Difference between revisions of "Signal Representation/Principles of Communication"

From LNTwww
 
(54 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{FirstPage}}
 
{{FirstPage}}
 
{{Header|
 
{{Header|
Untermenü=Grundbegriffe der Nachrichtentechnik
+
Untermenü=Basic Terms of Communications Engineering
|Vorherige Seite=Signaldarstellung
+
|Vorherige Seite=Signal Representation
|Nächste Seite=Klassifizierung von Signalen
+
|Nächste Seite=Signal Classification
 
}}
 
}}
  
== OVERVIEW OF THE FIRST MAIN CHAPTER ==
+
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
 
<br>
 
<br>
This first chapter serves as an introduction to the whole topic, which is covered by the nine books of the series&nbsp; $\rm LNTww$&nbsp;.  
+
This first chapter serves as an&nbsp; &raquo;introduction to the whole topic&laquo;,&nbsp; which is covered by the nine books of the&nbsp; $\rm LNTwww$&nbsp; series.  
  
 
This chapter describes in detail:
 
This chapter describes in detail:
  
*the&nbsp;''tasks''&nbsp; and the&nbsp; ''basic structure''&nbsp; of a message transmission system,
+
#The&nbsp; &raquo;tasks  and basic structure&laquo;&nbsp;   of a transmission system,
*the&nbsp;''main functional units''&nbsp; (source, transmitter, channel, receiver and sink)&nbsp; of such a system, and finally
+
#the&nbsp; &raquo;main functional units&laquo;&nbsp; &nbsp; $($source,&nbsp; transmitter,&nbsp; channel,&nbsp; receiver,&nbsp; sink$)$&nbsp; of such a system,&nbsp; and finally
*a&nbsp;''classification''&nbsp; of the signals occurring in a message system according to several evaluation criteria: &nbsp;deterministic or stochastic, energy or power limited, continuous or discrete time, continuous or discrete value, analog or digital.
+
#a&nbsp; &raquo;classification  of the signals&laquo;&nbsp; occurring in a transmission system according to several evaluation criteria: &nbsp; &nbsp; <br> &nbsp; &nbsp; &raquo;deterministic or stochastic, energy or power limited, continuous or discrete time, continuous or discrete value, analog or digital&laquo;.
  
  
At the end of the chapter follows a short summary about the&nbsp;''Calculating with complex numbers''.
+
At the end of the chapter follows a short summary about&nbsp; &raquo;Calculating with complex numbers&laquo;.
  
  
Line 23: Line 23:
 
==Message - Information - Signal==
 
==Message - Information - Signal==
 
<br>
 
<br>
One distinguishes basically between the terms &bdquo;message&rdquo; and &bdquo;information&rdquo;, which are often used synonymously nowadays.
+
One distinguishes basically between the terms&nbsp; &raquo;message&laquo;&nbsp; and&nbsp; &raquo;information&laquo;,&nbsp; which are often used synonymously nowadays.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
An email from Mr. Maier to Mrs. Müller is always a&nbsp; ''message''. For Mrs. Müller, however, receiving this email only means an information gain if she learns something new. The&nbsp; ''information''&nbsp; transmitted by a message therefore depends to a great extent on the knowledge level of the recipient. In practice, the information contained in a message is rather small, especially in the field of telephony.}}
+
An e&ndash;mail from Mr. Maier to Mrs. Miller is always a&nbsp; &raquo;message&laquo;.&nbsp;
 +
*For Mrs. Miller,&nbsp; however,&nbsp;  receiving this e&ndash;mail only means an information gain if she learns something new.&nbsp;
 +
*The&nbsp; &raquo;information&laquo;&nbsp; transmitted by a message therefore depends to a great extent on the knowledge level of the recipient.&nbsp;
 +
*In practice,&nbsp; the information contained in a message is rather small,&nbsp; especially in the field of telephony.}}
  
  
The transmission and storage of a message always requires an energetic or material carrier called&nbsp; ''signal''&nbsp;. Physically the representation of a message is done by signals, which can be of very different nature.  
+
The transmission of messages &nbsp;  and their storage always requires an energetic or material carrier called&nbsp; &raquo;signal&laquo;.&nbsp; Physically the representation of a message is done by signals,&nbsp; which can be of very different nature.  
  
 
Possible appearances are:
 
Possible appearances are:
*electrical signals&nbsp; (for example current and voltage curve),
+
#Electrical signals&nbsp; $($e.g.&nbsp; current and voltage curves$)$,
*electromagnetic waves&nbsp; (for example in radio transmission),
+
#electromagnetic waves&nbsp; $($e.g.&nbsp; in radio transmission$)$,
*Progression of pressure, temperature or other physical quantities,
+
#progression of pressure,&nbsp; temperature or other physical quantities,
*acoustic signals&nbsp; (for example, output signal of a loudspeaker),
+
#acoustic signals&nbsp; $($e.g.&nbsp; output signal of a loudspeaker$)$,
*optical signals&nbsp; (for example output signal of a laser).
+
#optical signals&nbsp; $($e.g.&nbsp; output signal of a laser$)$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Please note:}$&nbsp;
 
$\text{Please note:}$&nbsp;
*The signals used for&nbsp; '''message transmission'''&nbsp; are usually time functions. This means that (at least) one of the signal parameters is dependent on the time parameter&nbsp; $t$&nbsp;. Such signal parameters are for example for a signal tone the amplitude ("volume") and the frequency ("pitch").
+
*The signals used for&nbsp; &raquo;$\text{data transmission}$&laquo;&nbsp; are usually time functions.&nbsp; This means that&nbsp; $($at least$)$ one of the signal parameters is dependent on the time parameter&nbsp; $t$.&nbsp; Such parameters for a signal tone are e.g. the amplitude&nbsp; $($&raquo;volume&laquo;$)$&nbsp; and the frequency&nbsp; $($&raquo;pitch&laquo;$)$.
  
