signals of GMSK-Modulation]]
  
The modulation method used for GSM is  ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where
+
The modulation method used for GSM is  "Gaussian Minimum Shift Keying",  short  $\rm GMSK$.  This is a special type of  $\rm  FSK$  ("Frequency Shift Keying")  with  $\rm  CP-FSK$  ("Continuous Phase Matching"), where:
*the modulation index has the smallest value that just satisfies the orthogonality condition:   h=0.5   ⇒   ''Minimum Shift Keying'',
+
*The modulation index has the smallest value that just satisfies the orthogonality condition:   h=0.5   ⇒   "Minimum Shift Keying"  (MSK),
*a Gaussian low pass with the impulse response  hG(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.
+
*A Gaussian low-pass with the impulse response  hG(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.
  
  
 
The graphic illustrates the situation:
 
The graphic illustrates the situation:
  
*The digital message is represented by the amplitude coefficients  aμ{±1}  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''.
+
*The digital message is represented by the amplitude coefficients  aμ{±1}  which are applied to a "Dirac comb"  (Dirac delta train).  It should be noted that the sequence drawn in is assumed for the subtask  '''(3)'''.
  
*The symmetrical rectangular pulse with duration  T=TB  (GSM bit duration) is dimensionless:
+
*The symmetrical rectangular pulse with duration  T=TB  (GSM bit duration)  is dimensionless:
 
:gR(t)={10f¨urf¨ur|t|<T/2,|t|>T/2.
 
:gR(t)={10f¨urf¨ur|t|<T/2,|t|>T/2.
 
*This results for the rectangular signal
 
*This results for the rectangular signal
 
:qR(t)=qδ(t)gR(t)=νaνgR(tνT).
 
:qR(t)=qδ(t)gR(t)=νaνgR(tνT).
*The Gaussian low pass is given by its frequency response or impulse response:
+
*The Gaussian low-pass is given by its frequency response or impulse response:
:$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
+
:$$H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[{f}/ ({2 f_{\rm G})} ]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 \cdot f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm}t)^2}\hspace{0.05cm},$$
:where the system theoretical cut-off frequency&nbsp; fG&nbsp; is used. In the GSM specification, however, the 3dB cut-off frequency is specified with&nbsp; f3dB=0.3/T&nbsp;. From this,&nbsp; fG&nbsp; can be calculated directly - see subtask '''(2)'''.
+
:where the system theoretical cut-off frequency&nbsp; fG&nbsp; is used.&nbsp; In the GSM specification, however, the 3dB cut-off frequency is specified with&nbsp; f3dB=0.3/T&nbsp;.&nbsp; From this,&nbsp; fG&nbsp; can be calculated directly - see subtask&nbsp; '''(2)'''.
  
*The signal after the gauss low pass is thus
+
*The signal after the Gaussian low-pass is thus
 
:qG(t)=qR(t)hG(t)=νaνg(tνT).
 
:qG(t)=qR(t)hG(t)=νaνg(tνT).
Here&nbsp; g(t)&nbsp; is referred to as ''frequency pulse''. For this one:
+
*Here&nbsp; g(t)&nbsp; is referred to as "frequency pulse":
 
:g(t)=qR(t)hG(t).
 
:g(t)=qR(t)hG(t).
  
*With the low pass filtered signal&nbsp; qG(t), the carrier frequency&nbsp; fT&nbsp; and the frequency deviation&nbsp; ΔfA&nbsp; can thus be written for the instantaneous frequency at the output of the FSK modulator::fA(t)=fT+ΔfAqG(t).
+
*With the low-pass filtered signal&nbsp; qG(t), the carrier frequency&nbsp; fT&nbsp; and the frequency deviation&nbsp; ΔfA&nbsp; for the instantaneous frequency at the output of the FSK modulator can thus be written:
 
+
:fA(t)=fT+ΔfAqG(t).
 
 
 
 
  
  
  
 +
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|Some Gaussian integral values]]
  
 
''Notes:''  
 
''Notes:''  
  
*This exercise belongs to the chapter&nbsp;  [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].  
+
*This exercise belongs to the chapter&nbsp;  [[Mobile_Communications/Characteristics_of_GSM|Characteristics of GSM]].  
*Reference is also made to the chapter&nbsp;  [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]&nbsp; in the book „Beispiele von Nachrichtensystemen”.  
+
*Reference is also made to the chapter&nbsp;  [[Examples_of_Communication_Systems/Radio_Interface|Radio Interface]]&nbsp; in the book "Examples of Communication Systems".   
   
 
 
*For your calculations use the exemplary values&nbsp; fT=900  MHz&nbsp; and&nbsp; ΔfA=68 kHz.
 
