Difference between revisions of "Linear and Time Invariant Systems/Properties of Coaxial Cables"

From LNTwww
 
(31 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
==Complex propagation function of coaxial cables==
 
==Complex propagation function of coaxial cables==
 
<br>
 
<br>
Coaxial cables consist of an inner conductor and - separated by a dielectric - an outer conductor. Two different types of cable have been standardized, with the diameters of the inner and outer conductors mentioned for identification purposes:  
+
Coaxial cables consist of an inner conductor and &ndash; separated by a dielectric &ndash; an outer conductor.&nbsp; Two different types of cable have been standardized,&nbsp; with the diameters of the inner and outer conductors mentioned for identification purposes:  
*the&nbsp; ''standard coaxial cable'' whose inner conductor has a diameter of&nbsp; $\text{2.6 mm}$&nbsp; and whose outer diameter is&nbsp; $\text{9.5 mm}$&nbsp;,
+
*the&nbsp; &raquo;standard coaxial cable&laquo;&nbsp; whose inner conductor has a diameter of&nbsp; $\text{2.6 mm}$&nbsp; and whose outer diameter is&nbsp; $\text{9.5 mm}$,
*the&nbsp; ''small coaxial cable''&nbsp; with dimensions&nbsp; $\text{1.2 mm}$&nbsp; and&nbsp; $\text{4.4 mm}$.
 
  
 +
*the&nbsp; &raquo;small coaxial cable&laquo;&nbsp; with diameters&nbsp; $\text{1.2 mm}$&nbsp; and&nbsp; $\text{4.4 mm}$.
  
The cable frequency response &nbsp;$H_{\rm K}(f)$&nbsp; results from the cable length &nbsp;$l$&nbsp; and the complex propagation function (per unit length)
+
 
 +
The cable frequency response &nbsp;$H_{\rm K}(f)$&nbsp; results from the cable length &nbsp;$l$&nbsp; and the complex propagation function $($per unit length$)$
 
:$$\gamma(f)  = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot (\beta_1 \cdot f + \beta_2 \cdot \sqrt {f})\hspace{0.05cm}\hspace{0.3cm}
 
:$$\gamma(f)  = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot (\beta_1 \cdot f + \beta_2 \cdot \sqrt {f})\hspace{0.05cm}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}H_{\rm K}(f)  = {\rm e}^{-\gamma(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)|  = {\rm e}^{-\alpha(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}H_{\rm K}(f)  = {\rm e}^{-\gamma(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)|  = {\rm e}^{-\alpha(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l}\hspace{0.05cm}.$$
  
The cable specific constants for the&nbsp; '''standard coaxial cable'''&nbsp; $\text{(2.6/9.5 mm)}$&nbsp; are:
+
The cable specific constants for the&nbsp; &raquo;'''standard coaxial cable'''&laquo;&nbsp; $\text{(2.6/9.5 mm)}$&nbsp; are:
 
:$$\begin{align*}\alpha_0  & = 0.00162\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.000435\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 21.78\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$
 
:$$\begin{align*}\alpha_0  & = 0.00162\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.000435\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 21.78\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$
  
Accordingly, the kilometric attenuation and phase constants for the&nbsp; '''small coaxial cable'''&nbsp; $\text{(1.2/4.4 mm)}$:
+
Accordingly,&nbsp; the kilometric attenuation and phase constants for the&nbsp; &raquo;'''small coaxial cable'''&laquo;&nbsp; $\text{(1.2/4.4 mm)}$:
 
:$$\begin{align*}\alpha_0  & = 0.00783\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 
:$$\begin{align*}\alpha_0  & = 0.00783\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 
  \alpha_1 = 0.000443\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 = 0.5984\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 22.18\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.5984\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$
 
  \alpha_1 = 0.000443\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 = 0.5984\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 22.18\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.5984\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$
  
These values can be calculated from the geometric dimensions of the cables and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt - see [Wel77]<ref>Wellhausen, H. W.: ''Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren''. Frequenz 31, S. 23-28, 1977.</ref>.&nbsp;  They apply to a temperature of&nbsp; $20^\circ\ \text{C (293 K)}$&nbsp; and frequencies greater than&nbsp; $\text{200 kHz}$.&nbsp;   
+
These values can be calculated from the geometric dimensions of the cables and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt - see [Wel77]<ref>Wellhausen, H. W.:&nbsp; Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren.&nbsp; Frequenz 31, S. 23-28, 1977.</ref>.&nbsp;  They apply to a temperature of&nbsp; $20^\circ\ \text{C (293 K)}$&nbsp; and frequencies greater than&nbsp; $\text{200 kHz}$.&nbsp;   
  