*In a&nbsp; '''message memory'''&nbsp; the time functions are often also mapped to spatial functions of suitable physical quantities such as magnetization (magnetic band) or degree of blackening (film).}}
+
*For storing messages &nbsp; &rArr; &nbsp; &raquo;$\text{data storage}$&laquo;&nbsp; the time functions are often mapped to spatial functions of suitable physical quantities such as magnetization&nbsp; $($&raquo;magnetic band&laquo;$)$&nbsp; or degree of blackening&nbsp; $($&raquo;film&laquo;$)$.}}
  
  
The set of all message signals can be cataloged by different criteria, as described in chapter&nbsp; [[Signal_Representation/Klassifizierung_von_Signalen|Klassifizierung von Signalen]]&nbsp; angegeben.
+
The set of all message signals can be cataloged by different criteria,&nbsp; as described in the chapter&nbsp; [[Signal_Representation/Signal_classification|&raquo;Signal classification&laquo;]].&nbsp;
  
  
==Block diagram of a message transmission system==
+
==Block diagram of a transmission system==
 
<br>
 
<br>
In the following diagram a&nbsp; '''message transmission system'''&nbsp; is shown schematically.
+
In the following diagram a transmission system is shown schematically.
  
[[File:EN_Sig_T_1_1_S2_neu.png|center|frame| General block diagram of a message transmission system]]
+
[[File:EN_Sig_T_1_1_S2_neu.png|center|frame| General block diagram of a transmission system]]
  
 
The individual system components have the following tasks:
 
The individual system components have the following tasks:
*The&nbsp; '''message source''' &nbsp; returns the source signal&nbsp; $q(t)$, which shall be transmitted over the message channel to the spatially distant sink. The message source can be for example a computer, a radio station or a telephone participant.
+
*The&nbsp; &raquo;'''message source'''&laquo;&nbsp; returns the&nbsp; &raquo;source signal&laquo;&nbsp; $q(t)$,&nbsp; which shall be transmitted over the channel to the spatially distant sink.&nbsp; The source can be for example a computer,&nbsp; a radio station or a telephone participant.
*In most cases the source signal&nbsp; $q(t)$&nbsp; itself is unsuitable for transmission and must first be converted into the signal&nbsp; $s(t)$&nbsp; in a suitable manner. This process is called &bdquo;modulation&rdquo; and is performed by the&nbsp; '''transmitter''' &nbsp;. Therefore&nbsp; $s(t)$&nbsp; is called the transmit signal in the following.
+
 
*At transmission over the&nbsp; '''channel'''&nbsp; this signal&nbsp; $s(t)$&nbsp; is changed in its form; at the same time more or less strong noise&ndash; and noise signals are added. The signal at the channel output and simultaneously at the receiver input is called the receive signal&nbsp; $r(t)$.
+
*In most cases the source signal&nbsp; $q(t)$&nbsp; itself is unsuitable for transmission and must first be converted into the signal&nbsp; $s(t)$&nbsp; in a suitable manner.&nbsp; This process is called&nbsp; &raquo;modulation&laquo;&nbsp; and is performed by the&nbsp; &raquo;'''transmitter'''&laquo;.&nbsp; In the following,&nbsp; the signal&nbsp; $s(t)$&nbsp; is called&nbsp; &raquo;transmitted signal&laquo;.
*The&nbsp; '''receiver'''&nbsp; must undo the conversion made by the sender. If, for example, the low-frequency source signal&nbsp; $q(t)$&nbsp; was converted to the higher-frequency transmitter signal&nbsp; $s(t)$&nbsp; the receiver must also contain a demodulator and undo this conversion.
+
 
*The last block in the model above is the&nbsp; '''message sink'''. The sink signal&nbsp; $v(t)$&nbsp; is like the  transmitted signal&nbsp; $q(t)$&nbsp; again low frequency. In the ideal case, however, which in practice&nbsp; (due to the unavoidable noise)&nbsp; can never be reached exactly, should apply for all times&nbsp; $v(t) = q(t)$&nbsp;.
+
*During transmission over the&nbsp; &raquo;'''channel'''&laquo;&nbsp; the signal&nbsp; $s(t)$&nbsp; is changed in its form.&nbsp; At the same time,&nbsp; interference and noise signals are added.&nbsp; The signal at the channel output and simultaneously at the receiver input is called the&nbsp; &raquo;received signal&laquo;&nbsp; $r(t)$.
 +
 
 +
*The&nbsp; &raquo;'''receiver'''&laquo;&nbsp; must undo the conversion made by the transmitter.&nbsp; If,&nbsp; for example,&nbsp; the low-frequency source signal&nbsp; $q(t)$&nbsp; was converted to the higher-frequency transmitted signal&nbsp; $s(t)$&nbsp; the receiver must also contain a&nbsp; &raquo;demodulator&laquo;&nbsp; and undo this conversion.
 +
 
 +
*The last block in the model above is the&nbsp; &raquo;'''message sink'''&laquo;.&nbsp; The&nbsp; &raquo;sink signal&laquo;&nbsp; $v(t)$&nbsp; is like the  source signal&nbsp; $q(t)$&nbsp; low-frequency.&nbsp; In the ideal case should apply for all times:&nbsp; $v(t) = q(t)$.&nbsp; But in practice&nbsp; this can never be reached exactly&nbsp; $($due to the unavoidable noise$)$.
 
   
 
   
  
Line 67: Line 74:
 
==Message source==  
 
==Message source==  
 
<br>
 
<br>
As examples for news sources or for the source signal&nbsp; $q(t)$&nbsp; can be mentioned
+
As examples for message sources and for the source signal&nbsp; $q(t)$&nbsp; can be mentioned:
*Audio signals, for example speech or music,
+
#Audio signals,&nbsp; e.g.&nbsp; speech or music,
*Video signals, for example an analog television signal or an MPEG encoded streaming video,
+
#video signals,&nbsp; e.g.&nbsp; an analog television signal or an MPEG encoded streaming video,
*Data signals, for example the data stream of a USB interface or an email on the Internet,
+
#data signals,&nbsp; e.g.&nbsp; the data stream of a USB interface or an email on the Internet,
*Measure&ndash;signals, for example for control or regulation in a production process.
+
#measure signals,&nbsp; e.g.&nbsp; for control or regulation in a production process.
 +
 
  
 +
In general,&nbsp; a distinction is made between analog and digital sources.&nbsp;  The description presented in this book apply equally to analog and digital signals.&nbsp; The basic differences between analog and digital signals are discussed in the chapter&nbsp; [[Signal_Representation/Signal_classification|&raquo;Signal classification&laquo;]],&nbsp; and  clarified  with examples throughout the&nbsp; $($German language$)$&nbsp; learning video
 +
:[[Analoge und digitale Signale (Lernvideo)|&raquo;Analoge und digitale Signale&laquo;]] &nbsp; &rArr; &nbsp; "Analog and Digital Signals".
  