*For your calculations use the exemplary values&nbsp; fT=900  MHz&nbsp; and&nbsp; ΔfA=68 kHz.
*Use the Gaussian integral to solve the task (some numerical values are given in the table)
+
*Use the Gaussian integral to solve the task&nbsp; $($some numerical values are given in the table$)$.
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]]
 
 
:ϕ(x)=12πxeu2/2du.
 
:ϕ(x)=12πxeu2/2du.
 
<br clear=all>
 
<br clear=all>
Line 50: Line 47:
 
<quiz display=simple>
 
<quiz display=simple>
  
{In what range of values can the instantaneous frequency&nbsp; fA(t)&nbsp; fluctuate? Which requirements must be met?
+
{In what range of values the instantaneous frequency&nbsp; fA(t)&nbsp; can fluctuate?&nbsp; Which requirements must be met?
 
|type="{}"}
 
|type="{}"}
 
Max [fA(t)] = { 900.068 0.01% }  MHz
 
Max [fA(t)] = { 900.068 0.01% }  MHz
 
Min [fA(t)] = { 899.932 0.01% }  MHz
 
Min [fA(t)] = { 899.932 0.01% }  MHz
  
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement&nbsp; f3dBT=0.3?
+
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low-pass results from the requirement&nbsp; f3dBT=0.3?
 
|type="{}"}
 
|type="{}"}
 
fGT =  { 0.45 3% }  
 
fGT =  { 0.45 3% }  
  
{Calculate the frequency pulse&nbsp; g(t)&nbsp; using the function&nbsp; ϕ(x). How large is the pulse value&nbsp; g(t=0)?
+
{Calculate the frequency pulse&nbsp; g(t)&nbsp; using the function&nbsp; ϕ(x).&nbsp; What is the result for&nbsp; g(t=0)?
 
|type="{}"}
 
|type="{}"}
 
g(t=0) =  { 0.737 3% }  
 
g(t=0) =  { 0.737 3% }  
  
{Which signal value results for&nbsp; qG(t=3T)&nbsp; with&nbsp; a3=1&nbsp; and&nbsp; aμ3=+1? What is the instantaneous frequency&nbsp; fA(t=3T)?
+
{Which signal value results for&nbsp; qG(t=3T)&nbsp; with&nbsp; a3=1&nbsp; and&nbsp; aμ3=+1?&nbsp; What is the instantaneous frequency&nbsp; fA(t=3T)?
 
|type="{}"}
 
|type="{}"}
 
qG(t=3T) =  { -0.51822--0.42978 }  
 
qG(t=3T) =  { -0.51822--0.42978 }  
  
{Calculate the pulse values&nbsp; g(t=±T)&nbsp; of the frequency pulse
+
{Calculate the values&nbsp; g(t=±T)&nbsp; of the frequency pulse.
 
|type="{}"}
 
|type="{}"}
 
g(t=±T) =  { 0.131 3% }  
 
g(t=±T) =  { 0.131 3% }  
  
{The amplitude coefficients are alternating. What is the maximum amount of&nbsp; qG(t)&nbsp;? Consider&nbsp; g(t2T)0.
+
{The amplitude coefficients are alternating.&nbsp; What is the maximum magnitude of&nbsp; $q_{\rm G}(t)$&nbsp;?&nbsp; Consider&nbsp; g(t2T)0.
 
|type="{}"}
 
|type="{}"}
 
Max |qG(t)| =  { 0.475 3% }  
 
Max |qG(t)| =  { 0.475 3% }  
Line 79: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low pass has no influence and qG(t)=1 results.  
+
'''(1)'''&nbsp; If all amplitude coefficients&nbsp; aμ&nbsp; are equal to&nbsp; +1, then&nbsp; qR(t)=1&nbsp; is a constant.&nbsp; Thus, the Gaussian low-pass has no influence and&nbsp; qG(t)=1&nbsp; results.  
 
*The maximum frequency is thus
 
*The maximum frequency is thus
 
:Max [fA(t)]=fT+ΔfA=900.068MHz_.
 
:Max [fA(t)]=fT+ΔfA=900.068MHz_.
*The minimum instantaneous frequency
+
*The minimum instantaneous frequency is
 
:Min [fA(t)]=fTΔfA=899.932MHz_
 
:Min [fA(t)]=fTΔfA=899.932MHz_
is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.
+
:is obtained when all amplitude coefficients are negative.&nbsp; In this case qR(t)=qG(t)=1.
  