There is the following connection to the&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory#Equivalent_circuit_diagram_of_a_short_transmission_line_section|primary line parameters]]:
+
There is the following connection to the&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory#Equivalent_circuit_diagram_of_a_short_transmission_line_section|&raquo;primary line parameters&laquo;]]:
*The ohmic losses originating from the frequency-independent component &nbsp;$R\hspace{0.05cm}'$&nbsp; are modeled by the parameter &nbsp;$α_0$&nbsp; and cause a&nbsp; (small for coaxial cables)&nbsp; frequency-independent attenuation.  
+
#The ohmic losses originating from the frequency-independent component &nbsp;$R\hspace{0.05cm}'$&nbsp; are modeled by the parameter &nbsp;$α_0$&nbsp; and cause a&nbsp; $($for coaxial cables small$)$&nbsp; frequency-independent attenuation.  
*The component &nbsp;$α_1 · f$&nbsp; of the attenuation function (per unit length) is due to the derivation losses &nbsp;$(G\hspace{0.08cm}’)$&nbsp; and the frequency-proportional term &nbsp;$β_1 · f$&nbsp; causes only delay but no distortion.   
+
#The component &nbsp;$α_1 · f$&nbsp; of the&nbsp; &raquo;attenuation function (per unit length)&laquo;&nbsp; is due to the derivation losses &nbsp;$(G\hspace{0.08cm}’)$&nbsp; and the frequency-proportional term &nbsp;$β_1 · f$&nbsp; causes only delay but no distortion.   
*The components &nbsp;$α_2$&nbsp; and &nbsp;$β_2$&nbsp; are due to the&nbsp; [[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels|skin effect]], which causes the current density inside the conductor to be lower than at the surface in the case of higher-frequency alternating current.&nbsp; As a result, the serial resistance (per unit length) &nbsp;$R\hspace{0.05cm}’$&nbsp; of an electric line increases with the square root of the frequency.
+
#The components &nbsp;$α_2$&nbsp; and &nbsp;$β_2$&nbsp; are due to the&nbsp; [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable|&raquo;'''skin effect'''&laquo;]],&nbsp; which causes the current density inside the conductor to be lower than at the surface in the case of higher-frequency alternating current.&nbsp; As a result,&nbsp; the&nbsp; &raquo;serial resistance (per unit length)&laquo;&nbsp; &nbsp;$R\hspace{0.05cm}’$&nbsp; of an electric line increases with the square root of the frequency.
  
 
==Characteristic cable attenuation==
 
==Characteristic cable attenuation==
 
<br>
 
<br>
The graph shows the frequency-dependent attenuation curve for the normal coaxial cable and the small coaxial cable.&nbsp; Shown on the left is the cable attenuation of the two coaxial cable types in the frequency range up to&nbsp; $\text{500 MHz}$:
+
The graph shows the frequency-dependent attenuation curve for the normal coaxial cable and the small coaxial cable.&nbsp; Shown on the left is the cable attenuation per unit length of the two coaxial cable types in the frequency range up to&nbsp; $\text{500 MHz}$:
[[File:EN_LZI_4_2_S2.png |right|frame| Attenuation function and characteristic attenuation of coaxial cables]]
+
[[File:EN_LZI_4_2_S2_neu.png |right|frame| Attenuation function and characteristic attenuation of coaxial cables]]
:$${\rm a}_{\rm K}(f)  \hspace{-0.05cm} = \hspace{-0.05cm}\big [ \alpha_0  \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_1 \cdot f  \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_2  \hspace{-0.05cm}\cdot  \hspace{-0.05cm}\sqrt {f} \hspace{0.01cm} \hspace{0.1cm} \big  ] \cdot l \hspace{0.01cm}.$$
+
:$${\alpha}_{\rm K}(f)  \hspace{-0.05cm} =  \alpha_0  \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_1 \cdot f  \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_2  \hspace{-0.05cm}\cdot  \hspace{-0.05cm}\sqrt {f} \hspace{0.01cm} \hspace{0.01cm}.$$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm a}_{\rm K}(f) =\alpha_{\rm K}(f) \cdot l $$
 +
 
 +
'''Notes on the representation chosen here'''
  