 
[[File:EN_Sig_T_1_1_S3.png|right|frame|Frequency-time representation of a speech signal]]
 
[[File:EN_Sig_T_1_1_S3.png|right|frame|Frequency-time representation of a speech signal]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
On the right you see the frequency-time representation of a speech signal.
+
On the right you see the frequency-time representation of a speech signal:
*You can see the different frequency components in the kilohertz range at different times.  
+
 
*By the way: &nbsp; This is a male speaker.
+
 
 +
 
 +
 +
*You can see the different frequency components in the kilohertz range at different times.
 +
 +
*By the way:&nbsp; This is a male speaker.
  
  
We thank&nbsp; ''Markus Kaindl''&nbsp;<ref>Kaindl, M.: Kanalcodierung für Sprache und Daten in GSM-Systemen. Dissertation. Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 764, 2005.</ref>, LNT/TUM, for providing the graphic.}}
 
  
  
A distinction is made between analog and digital news sources. The forms of description presented in this book &bdquo;Signal Representation&rdquo; apply equally to analog and digital signals.
 
  
The basic differences between analog and digital signals are
 
*discussed in the chapter &nbsp; [[Signal_Representation/Klassifizierung_von_Signalen|Classification of signals]]&nbsp;,and 
 
*clarified throughout the video&nbsp; [[Analoge und digitale Signale (Lernvideo)|Analoge und digitale Signale]]&nbsp; with examples.
 
  
 +
We thank&nbsp; Markus Kaindl<ref>Kaindl, M.: Kanalcodierung für Sprache und Daten in GSM-Systemen. Dissertation. <br>Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 764, 2005.</ref>, LNT/TUM,&nbsp; for providing the graphic.}}
  
 
 
Line 96: Line 107:
 
==Tasks of the transmitter==
 
==Tasks of the transmitter==
 
<br>
 
<br>
The essential task of the transmitter is to convert the source signal&nbsp; $q(t)$&nbsp; into a transmit signal&nbsp; $s(t)$&nbsp; in such a way that it is adapted as well as possible to the transmission channel while maintaining the specified performance characteristics. For this purpose each transmitter contains corresponding&nbsp; '''functional units'''&nbsp; such as
+
The essential task of the transmitter is to convert the source signal&nbsp; $q(t)$&nbsp; into the transmitted signal&nbsp; $s(t)$&nbsp; in such a way that it is adapted as well as possible to the transmission channel while maintaining the specified performance characteristics.&nbsp; For this purpose each transmitter contains corresponding&nbsp; &raquo;'''functional units'''&laquo;&nbsp; such as
 +
 
 +
*a transducer &ndash; e.g.&nbsp; a microphone for converting the physical quantity&nbsp; "pressure"&nbsp; $($acoustic wave$)$&nbsp; into an electrical signal,
 +
 
 +
*a signal converter &ndash; for example from&nbsp; &raquo;analog&laquo;&nbsp; to&nbsp; &raquo;digital&laquo;&nbsp; using the components&nbsp; &raquo;sampling&laquo;,&nbsp; &raquo;quantization&raquo;&nbsp; and&nbsp; &raquo;PCM encoding&raquo;,
 +
 
 +
*an encoder for removing redundancy to data compression &nbsp; $($&raquo;source coding&laquo;$)$&nbsp; or <br>for systematically adding redundancy,&nbsp; which can be used at the receiver for&nbsp; &raquo;error detection&laquo; &nbsp; and/or&nbsp; &raquo;error correction&laquo; &nbsp; $($&raquo;channel coding&laquo;$)$,
  
*Transducer - for example a microphone for converting the physical quantity "pressure" (acoustic wave) into an electrical signal,
+
*a modulator for adaptation to the transmission channel &ndash; for example a frequency conversion by means of amplitude,&nbsp; phase or frequency modulation or the corresponding digital methods ASK,&nbsp; PSK,&nbsp; FSK.
*Signal converter - for example from "analog" to "digital" using the components&nbsp; ''sampling'',&nbsp; ''quantization''&nbsp; and&nbsp; ''binary coding'',
 
*Encoder for removing redundancy to&nbsp; ''data compression''&nbsp; (source coding) or for systematically adding redundancy, which can be used at the receiver for&nbsp; ''error detection''&nbsp; and/or&nbsp; ''error correction''&nbsp; (channel coding)
 
*Modulator for adaptation to the transmission channel - for example a frequency conversion by means of amplitude, phase or frequency modulation or the corresponding digital methods ASK, PSK or FSK.
 
  
  
Depending on the application, the&nbsp; '''performance characteristics''' mentioned above mean that very specific properties are required for signal transmission.  
+
Depending on the application,&nbsp; the&nbsp; &raquo;'''performance characteristics'''&laquo; mentioned above mean that very specific properties are required for signal transmission.  
  
 
Such features are for example:
 
Such features are for example:
  
*''Power limitation''&nbsp; - due to the discussions on the topic &bdquo;electrosmog&rdquo; highly topical,
+
#&raquo;Power limitation&laquo;&nbsp; &ndash; due to the discussions on the topic&nbsp; "electrosmog"&nbsp; highly topical,
*''Bandwidth efficiency''&nbsp; - the UMTS&ndash;auction in 2000 has shown what amounts are involved,
+
#&raquo;bandwidth efficiency&laquo;&nbsp; &ndash; the UMTS auction in 2000 has shown what magnitudes are involved,
*''distance''&nbsp; or ''range''&nbsp; - unfavorable values increase the infrastructure costs
+
#&raquo;distance&laquo;&nbsp; or&nbsp; &raquo;range&laquo;&nbsp; &ndash; unfavorable values increase the infrastructure costs,
*''Transmission quality''&nbsp; - for example a high signal&ndash;to&ndash;signal-to-noise ratio or a low error rate. 
+
#&raquo;transmission quality&laquo;&nbsp; &ndash; for example a high signal-to-noise ratio or a low error rate. 
  