  
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is 3 dB less than f=0 is called the 3dB cut-off frequency.  
+
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is&nbsp; 3 dB&nbsp; less than for&nbsp; f=0&nbsp; is called the "3dB cut-off frequency".  
 
*This can also be expressed as follows:
 
*This can also be expressed as follows:
 
:|H(f=f3dB)||H(f=0)|=12.
 
:|H(f=f3dB)||H(f=0)|=12.
*In particular the Gauss low pass because of H(f=0)=1:
+
*In particular the Gauss low-pass because of&nbsp; H(f=0)=1:
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
*The numerical evaluation leads to  fG1.5f3dB.  
+
*The numerical evaluation leads to&nbsp; fG1.5f3dB.  
*From f3dBT=0.3 follows fGT0.45_.
+
*From&nbsp; f3dBT=0.3&nbsp; follows&nbsp; fGT0.45_.
 
 
 
 
  
  
  
'''(3)'''&nbsp; The frequency pulse g(t) results from the convolution of the rectangular function gR(t) with the pulse response hG(t):
+
'''(3)'''&nbsp; The frequency pulse&nbsp; g(t)&nbsp; results from the convolution of the rectangular function&nbsp; gR(t)&nbsp; with the impulse response&nbsp; hG(t):
 
:g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
 
:g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
*With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this:
+
*With the substitution&nbsp; u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}&nbsp; and the function&nbsp; \phi (x)&nbsp; you can also write for this:
 
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
 
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
*For the time t = 0 is valid considering \phi (-x) = 1 - \phi (x) and $f_{\rm G} \cdot T = $0.45
+
*Considering&nbsp; \phi (-x) = 1 - \phi (x)&nbsp; and&nbsp; $f_{\rm G} \cdot T = 0.45,&nbsp; you get for the time&nbsp; t = 0$:
 
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
 
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
  
  
  
'''(4)'''&nbsp; With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity, the following therefore applies:
+
'''(4)'''&nbsp; With&nbsp; a_{3} = +1&nbsp; the result would be&nbsp; q_{\rm G}(t = 3 T) = 1.&nbsp; Due to the linearity therefore applies:
 
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
 
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
  
  
  
'''(5)'''&nbsp; With the result of (3) and $f_{\rm G} \cdot T = $0.45 you get
+
'''(5)'''&nbsp; With the result of&nbsp; '''(3)'''&nbsp; and&nbsp; $f_{\rm G} \cdot T = 0.45$&nbsp; you get
 
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
 
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
*The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low pass.
+
*The pulse value&nbsp; g(t = -T)&nbsp; is exactly the same due to the symmetry of the Gaussian low-pass.
  
  
  
'''(6)'''&nbsp; With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry.  
+
'''(6)'''&nbsp; With alternating sequence, the absolute values&nbsp; |q_{\rm G}(\mu \cdot T)|&nbsp; are all the same for all multiples of the bit duration&nbsp; T&nbsp; for reasons of symmetry.  
*All intermediate values at t \approx \mu \cdot T are smaller.  
+
*All intermediate values at&nbsp; t \approx \mu \cdot T&nbsp; are smaller.  
* Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and also by the following pulse with g(t = -T).
+
* Taking&nbsp; g(t ≥ 2T) \approx 0&nbsp; into account, each individual pulse value&nbsp; g(0)&nbsp; is reduced by the preceding pulse with&nbsp; g(t = T), and by the following pulse with&nbsp; g(t = -T).
  
*So there will be impulse interference and you get
+
*So there will be "intersymbol interference" and you get
 
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.
 
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.
  
Line 136: Line 131:
  
  
[[Category:Aufgaben zu  Mobile Kommunikation|^3.3 Die Charakteristika von GSM^]]
+
[[Category:Mobile Communications: Exercises|^3.3 Characteristics of GSM^]]

Latest revision as of 08:08, 18 September 2022

Different signals of GMSK-Modulation

The modulation method used for GSM is  "Gaussian Minimum Shift Keying",  short  \rm GMSK.  This is a special type of  \rm FSK  ("Frequency Shift Keying")  with  \rm CP-FSK  ("Continuous Phase Matching"), where:

  • The modulation index has the smallest value that just satisfies the orthogonality condition:   h = 0.5   ⇒   "Minimum Shift Keying"  \rm (MSK),
  • A Gaussian low-pass with the impulse response  h_{\rm G}(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  a_{\mu} ∈ \{±1\}  which are applied to a "Dirac comb"  (Dirac delta train).  It should be noted that the sequence drawn in is assumed for the subtask  (3).
  • The symmetrical rectangular pulse with duration  T = T_{\rm B}  (GSM bit duration)  is dimensionless:
g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}
  • This results for the rectangular signal
q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.
  • The Gaussian low-pass is given by its frequency response or impulse response:
H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[{f}/ ({2 f_{\rm G})} ]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 \cdot f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm}t)^2}\hspace{0.05cm},
where the system theoretical cut-off frequency  f_{\rm G}  is used.  In the GSM specification, however, the 3dB cut-off frequency is specified with  f_{\rm 3dB} = 0.3/T .  From this,  f_{\rm G}  can be calculated directly - see subtask  (2).
  • The signal after the Gaussian low-pass is thus
q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.
  • Here  g(t)  is referred to as "frequency pulse":
g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.
  • With the low-pass filtered signal  q_{\rm G}(t), the carrier frequency  f_{\rm T}  and the frequency deviation  \Delta f_{\rm A}  for the instantaneous frequency at the output of the FSK modulator can thus be written:
f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.


Some Gaussian integral values

Notes:

  • This exercise belongs to the chapter  Characteristics of GSM.
  • Reference is also made to the chapter  Radio Interface  in the book "Examples of Communication Systems".
  • For your calculations use the exemplary values  f_{\rm T} = 900 \ \ \rm MHz  and  \Delta f_{\rm A} = 68 \ \rm kHz.
  • Use the Gaussian integral to solve the task  (some numerical values are given in the table).
\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.


Questionnaire

1

In what range of values the instantaneous frequency  f_{\rm A}(t)  can fluctuate?  Which requirements must be met?

{\rm Max} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm}

\ \rm MHz
{\rm Min} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm}

\ \rm MHz

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low-pass results from the requirement  f_{\rm 3dB} \cdot T = 0.3?

f_{\rm G} \cdot T \ = \

3

Calculate the frequency pulse  g(t)  using the function  \phi (x).  What is the result for  g(t = 0)?

g(t = 0) \ = \

4

Which signal value results for  q_{\rm G}(t = 3T)  with  a_{3} = -1  and  a_{\mu \ne 3} = +1?  What is the instantaneous frequency  f_{\rm A}(t = 3T)?

q_{\rm G}(t = 3T) \ = \

5

Calculate the values  g(t = ±T)  of the frequency pulse.

g(t = ±T) \ = \

6

The amplitude coefficients are alternating.  What is the maximum magnitude of  q_{\rm G}(t) ?  Consider  g(t ≥ 2 T) \approx 0.

{\rm Max} \ |q_{\rm G}(t)| \ = \


Solution

(1)  If all amplitude coefficients  a_{\mu}  are equal to  +1, then  q_{\rm R}(t) = 1  is a constant.  Thus, the Gaussian low-pass has no influence and  q_{\rm G}(t) = 1  results.

  • The maximum frequency is thus
{\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.
  • The minimum instantaneous frequency is
{\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}
is obtained when all amplitude coefficients are negative.  In this case q_{\rm R}(t) = q_{\rm G}(t) = -1.


(2)  The frequency at which the logarithmic power transfer function is  3 \ \rm dB  less than for  f = 0  is called the "3dB cut-off frequency".

  • This can also be expressed as follows:
\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.
  • In particular the Gauss low-pass because of  H(f = 0) = 1:
H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.
  • The numerical evaluation leads to  f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}.
  • From  f_{\rm 3dB} \cdot T = 0.3  follows  f_{\rm G} \cdot T \underline{\approx 0.45}.


(3)  The frequency pulse  {\rm g}(t)  results from the convolution of the rectangular function  g_{\rm R}(t)  with the impulse response  h_{\rm G}(t):

g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.
  • With the substitution  u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}  and the function  \phi (x)  you can also write for this:
g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
  • Considering  \phi (-x) = 1 - \phi (x)  and  f_{\rm G} \cdot T = 0.45,  you get for the time  t = 0:
g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.


(4)  With  a_{3} = +1  the result would be  q_{\rm G}(t = 3 T) = 1.  Due to the linearity therefore applies:

q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.


(5)  With the result of  (3)  and  f_{\rm G} \cdot T = 0.45  you get

g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
  • The pulse value  g(t = -T)  is exactly the same due to the symmetry of the Gaussian low-pass.


(6)  With alternating sequence, the absolute values  |q_{\rm G}(\mu \cdot T)|  are all the same for all multiples of the bit duration  T  for reasons of symmetry.

  • All intermediate values at  t \approx \mu \cdot T  are smaller.
  • Taking  g(t ≥ 2T) \approx 0  into account, each individual pulse value  g(0)  is reduced by the preceding pulse with  g(t = T), and by the following pulse with  g(t = -T).
  • So there will be "intersymbol interference" and you get
{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.