''Notes on graphical representation:''
+
#To make the difference between the attenuation function per unit length&nbsp; &raquo;alpha&laquo;&nbsp; and the function&nbsp; &raquo;a&laquo;&nbsp; $($after multiplication by length$)$&nbsp; more recognizable,&nbsp; the attenuation function is written here as&nbsp; ${\rm a}_{\rm K}(f)$&nbsp; and not&nbsp; $($''italics''$)$&nbsp; as&nbsp; ${a}_{\rm K}(f)$.
 +
#The ordinate labeling is given here in&nbsp; &raquo;Np/km&laquo;.&nbsp; Often it is also done in&nbsp; &raquo;dB/km&laquo;,&nbsp; with the following conversion:
 +
::$$\ln(10)/20 = 0.11513\text{...} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 \ \rm dB = 0.11513\text{...  Np.} $$
  
*The ordinate labeling is given here in "Np/km".
+
'''Interpretation of the left graph'''
  
 +
*It can be seen from the curves shown that the error is still tolerable when neglecting the frequency-independent component &nbsp;$α_0$&nbsp; and the frequency-proportional term &nbsp;$(α_1\cdot f)$.
 
   
 
   
*Often it is also expressed with "dB/km", where the following conversion applies:<br>&nbsp; &nbsp;$1 \ \rm dB =  0.11513\text{...  Np}$,&nbsp; since&nbsp; $\ln(10)/20 = 0.11513\text{...}$
+
*Sometimes,&nbsp; we assume the&nbsp; &raquo;'''simplified attenuation function'''&laquo;:
 
 
 
 
*The attenuation curve is here labeled&nbsp; ${\rm a}_{\rm K}(f)$&nbsp; rather than&nbsp;  ${a}_{\rm K}(f)$ &nbsp; &rArr; &nbsp; ''italicized'' to make the difference between the attenuation function per unit length&nbsp; „alpha”&nbsp;  and the attenuation function&nbsp; „a”&nbsp; (after multiplication with length)&nbsp; more apparent.
 
<br clear=all>
 
It can be seen from the left graph that the error is still tolerable if the frequency-independent component &nbsp;$α_0$&nbsp; and the frequency-proportional term &nbsp;$(α_1\cdot f)$&nbsp; are neglected.&nbsp; In the following, we therefore assume the following simplified attenuation function:
 
 
:$${\rm a}_{\rm K}(f)  = \alpha_2 \cdot \sqrt {f} \cdot l =  {\rm a}_{\rm \star}\cdot \sqrt
 
:$${\rm a}_{\rm K}(f)  = \alpha_2 \cdot \sqrt {f} \cdot l =  {\rm a}_{\rm \star}\cdot \sqrt
 
  { {2f}/{R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)|  = {\rm e}^{- {\rm a}_{\rm K}(f)}\hspace{0.05cm}, \hspace{0.2cm}  {\rm a}_{\rm K}(f)\hspace{0.15cm}{\rm in }\hspace{0.15cm}{\rm Np}\hspace{0.05cm}.$$
 
  { {2f}/{R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)|  = {\rm e}^{- {\rm a}_{\rm K}(f)}\hspace{0.05cm}, \hspace{0.2cm}  {\rm a}_{\rm K}(f)\hspace{0.15cm}{\rm in }\hspace{0.15cm}{\rm Np}\hspace{0.05cm}.$$
Line 52: Line 54:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
We denote the&nbsp; '''characteristic cable attenuation'''&nbsp; $\rm a_∗$&nbsp; as the attenuation of a coaxial cable at half the bit rate neglecting the terms&nbsp; $α_0$&nbsp; and &nbsp; $α_1$:
+
We denote as&nbsp; &raquo;'''characteristic cable attenuation'''&laquo;&nbsp; $\rm a_∗$&nbsp;  
 +
*the attenuation of a coaxial cable at half the bit rate  
 +
 
 +
*due to the&nbsp; $α_2$ term alone &nbsp; &rArr; &nbsp; &raquo;skin effect&laquo;,&nbsp; thus neglecting the&nbsp; $α_0$&nbsp; and the&nbsp; $α_1$ term:
 
:$${\rm a}_{\rm \star} = {\rm a}_{\rm K}(f = {R}/{2})  = \alpha_2 \cdot \sqrt {{R}/{2}} \cdot l\hspace{0.05cm}.$$
 
:$${\rm a}_{\rm \star} = {\rm a}_{\rm K}(f = {R}/{2})  = \alpha_2 \cdot \sqrt {{R}/{2}} \cdot l\hspace{0.05cm}.$$
 
This value is particularly suitable for comparing different conducted transmission systems with different   
 