  
 
   
 
   
==Communication channel== 
+
==Transmission channel== 
 
<br>
 
<br>
The&nbsp; '''transmission medium'''&nbsp; with its physical properties plays an essential role in the feasibility of certain transmission properties.
+
The&nbsp; &raquo;'''transmission medium'''&laquo;&nbsp; with its physical properties plays an essential role in the feasibility of certain transmission properties.
  
 
Examples of transmission media are:
 
Examples of transmission media are:
*electrical cables, for example copper wire, twisted pair,
+
#Electrical cables,&nbsp; e.g.&nbsp; copper wire,&nbsp; twisted pair,
*Coaxial cable, for example antenna line or cable network,
+
#coaxial cable,&nbsp; e.g.&nbsp; antenna line or cable network,
*Fiber optic cables, for example multimode and single mode fiber optic,
+
#fiber optic cables,&nbsp; e.g.&nbsp; multi-mode and single-mode fiber optic,
*Radio channels, for example broadcasting, mobile and satellite radio.
+
#radio channels,&nbsp; e.g.&nbsp; broadcasting,&nbsp; mobile and satellite radio.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Please note:}$&nbsp; Diese Übertragungsmedien sind in der Praxis nicht ideal und beeinträchtigen die Übertragung.  
+
$\text{Please note:}$&nbsp; These transmission media are not ideal in practice and impair the transmission.&nbsp; That means: &nbsp;
  
This means: &nbsp; The receive signal&nbsp; $r(t)$&nbsp; is different from the transmit signal&nbsp; $s(t)$, possibly due to
+
The received signal&nbsp; $r(t)$&nbsp; is different from the transmitted signal&nbsp; $s(t)$,&nbsp; possibly due to
 
*the channel attenuation,
 
*the channel attenuation,
*of delays on the channel,
 
*of linear and non-linear distortions.
 
  
 +
*delays on the channel,
 +
 +
*linear and nonlinear distortions.
 +
 +
 +
&rArr; &nbsp; In addition, the channel transmission properties can change significantly over time&nbsp; $($&raquo;'''time variance'''&laquo;,&nbsp; example:&nbsp; mobile radio$)$.
 +
 +
&rArr; &nbsp; Also&nbsp; &raquo;'''interfering signals'''&laquo;&nbsp; that occur during signal transmission must always be taken into account.&nbsp; The following are examples of these:
 +
*Noise signals,&nbsp; e.g.&nbsp; resistance and semiconductor noise,
 +
 +
*pulse disturbances,&nbsp; e.g.&nbsp; from power lines,&nbsp; spark interference and discharges,
  
In addition, the channel transmission properties can change significantly over time (&bdquo;time variance&rdquo;, example:&nbsp; mobile radio).}}
+
*adjacent channel interference&nbsp; $($cross-talk of other users,&nbsp; cross-modulation$)$.}}
  
 
 
Zusätzlich sind stets die bei der Signalübertragung auftretenden&nbsp; '''Störsignale'''&nbsp; zu berücksichtigen. Hier kann man als Beispiele nennen:
 
*Rauschsignale – zum Beispiel Widerstands- und Halbleiterrauschen,
 
*Impulsstörungen – zum Beispiel Starkstromleitungen, Funkenstörungen und Entladungen,
 
*Nachbarkanalstörungen (Übersprechen anderer Nutzer, Interferenzen, Kreuzmodulation).
 
  
 +
&nbsp; &rArr; &nbsp; You will find basic information about modeling the transmission channel in general and the simple&nbsp; &raquo;AWGN channel&laquo;&nbsp; in the the&nbsp; $($German language$)$&nbsp; learning video
 +
:[[Eigenschaften_des_Übertragungskanals_(Lernvideo)|&raquo;Eigenschaften des Übertragungskanals&laquo;]] &nbsp; &rArr; &nbsp; "Properties of the Transmission Channel".
  
Sie finden Grundlegendes über die Modellierung des Nachrichtenkanals allgemein und des einfachen AWGN-Kanals im  Lernvideo&nbsp;  [[Eigenschaften_des_Übertragungskanals_(Lernvideo)|Eigenschaften des Übertragungskanals]].
 
  
 
  
==Empfänger – Nachrichtensinke==  
+
==Receiver - Message sink==  
 
<br>
 
<br>
Als Beispiele für die Nachrichtensinke können wir nennen:
+
As examples of the message sinks we can mention
*Auge und Ohr des Menschen,
+
#eye and ear of man,
*Videorecorder und Anrufaufzeichner,
+
#video recorder and call recorder,
*ein Smartphone, das eine Datei aus dem Internet herunterlädt, oder
+
#a smartphone that downloads a file from the Internet,  
*eine Steuerungsanlage, die empfangene Mess&ndash;Signale verarbeitet.
+
#a control system that processes received measurement signals.
 +
 
 +
 
 +
To ensure that at least in the  ideal case the sink signal&nbsp; $v(t)$&nbsp; could coincide with the source signal&nbsp; $q(t)$&nbsp; &ndash; in practice however never attainable &ndash; all measures taken on the transmission side must be reversed by the receiver.
 +
 
 +
Corresponding&nbsp; &raquo;'''functional units'''&laquo;&nbsp; of a receiver are:
 +
*Transducer &ndash; e.g.&nbsp;  a loudspeaker to convert an electric signal into an acoustic signal&nbsp; $($counterpart of the microphone$)$,
  
 +
*signal reconstruction &ndash; e.g.&nbsp;  the reconstruction of the analog signal from the digital samples&nbsp; $(\rm D/A$&nbsp; converter &nbsp; &rArr; &nbsp; counterpart to an&nbsp; $\rm A/D$&nbsp; converter$)$,
  
Damit zumindest im – in der Praxis allerdings nie erreichbaren – Idealfall das Sinkensignal&nbsp; $v(t)$&nbsp; mit dem Quellensignal&nbsp; $q(t)$&nbsp; übereinstimmen könnte, müssen durch den Empfänger alle sendeseitig getroffenen Maßnahmen rückgängig gemacht werden.  
+
*channel decoder &ndash; for example with the possibility of error detection and error correction&nbsp; $($counterpart of the channel encoder$)$.
  
