Difference between revisions of "Theory of Stochastic Signals"

From LNTwww
 
(47 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This third book of our learning tutorial deals in detail with stochastic signals and their modeling.
+
===Brief summary===
*Knowledge of stochastic signal theory is an important prerequisite for understanding the following books, which focus on transmission aspects.
 
*Knowledge of the first two  $\text{LNTwww}$ books, which include the representation of [[Signal Representation|$\text{ Deterministic Signals}$]]  and the description of  [[Linear_and_Time_Invariant_Systems|$\text{Linear Time-Invariant Systems}$]]  is helpful for understanding this book, but not required.
 
  
 +
{{BlaueBox|TEXT=This third book of our learning tutorial deals in detail with stochastic signals and their modelling. Knowledge of stochastic signal theory is an important prerequisite for understanding the following books, which focus on transmission aspects.
 +
# Fundamentals and definitions of probability theory;  set-theoretic description;  Statistical dependence;  Markov chains.
 +
# Properties of discrete-valued random variables and their computational generation.  Examples:  Binomial and Poisson distribution.  Moments calculation.
 +
# Description of continuous-valued random variables:  Probability density function,  distribution function,  moment calculation.  special distributions. 
 +
# Two- and multi-dimensional random variables:  Autocorrelation function,  power-spectral density,  correlation coefficient,  cross-correlation function. 
 +
# Filtering of stochastic signals   ⇒   »Stochastic System Theory«;  digital filters;  properties of matched filter and Wiener–Kolmogorov filter.
 +
 +
 +
Knowledge of the first two  $\text{LNTwww}$-books,  which describe the  [[Signal Representation|»representation of deterministic signals«]]  as well as the  [[Linear_and_Time_Invariant_Systems|"description of linear and time-invariant systems»]],   are helpful for the understanding of the present book,  but not required.
 +
 +
⇒   First a  »'''content overview'''«  on the basis of the  »'''five main chapters'''«  with a total of  »'''28 individual chapters'''«  and  »'''166 sections'''«:}}
  
The course material corresponds to a  $\text{lecture with three semester hours per week (SWS) and two SWS exercises}$.
 
  
Here, first, is an overview of the contents based on the  $\text{five main chapters}$  with a total of  $\text{28 individual chapters}$.
 
 
  
 
===Content===
 
===Content===
Line 13: Line 19:
 
{{Collapse1| header=Probability Calculation
 
{{Collapse1| header=Probability Calculation
 
| submenu=  
 
| submenu=  
*[[/Einige grundlegende Definitionen/]]
+
*[[/Some Basic Definitions/]]
*[[/Mengentheoretische Grundlagen/]]
+
*[[/Set Theory Basics/]]
*[[/Statistische Abhängigkeit und Unabhängigkeit/]]
+
*[[/Statistical Dependence and Independence/]]
*[[/Markovketten/]]
+
*[[/Markov Chains/]]
 
}}
 
}}
 
{{Collapse2 | header=Discrete Random Variables
 
{{Collapse2 | header=Discrete Random Variables
 
|submenu=
 
|submenu=
*[[/Vom Zufallsexperiment zur Zufallsgröße/]]
+
*[[/From Random Experiment to Random Variable/]]
*[[/Momente einer diskreten Zufallsgröße/]]
+
*[[/Moments of a Discrete Random Variable/]]
*[[/Binomialverteilung/]]
+
*[[/Binomial Distribution/]]
*[[/Poissonverteilung/]]
+
*[[/Poisson Distribution/]]
*[[/Erzeugung von diskreten Zufallsgrößen/]]
+
*[[/Generation of Discrete Random Variables/]]
 
}}
 
}}
 
{{Collapse3 | header=Continuous Random Variables
 
{{Collapse3 | header=Continuous Random Variables
 
|submenu=
 
|submenu=
*[[/Wahrscheinlichkeitsdichtefunktion/]]
+
*[[/Probability Density Function/]]
*[[/Verteilungsfunktion/]]
+
*[[/Cumulative Distribution Function/]]
 
*[[/Expected Values and Moments/]]
 
*[[/Expected Values and Moments/]]
*[[/Gleichverteilte Zufallsgrößen/]]
+
*[[/Uniformly Distributed Random Variables/]]
*[[/Gaußverteilte Zufallsgrößen/]]
+
*[[/Gaussian Distributed Random Variables/]]
 
*[[/Exponentially Distributed Random Variables/]]
 
*[[/Exponentially Distributed Random Variables/]]
*[[/Further distributions/]]
+
*[[/Further Distributions/]]
 
}}
 
}}
 
{{Collapse4 | header=Random Variables with Statistical Dependence
 
{{Collapse4 | header=Random Variables with Statistical Dependence
 
|submenu=
 
|submenu=
*[[/Zweidimensionale Zufallsgrößen/]]
+
*[[/Two-Dimensional Random Variables/]]
*[[/Zweidimensionale Gaußsche Zufallsgrößen/]]
+
*[[/Two-Dimensional Gaussian Random Variables/]]
*[[/Linearkombinationen von Zufallsgrößen/]]
+
*[[/Linear Combinations of Random Variables/]]
*[[/Auto Correlation Function (ACF)/]]
+
*[[/Auto-Correlation Function/]]
*[[/Power Density Spectrum (PDS)/]]
+
*[[/Power-Spectral Density/]]
*[[/Kreuzkorrelationsfunktion und Kreuzleistungsdichte/]]
+
*[[/Cross-Correlation Function and Cross Power-Spectral Density/]]
*[[/Verallgemeinerung auf N-dimensionale Zufallsgrößen/]]
+
*[[/Generalization to N-Dimensional Random Variables/]]
 