This value is particularly suitable for comparing different conducted transmission systems with different   
*coaxial cable types (for example, normal or small coaxial cable), each identified by the parameter&nbsp; $\alpha_2$,
+
#coaxial cable types&nbsp; $($normal or small coaxial cable$)$,&nbsp; each identified by the parameter&nbsp; $\alpha_2$,
*bit rates&nbsp; $(R)$&nbsp; and   
+
#bit rates&nbsp; $(R)$,&nbsp; and   
*cable lengths&nbsp; $(l)$.}}  
+
#cable lengths&nbsp; $(l)$.}}  
 +
 
 +
 
 +
'''Interpretation of the right graph'''
  
 +
The right&ndash;hand  diagram above shows the characteristic cable attenuation&nbsp; $\rm a_∗$&nbsp; in&nbsp; &raquo;Neper&laquo;&nbsp; $\rm (Np)$&nbsp; as a function of the bit rate&nbsp; $R$&nbsp; and the cable length&nbsp; $l$&nbsp; for
 +
*the normal coaxial cable&nbsp; $\text{(2.6/9.5 mm)}$ &nbsp; &rArr; &nbsp; left ordinate labeling,&nbsp; and
  
The right diagram shows the characteristic cable attenuation&nbsp; $\rm a_∗$&nbsp; in "Neper"&nbsp; (Np) as a function of the bit rate&nbsp; $R$&nbsp; and the cable length&nbsp; $l$
+
*for the small coaxial cable&nbsp; $\text{(1.2/4.4 mm)}$ &nbsp; &rArr; &nbsp; right ordinate labeling.
*for the normal coaxial cable&nbsp; (left ordinate labeling) and
 
*for the small coaxial cable&nbsp; (right ordinate labeling).
 
  
  
This diagram shows the PCM systems of hierarchy levels &nbsp; $3$&nbsp; to&nbsp; $5$ proposed by the&nbsp; [https://en.wikipedia.org/wiki/ITU-T ITU-T]&nbsp; (''ITU Telecommunication Standardization Sector'')&nbsp; in the 1970s. One recognizes:  
+
This diagram shows the PCM systems of hierarchy levels &nbsp; $3$&nbsp; to&nbsp; $5$&nbsp; proposed by the&nbsp; [https://en.wikipedia.org/wiki/ITU-T $\text{ITU-T}$]&nbsp; $($&raquo;ITU Telecommunication Standardization Sector&laquo;$)$&nbsp; in the 1970s.&nbsp; One recognizes:  
*For all these systems for PCM speech transmission, the characteristic cable attenuation assumes values between&nbsp; $7 \ \rm Np \ \ (≈ 61 \ dB)$&nbsp; and&nbsp; $10.6 \ \rm Np \ \ (≈ 92 \ dB)$&nbsp;.  
+
#For all these systems for PCM speech transmission,&nbsp; the characteristic cable attenuation assumes values between&nbsp; $7 \ \rm Np \ \ (≈ 61 \ dB)$&nbsp; and&nbsp; $10.6 \ \rm Np \ \ (≈ 92 \ dB)$&nbsp;.  
*The system &nbsp;$\text{PCM 480}$&nbsp; – designed for 480 simultaneous telephone calls - with the bit rate &nbsp;$R ≈ 35 \ \rm Mbit/s$&nbsp; was specified for both the normal coaxial cable&nbsp; $($with&nbsp; $l = 9.3 \ \rm km)$&nbsp; and for the small coaxial cable&nbsp; $($with $l = 4 \ \rm km)$&nbsp; specified. The &nbsp;$\rm a_∗$values &nbsp;$10.4\ \rm  Np$&nbsp; and &nbsp;$9.9\ \rm  Np$&nbsp; respectively are in the same order of magnitude.  
+
#The system &nbsp;$\text{PCM 480}$&nbsp; – designed for 480 simultaneous telephone calls - with bit rate &nbsp;$R ≈ 35 \ \rm Mbit/s$&nbsp; was specified for both the normal coaxial cable&nbsp; $($with&nbsp; $l = 9.3 \ \rm km)$&nbsp; and the small coaxial cable&nbsp; $($with&nbsp; $l = 4 \ \rm km)$.&nbsp; The &nbsp;$\rm a_∗$&ndash;values &nbsp;$10.4\ \rm  Np$&nbsp; resp.  &nbsp;$9.9\ \rm  Np$&nbsp; are in the same order of magnitude.  
*The transmission system &nbsp;$\text{PCM 1920}$&nbsp; of the fourth hierarchy level&nbsp; (specified for the normal coaxial cable)&nbsp; with &nbsp;$R ≈ 140 \ \rm Mbit/s$&nbsp; and  &nbsp;$l = 4.65 \ \rm km$  is parameterized by &nbsp;$\rm a_∗ = 10.6 \ \rm Np$&nbsp; or &nbsp;$10.6 \ {\rm Np}· 8.688 \ \rm dB/Np ≈ 92\ \rm dB$&nbsp;.  
+
#The system &nbsp;$\text{PCM 1920}$&nbsp; of the fourth hierarchy level&nbsp; $($specified for the normal coaxial cable$)$&nbsp; with &nbsp;$R ≈ 140 \ \rm Mbit/s$&nbsp; and  &nbsp;$l = 4.65 \ \rm km$&nbsp; is parameterized by &nbsp;$\rm a_∗ = 10.6 \ \rm Np$&nbsp; or &nbsp;$10.6 \ {\rm Np}· 8.688 \ \rm dB/Np ≈ 92\ \rm dB$&nbsp;.  
*Although the system &nbsp;$\text{PCM 7680}$&nbsp; in contrast has four times the capacity &nbsp;$R ≈ 560 \rm Mbit/s$&nbsp;, the characteristic cable attenuation of &nbsp; $\rm a_∗ ≈ 61 \ dB$&nbsp; due to the better medium "normal coaxial cable" and the shorter cable sections by a factor of&nbsp; $3$&nbsp; &nbsp;$(l = 1. 55 \ \rm km)$&nbsp; significantly lower.  
+
#Although the system &nbsp;$\text{PCM 7680}$&nbsp; has a four times greater bit rate  &nbsp;$R ≈ 560 \ \rm Mbit/s$&nbsp;,&nbsp; the characteristic cable attenuation of &nbsp; $\rm a_∗ ≈ 61 \ dB$&nbsp; is due to the better medium&nbsp; &raquo;normal coaxial cable&laquo; and the shorter cable sections&nbsp;$(l = 1. 55 \ \rm km)$&nbsp; by a factor of&nbsp; $3$&nbsp; significantly lower .  
*These numerical values also show that for coaxial cable systems, the cable length &nbsp;$l$&nbsp; is more critical than the bit rate &nbsp;$R$.&nbsp; If one wants to double the cable length, one has to reduce the bit rate by a factor &nbsp;$4$&nbsp;.  
+
#These numerical values also show that for coaxial cable systems,&nbsp; the cable length &nbsp;$l$&nbsp; is more critical than the bit rate &nbsp;$R$.&nbsp; If one wants to double the cable length,&nbsp; one has to reduce the bit rate by a factor &nbsp;$4$.  
  