Entsprechende&nbsp; '''Funktionseinheiten'''&nbsp; des Empfängers sind:
 
*Wandler – zum Beispiel ein Lautsprecher zur Umwandlung eines elektrischen in ein akustisches Signal&nbsp; (Gegenstück zum Mikrofon),
 
*Demodulation – zum Beispiel Frequenzrücksetzung des Signals in den ursprünglichen Frequenzbereich&nbsp; (Gegenstück zum AM/FM/PM-Modulator),
 
*Signalrücksetzung – zum Beispiel die Rekonstruktion des Analogsignals aus den digitalen Abtastwerten&nbsp; (D/A-Wandler &nbsp; &rArr; &nbsp; Gegenstück zum A/D-Wandler),
 
*Decodierung – zum Beispiel mit der Möglichkeit zur Fehlererkennung und Fehlerkorrektur&nbsp; (Gegenstück zum Kanalcodierer).
 
  
 +
Another important task of the receiver is to eliminate as much as possible the signal distortions and noise that occur during transmission.&nbsp; The realization of such system components for transmitters and receivers is done by different electrical networks and assemblies.
  
 +
Here too,&nbsp; some functional units can be named as examples:
 +
*Amplifier,&nbsp; filter and equalizer,
  
Eine weitere wichtige Aufgabe des Empfängers besteht darin, die bei der Übertragung aufgetretenen Signalverfälschungen und Störungen möglichst gut zu beseitigen.
+
*oscillators and nonlinear components for&nbsp; demodulation and synchronization,
  
Die Realisierung solcher Systemkomponenten für Sender und Empfänger geschieht durch verschiedene elektrische Netzwerke und Baugruppen. Auch hier lassen sich beispielhaft einige Funktionseinheiten nennen:
+
*digital signal processing components and signal processors.
*Verstärker, Filter und Entzerrer,
 
*Oszillatoren und nichtlineare Komponenten zur&nbsp; (De-)Modulation und Synchronisation,
 
*digitale Signalverarbeitungskomponenten und Signalprozessoren.
 
  
 
    
 
    
 
   
 
   
==Signalverfälschungen==
+
==Signal distortions==
 
<br>
 
<br>
Es wurde bereits angesprochen, dass im Idealfall&nbsp; $v(t) = q(t)$&nbsp; sein sollte. Gilt jedoch wie bei jedem realen Übertragungskanal&nbsp; $r(t) \neq s(t)$, so wird sich natürlich auch das Sinkensignal&nbsp; $v(t)$&nbsp; vom Quellensignal&nbsp; $q(t)$&nbsp; unterscheiden. Hierzu einige Beispiele:
+
It has already been mentioned that ideally&nbsp; $v(t) = q(t)$&nbsp; should be valid.&nbsp; However,&nbsp; as with any real transmission channel &nbsp; $r(t) \neq s(t)$,&nbsp; the sink signal&nbsp; $v(t)$&nbsp; will be different from the source signal&nbsp; $q(t)$.&nbsp; Here are some examples:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Man spricht von&nbsp; '''Rauschen''', wenn für das Sinkensignal gilt:
+
$\text{Definition:}$&nbsp; One speaks of&nbsp; &raquo;'''noise'''&laquo;,&nbsp; if for the sink signal applies:
 
:: <math> v(t)=q(t)+n(t).</math>
 
:: <math> v(t)=q(t)+n(t).</math>
Der additive Rauschanteil&nbsp; $n(t)$&nbsp; ist stets von stochastischer Natur und hat meist keinerlei Bezug zum Nachrichtensignal&nbsp; $q(t)$. Ein solcher Rauschterm ist bei jeder Übertragung unvermeidlich.}}
+
*The additive noise component&nbsp; $n(t)$&nbsp; is always of stochastic nature and usually has no relation to the source signal&nbsp; $q(t)$.&nbsp;
 +
 +
*Such a noise component is inevitable for every transmission.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die Übertragung ist&nbsp; '''verzerrungsfrei''', wenn das Sinkensignal wie folgt lautet:
+
$\text{Definition:}$&nbsp; The transmission is&nbsp; &raquo;'''distortion&ndash;free'''&laquo;,&nbsp; if the sink signal is as follows:
:: <math>v(t)=a \cdot q(t-\tau)+n(t).</math>
+
:: <math>v(t)=\alpha \cdot q(t-\tau)+n(t).</math>
Das Sinkensignal unterscheidet sich in diesem Falll vom Quellensignal – außer durch den Störanteil&nbsp; $n(t)$&nbsp; – nur noch durch den&nbsp; (für alle Frequenzen gleichen)&nbsp; Dämpfungsfaktor&nbsp; $\alpha$&nbsp; und die&nbsp; (ebenfalls für alle Frequenzen gleiche)&nbsp; Laufzeit&nbsp; $\tau$.}}
+
In this case the sink signal differs from the source signal except for the noise component&nbsp; $n(t)$&nbsp; only by
 +
* the&nbsp; attenuation factor&nbsp; $\alpha$&nbsp; $($same for all frequencies),&nbsp; and
 +
 +
*the&nbsp; delay time&nbsp; $\tau$&nbsp; $($also the same for all frequencies$)$.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  Ist die Gleichung&nbsp; $v(t)=a\cdot q(t-\tau)+n(t)$&nbsp; nicht erfüllt, so liegen&nbsp; '''Verzerrungen'''&nbsp; vor. Man unterscheidet zwischen
+
$\text{Definition:}$&nbsp;  If the equation&nbsp; $v(t)=\alpha \cdot q(t-\tau)+n(t)$&nbsp; is not fulfilled,&nbsp; then there are&nbsp; &raquo;'''distortions'''&laquo;.&nbsp;  
* &nbsp;[[Linear_and_Time_Invariant_Systems/Lineare_Verzerrungen|linearen Verzerrungen]]&nbsp; und
+
 
* &nbsp;[[Linear_and_Time_Invariant_Systems/Nichtlineare_Verzerrungen|nichtlinearen Verzerrungen]],
+
As described in the book&nbsp; [[Linear_and_Time_Invariant_Systems|&raquo;Linear and Time Invariant Systems&laquo;]]&nbsp; one distinguishes between
 +
* &nbsp;[[Linear_and_Time_Invariant_Systems/Lineare_Verzerrungen|&raquo;linear distortions&laquo;]],&nbsp;
  
 +
* &nbsp;[[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions|&raquo;nonlinear distortions&laquo;]].
  