}}
 
}}
 
{{Collapse5 | header=Filtering of Stochastic Signals
 
{{Collapse5 | header=Filtering of Stochastic Signals
 
|submenu=
 
|submenu=
*[[/Stochastische Systemtheorie/]]
+
*[[/Stochastic System Theory/]]
*[[/Digitale Filter/]]
+
*[[/Digital Filters/]]
*[[/Erzeugung vorgegebener AKF-Eigenschaften/]]
+
*[[/Creation of Predefined ACF Properties/]]
*[[/Matched-Filter/]]
+
*[[/Matched Filter/]]
*[[/Wiener–Kolmogorow–Filter/]]
+
*[[/Wiener–Kolmogorow Filter/]]
 
}}
 
}}
 
{{Collapsible-Fuß}}
 
{{Collapsible-Fuß}}
  
Neben diesen Theorieseiten bieten wir auch Aufgaben und multimediale Module an, die zur Verdeutlichung des Lehrstoffes beitragen könnten:
+
===Exercises and multimedia===
*[https://en.lntwww.de/Kategorie:Theory_of_Stochastic_Signals:_Exercises $\text{Exercises}$]
+
 
*[[LNTwww:Lernvideos_zu_Stochastische_Signaltheorie|$\text{Lernvideos}$]]
+
{{BlaueBox|TEXT=
*[[LNTwww:HTML5-Applets_zu_Stochastische_Signaltheorie|$\text{neu gestaltete Applets}$]], basierend auf HTML5, auch auf Smartphones lauffähig:
+
In addition to these theory pages,  we also offer exercises and multimedia modules on this topic,  which could help to clarify the teaching material:
*[[LNTwww:SWF-Applets_zu_Stochastische_Signaltheorie|$\text{frühere Applets}$]], basierend auf SWF, lauffähig nur unter WINDOWS mit ''Adobe Flash Player''.
+
 
 +
$(1)$    [https://en.lntwww.de/Category:Theory_of_Stochastic_Signals:_Exercises $\text{Exercises}$]
 +
 
 +
$(2)$    [[LNTwww:Learning_videos_to_"Theory_of_Stochastic_Signals"|$\text{Learning videos}$]]
 +
 
 +
$(3)$    [[LNTwww:Applets_to_"Theory_of_Stochastic_Signals"|$\text{Applets}$]] }}
 +
 
 +
 
 +
===Further links===
  
<br><br>
+
{{BlaueBox|TEXT=
$\text{Weitere Links:}$
+
$(4)$&nbsp; &nbsp; [[LNTwww:Bibliography_to_"Theory_of_Stochastic_Signals"|$\text{Bibliography}$]]
<br><br>
 
$(1)$&nbsp; &nbsp; [[LNTwww:Literaturempfehlung_zu_Stochastische_Signaltheorie|$\text{Literaturempfehlungen zum Buch}$]]
 
  
$(2)$&nbsp; &nbsp; [[LNTwww:Weitere_Hinweise_zum_Buch_Signaldarstellung|$\text{Allgemeine Hinweise zum Buch}$]] &nbsp; (Autoren,&nbsp; Weitere Beteiligte,&nbsp; Materialien als Ausgangspunkt des Buches,&nbsp; Quellenverzeichnis)
+
$(5)$&nbsp; &nbsp; [[LNTwww:Imprint_for_the_book_"Stochastic_Signal_Theory"|$\text{Impressum}$]]}}
 
<br><br>
 
<br><br>
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 12:24, 3 April 2023

Brief summary

This third book of our learning tutorial deals in detail with stochastic signals and their modelling. Knowledge of stochastic signal theory is an important prerequisite for understanding the following books, which focus on transmission aspects.

  1. Fundamentals and definitions of probability theory;  set-theoretic description;  Statistical dependence;  Markov chains.
  2. Properties of discrete-valued random variables and their computational generation.  Examples:  Binomial and Poisson distribution.  Moments calculation.
  3. Description of continuous-valued random variables:  Probability density function,  distribution function,  moment calculation.  special distributions.
  4. Two- and multi-dimensional random variables:  Autocorrelation function,  power-spectral density,  correlation coefficient,  cross-correlation function.
  5. Filtering of stochastic signals   ⇒   »Stochastic System Theory«;  digital filters;  properties of matched filter and Wiener–Kolmogorov filter.


Knowledge of the first two  $\text{LNTwww}$-books,  which describe the  »representation of deterministic signals«  as well as the  "description of linear and time-invariant systems»,  are helpful for the understanding of the present book,  but not required.

⇒   First a  »content overview«  on the basis of the  »five main chapters«  with a total of  »28 individual chapters«  and  »166 sections«:


Content

Exercises and multimedia

In addition to these theory pages,  we also offer exercises and multimedia modules on this topic,  which could help to clarify the teaching material:

$(1)$    $\text{Exercises}$

$(2)$    $\text{Learning videos}$

$(3)$    $\text{Applets}$ 


Further links