wie im Buch&nbsp; [[Lineare zeitinvariante Systeme]]&nbsp; beschrieben wird.}}
 
  
 +
&rArr; &nbsp; In this context we refer to the&nbsp; $($German language$)$&nbsp; learning video&nbsp;
 +
:[[Lineare_und_nichtlineare_Verzerrungen_(Lernvideo)|&raquo;Lineare und nichtlineare Verzerrungen&laquo;]]&nbsp; &rArr; &nbsp; "Linear and nonlinear distortions".
 +
}}
  
Wir verweisen in diesem Zusammenhang auf das Lernvideo&nbsp; [[Lineare_und_nichtlineare_Verzerrungen_(Lernvideo)|Lineare und nichtlineare Verzerrungen]].
+
 
 
+
Here again in slightly different words:
Hier nochmals in etwas anderen Worten:
+
*The attenuation factor&nbsp; $\alpha$&nbsp; only causes the signal&nbsp; $v(t)$&nbsp; to be slightly&nbsp; &raquo;quieter&laquo;&nbsp; than&nbsp; $q(t)$;&nbsp; but both signals have the same shape.
*Der Dämpfungsfaktor&nbsp; $\alpha$&nbsp; bewirkt nur, dass das Signal&nbsp; $v(t)$&nbsp; etwas „leiser“ ist als&nbsp; $q(t)$;&nbsp; beide Signale haben aber die gleiche Form.  
+
*Die Laufzeit&nbsp; $\tau$&nbsp; führt dazu, dass das Signal&nbsp; $v(t)$&nbsp; am Empfänger später ankommt, als&nbsp; $q(t)$&nbsp; gesendet wurde.  
+
*The delay&nbsp; $\tau$&nbsp; causes the signal&nbsp; $v(t)$&nbsp; to arrive at the receiver later than&nbsp; $q(t)$&nbsp; was sent.  
  
  
Beide Effekte sind für eine&nbsp; ''unidirektionale Übertragung''&nbsp; nicht sonderlich störend: &nbsp; Man kann zum Beispiel immer noch von einer Live-Übertragung sprechen, wenn das Fernsehbild um (Bruchteille von) Sekunden verzögert ankommt.   
+
Both effects are not particularly disturbing for a&nbsp; &raquo;<b>unidirectional transmission</b>&laquo;:<br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; For example,&nbsp; one can still speak of a live transmission if the television picture arrives delayed by&nbsp; $($a fraction of$)$&nbsp; seconds.   
  
Bei einer&nbsp; ''bidirektionalen Übertragung''&nbsp; kann eine zu lange Laufzeit allerdings zu Problemen führen. Bei einem Telefonat fallen sich dann die beiden Gesprächspartner gegenseitig ins Wort.   
+
However,&nbsp; with&nbsp; &raquo;<b>bidirectional transmission</b>&laquo;,&nbsp; a  long runtime can lead to problems:<br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  During a telephone conversation,&nbsp; the two interlocutors then interrupt each other.   
 
   
 
   
[[File:P_ID587_Sig_T_1_1_S7a.jpg|right|frame|Farbschablone zur Verdeutlichung von Verzerrungen und Rauschen]]
 
{{GraueBox|TEXT= 
 
$\text{Beispiel 3:}$&nbsp;
 
Die hier benutzten Begriffe sollen nun an einem Bildsignal verdeutlicht werden.
 
  
Rechts sehen Sie als Orginalbild eine Farbschablone mit&nbsp; $291 × 218$&nbsp; Pixeln und&nbsp; $24$&nbsp; Bit Farbtiefe. Von den möglichen&nbsp; $2^{24} = 16\hspace{0.08cm} 777\hspace{0.08cm} 216$&nbsp; Farben sind hier allerdings nur wenige benutzt.
+
{{GraueBox|TEXT=
 +
[[File:P_ID587_Sig_T_1_1_S7a.jpg|right|frame|Color template to illustrate <br>"distortion"&nbsp; and&nbsp; "noise"]] 
 +
$\text{Example 3:}$&nbsp; The terms used here shall now be clarified by an image signal.
 +
 
 +
On the right you see as original image a color template with&nbsp; $291 × 218$&nbsp; pixels and&nbsp; $24$&nbsp; bit color depth.&nbsp; From the possible&nbsp; $2^{24} = 16\hspace{0.08cm} 777\hspace{0.08cm} 216$&nbsp; colors only a few colors are used here.
 +
 
 +
&rArr; &nbsp; In the lower left image,&nbsp; the signal is superposed with additive noise&nbsp; $n(t)$&nbsp; which is perceived as&nbsp; "snow".
  
*Im linken unteren Bild ist dem Signal additives Rauschen&nbsp; $n(t)$&nbsp; überlagert, was sich als „Schnee” bemerkbar macht.  
+
[[File:P_ID588_Sig_T_1_1_S7b.jpg|center|frame|Effects of&nbsp; &raquo;noise&laquo;&nbsp; and&nbsp; &raquo;distortion&laquo;&nbsp; on an image signal]]
*Das rechte untere  Bild zeigt den Einfluss von (nichtlinearen) Verzerrungen, die bei der gewählten Einstellung der CCD-Kamera sowohl zu einer Verfälschung der Helligkeitswerte als auch der Farbinformationen führen.  
+
The lower right image shows the influence of&nbsp; $($nonlinear$)$&nbsp; distortions,&nbsp; which lead to a distortion of both brightness values and color information at the selected setting of the CCD camera.&nbsp; You can see:
*Im markierten Feld der Grautreppe stimmt die Helligkeit in etwa mit dem Orginalbild (oben) überein.
+
#In the marked field of the gray staircase,&nbsp; the brightness corresponds approximately to the original image&nbsp; $($above on the right $)$.
*Dagegen erscheinen andere Felder als zu hell oder zu dunkel bzw. mit Fehlfarben belegt.  
+
#On the other hand,&nbsp; other fields appear as too light or too dark or filled with missing colors.  
*Rauscheffekte spielen im rechten Bild  keine Rolle im Gegensatz zum linken Bild.
+
#Noise effects play no role in the lower right image as opposed to the lower left image.  
 +
#These linear distortions are no longer detectable due to the strong nonlinear distortions.
  
  
[[File:P_ID588_Sig_T_1_1_S7b.jpg|center|frame|Auswirkungen von Rauschen und Verzerrungen auf ein Bildsignal]] }}  
+
}}  
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.1 Musiksignale|Aufgabe 1.1: Musiksignale]]
+
[[Aufgaben:Exercise 1.1: Music Signals|Exercise 1.1: Music Signals]]
  
[[Aufgaben:1.1Z_ISDN-Verbindung|Aufgabe 1.1Z: ISDN-Verbindung]]
+
[[Aufgaben:Exercise_1.1Z:_ISDN-Connection|Exercise 1.1Z: ISDN Connection]]
  
== Quellenverzeichnis ==
+
== References ==
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 18:56, 6 June 2023

# OVERVIEW OF THE FIRST MAIN CHAPTER #


This first chapter serves as an  »introduction to the whole topic«,  which is covered by the nine books of the  $\rm LNTwww$  series.

This chapter describes in detail:

  1. The  »tasks and basic structure«  of a transmission system,
  2. the  »main functional units«    $($source,  transmitter,  channel,  receiver,  sink$)$  of such a system,  and finally
  3. a  »classification of the signals«  occurring in a transmission system according to several evaluation criteria:    
        »deterministic or stochastic, energy or power limited, continuous or discrete time, continuous or discrete value, analog or digital«.


At the end of the chapter follows a short summary about  »Calculating with complex numbers«.


Message - Information - Signal


One distinguishes basically between the terms  »message«  and  »information«,  which are often used synonymously nowadays.

$\text{Example 1:}$  An e–mail from Mr. Maier to Mrs. Miller is always a  »message«. 

  • For Mrs. Miller,  however,  receiving this e–mail only means an information gain if she learns something new. 
  • The  »information«  transmitted by a message therefore depends to a great extent on the knowledge level of the recipient. 
  • In practice,  the information contained in a message is rather small,  especially in the field of telephony.


The transmission of messages   and their storage always requires an energetic or material carrier called  »signal«.  Physically the representation of a message is done by signals,  which can be of very different nature.

Possible appearances are:

  1. Electrical signals  $($e.g.  current and voltage curves$)$,
  2. electromagnetic waves  $($e.g.  in radio transmission$)$,
  3. progression of pressure,  temperature or other physical quantities,
  4. acoustic signals  $($e.g.  output signal of a loudspeaker$)$,
  5. optical signals  $($e.g.  output signal of a laser$)$.


$\text{Please note:}$ 

  • The signals used for  »$\text{data transmission}$«  are usually time functions.  This means that  $($at least$)$ one of the signal parameters is dependent on the time parameter  $t$.  Such parameters for a signal tone are e.g. the amplitude  $($»volume«$)$  and the frequency  $($»pitch«$)$.
  • For storing messages   ⇒   »$\text{data storage}$«  the time functions are often mapped to spatial functions of suitable physical quantities such as magnetization  $($»magnetic band«$)$  or degree of blackening  $($»film«$)$.


The set of all message signals can be cataloged by different criteria,  as described in the chapter  »Signal classification«


Block diagram of a transmission system


In the following diagram a transmission system is shown schematically.

General block diagram of a transmission system

The individual system components have the following tasks:

  • The  »message source«  returns the  »source signal«  $q(t)$,  which shall be transmitted over the channel to the spatially distant sink.  The source can be for example a computer,  a radio station or a telephone participant.
  • In most cases the source signal  $q(t)$  itself is unsuitable for transmission and must first be converted into the signal  $s(t)$  in a suitable manner.  This process is called  »modulation«  and is performed by the  »transmitter«.  In the following,  the signal  $s(t)$  is called  »transmitted signal«.
  • During transmission over the  »channel«  the signal  $s(t)$  is changed in its form.  At the same time,  interference and noise signals are added.  The signal at the channel output and simultaneously at the receiver input is called the  »received signal«  $r(t)$.
  • The  »receiver«  must undo the conversion made by the transmitter.  If,  for example,  the low-frequency source signal  $q(t)$  was converted to the higher-frequency transmitted signal  $s(t)$  the receiver must also contain a  »demodulator«  and undo this conversion.
  • The last block in the model above is the  »message sink«.  The  »sink signal«  $v(t)$  is like the source signal  $q(t)$  low-frequency.  In the ideal case should apply for all times:  $v(t) = q(t)$.  But in practice  this can never be reached exactly  $($due to the unavoidable noise$)$.


Message source


As examples for message sources and for the source signal  $q(t)$  can be mentioned:

  1. Audio signals,  e.g.  speech or music,
  2. video signals,  e.g.  an analog television signal or an MPEG encoded streaming video,
  3. data signals,  e.g.  the data stream of a USB interface or an email on the Internet,
  4. measure signals,  e.g.  for control or regulation in a production process.


In general,  a distinction is made between analog and digital sources.  The description presented in this book apply equally to analog and digital signals.  The basic differences between analog and digital signals are discussed in the chapter  »Signal classification«,  and clarified with examples throughout the  $($German language$)$  learning video

»Analoge und digitale Signale«   ⇒   "Analog and Digital Signals".
Frequency-time representation of a speech signal

$\text{Example 2:}$  On the right you see the frequency-time representation of a speech signal:



  • You can see the different frequency components in the kilohertz range at different times.
  • By the way:  This is a male speaker.




We thank  Markus Kaindl[1], LNT/TUM,  for providing the graphic.


Tasks of the transmitter


The essential task of the transmitter is to convert the source signal  $q(t)$  into the transmitted signal  $s(t)$  in such a way that it is adapted as well as possible to the transmission channel while maintaining the specified performance characteristics.  For this purpose each transmitter contains corresponding  »functional units«  such as

  • a transducer – e.g.  a microphone for converting the physical quantity  "pressure"  $($acoustic wave$)$  into an electrical signal,
  • a signal converter – for example from  »analog«  to  »digital«  using the components  »sampling«,  »quantization»  and  »PCM encoding»,
  • an encoder for removing redundancy to data compression   $($»source coding«$)$  or
    for systematically adding redundancy,  which can be used at the receiver for  »error detection«   and/or  »error correction«   $($»channel coding«$)$,
  • a modulator for adaptation to the transmission channel – for example a frequency conversion by means of amplitude,  phase or frequency modulation or the corresponding digital methods ASK,  PSK,  FSK.


Depending on the application,  the  »performance characteristics« mentioned above mean that very specific properties are required for signal transmission.

Such features are for example:

  1. »Power limitation«  – due to the discussions on the topic  "electrosmog"  highly topical,
  2. »bandwidth efficiency«  – the UMTS auction in 2000 has shown what magnitudes are involved,
  3. »distance«  or  »range«  – unfavorable values increase the infrastructure costs,
  4. »transmission quality«  – for example a high signal-to-noise ratio or a low error rate.


Transmission channel


The  »transmission medium«  with its physical properties plays an essential role in the feasibility of certain transmission properties.

Examples of transmission media are:

  1. Electrical cables,  e.g.  copper wire,  twisted pair,
  2. coaxial cable,  e.g.  antenna line or cable network,
  3. fiber optic cables,  e.g.  multi-mode and single-mode fiber optic,
  4. radio channels,  e.g.  broadcasting,  mobile and satellite radio.


$\text{Please note:}$  These transmission media are not ideal in practice and impair the transmission.  That means:  

The received signal  $r(t)$  is different from the transmitted signal  $s(t)$,  possibly due to

  • the channel attenuation,
  • delays on the channel,
  • linear and nonlinear distortions.


⇒   In addition, the channel transmission properties can change significantly over time  $($»time variance«,  example:  mobile radio$)$.

⇒   Also  »interfering signals«  that occur during signal transmission must always be taken into account.  The following are examples of these:

  • Noise signals,  e.g.  resistance and semiconductor noise,
  • pulse disturbances,  e.g.  from power lines,  spark interference and discharges,
  • adjacent channel interference  $($cross-talk of other users,  cross-modulation$)$.


  ⇒   You will find basic information about modeling the transmission channel in general and the simple  »AWGN channel«  in the the  $($German language$)$  learning video

»Eigenschaften des Übertragungskanals«   ⇒   "Properties of the Transmission Channel".


Receiver - Message sink


As examples of the message sinks we can mention

  1. eye and ear of man,
  2. video recorder and call recorder,
  3. a smartphone that downloads a file from the Internet,
  4. a control system that processes received measurement signals.


To ensure that at least in the ideal case the sink signal  $v(t)$  could coincide with the source signal  $q(t)$  – in practice however never attainable – all measures taken on the transmission side must be reversed by the receiver.

Corresponding  »functional units«  of a receiver are:

  • Transducer – e.g.  a loudspeaker to convert an electric signal into an acoustic signal  $($counterpart of the microphone$)$,
  • signal reconstruction – e.g.  the reconstruction of the analog signal from the digital samples  $(\rm D/A$  converter   ⇒   counterpart to an  $\rm A/D$  converter$)$,
  • channel decoder – for example with the possibility of error detection and error correction  $($counterpart of the channel encoder$)$.


Another important task of the receiver is to eliminate as much as possible the signal distortions and noise that occur during transmission.  The realization of such system components for transmitters and receivers is done by different electrical networks and assemblies.

Here too,  some functional units can be named as examples:

  • Amplifier,  filter and equalizer,
  • oscillators and nonlinear components for  demodulation and synchronization,
  • digital signal processing components and signal processors.


Signal distortions


It has already been mentioned that ideally  $v(t) = q(t)$  should be valid.  However,  as with any real transmission channel   $r(t) \neq s(t)$,  the sink signal  $v(t)$  will be different from the source signal  $q(t)$.  Here are some examples:

$\text{Definition:}$  One speaks of  »noise«,  if for the sink signal applies:

\[ v(t)=q(t)+n(t).\]
  • The additive noise component  $n(t)$  is always of stochastic nature and usually has no relation to the source signal  $q(t)$. 
  • Such a noise component is inevitable for every transmission.


$\text{Definition:}$  The transmission is  »distortion–free«,  if the sink signal is as follows:

\[v(t)=\alpha \cdot q(t-\tau)+n(t).\]

In this case the sink signal differs from the source signal except for the noise component  $n(t)$  only by

  • the  attenuation factor  $\alpha$  $($same for all frequencies),  and
  • the  delay time  $\tau$  $($also the same for all frequencies$)$.


$\text{Definition:}$  If the equation  $v(t)=\alpha \cdot q(t-\tau)+n(t)$  is not fulfilled,  then there are  »distortions«. 

As described in the book  »Linear and Time Invariant Systems«  one distinguishes between


⇒   In this context we refer to the  $($German language$)$  learning video 

»Lineare und nichtlineare Verzerrungen«  ⇒   "Linear and nonlinear distortions".


Here again in slightly different words:

  • The attenuation factor  $\alpha$  only causes the signal  $v(t)$  to be slightly  »quieter«  than  $q(t)$;  but both signals have the same shape.
  • The delay  $\tau$  causes the signal  $v(t)$  to arrive at the receiver later than  $q(t)$  was sent.


Both effects are not particularly disturbing for a  »unidirectional transmission«:
            For example,  one can still speak of a live transmission if the television picture arrives delayed by  $($a fraction of$)$  seconds.

However,  with  »bidirectional transmission«,  a long runtime can lead to problems:
            During a telephone conversation,  the two interlocutors then interrupt each other.


Color template to illustrate
"distortion"  and  "noise"

$\text{Example 3:}$  The terms used here shall now be clarified by an image signal.

On the right you see as original image a color template with  $291 × 218$  pixels and  $24$  bit color depth.  From the possible  $2^{24} = 16\hspace{0.08cm} 777\hspace{0.08cm} 216$  colors only a few colors are used here.

⇒   In the lower left image,  the signal is superposed with additive noise  $n(t)$  which is perceived as  "snow".

Effects of  »noise«  and  »distortion«  on an image signal

The lower right image shows the influence of  $($nonlinear$)$  distortions,  which lead to a distortion of both brightness values and color information at the selected setting of the CCD camera.  You can see:

  1. In the marked field of the gray staircase,  the brightness corresponds approximately to the original image  $($above on the right $)$.
  2. On the other hand,  other fields appear as too light or too dark or filled with missing colors.
  3. Noise effects play no role in the lower right image as opposed to the lower left image.
  4. These linear distortions are no longer detectable due to the strong nonlinear distortions.


Exercises for the chapter


Exercise 1.1: Music Signals

Exercise 1.1Z: ISDN Connection

References

  1. Kaindl, M.: Kanalcodierung für Sprache und Daten in GSM-Systemen. Dissertation.
    Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 764, 2005.