  
You can view the topic described here with the interactive applet &nbsp;[[Applets:Dämpfung_von_Kupferkabeln|Attenuation of copper cables]]&nbsp;.
+
You can view the topic described here with the interactive HTLM 5/JavaScript applet &nbsp;[[Applets:Attenuation_of_Copper_Cables|&raquo;Attenuation of Copper Cables&laquo;]]&nbsp;.
  
 
==Impulse response of a coaxial cable==
 
==Impulse response of a coaxial cable==
 
<br>
 
<br>
To calculate the impulse response, the first two attenuation components of the five components of the complex propagation function (per unit length) can be neglected&nbsp; (the reasoning can be found in the previous section).&nbsp; So we start from the following equation:
+
To calculate the impulse response,&nbsp; the first two of the in total five&nbsp;  components of the complex propagation function&nbsp; $($per unit length$)$&nbsp; can be neglected&nbsp; $($the reasoning can be found in the previous section$)$.&nbsp; So we start from the following equation:
 
:$$\gamma(f)  = \alpha_0 + \alpha_1 \cdot f +  {\rm j} \cdot \beta_1 \cdot f  +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \approx    {\rm j} \cdot \beta_1 \cdot f  +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \hspace{0.05cm}.$$
 
:$$\gamma(f)  = \alpha_0 + \alpha_1 \cdot f +  {\rm j} \cdot \beta_1 \cdot f  +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \approx    {\rm j} \cdot \beta_1 \cdot f  +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \hspace{0.05cm}.$$
  
 
Considering
 
Considering
*the cable length &nbsp;$l$,  
+
#the cable length &nbsp;$l$,
*the characteristic cable attenuation &nbsp;$\rm a_∗$&nbsp; and  
+
#the characteristic cable attenuation &nbsp;$\rm a_∗$,&nbsp; and
*that &nbsp;$α_2$&nbsp; (in Np) and &nbsp;$β_2$&nbsp; (in rad) are numerically equal,  
+
#that &nbsp;$α_2$&nbsp; $($in&nbsp;  &raquo;Np&laquo;$)$&nbsp; and &nbsp;$β_2$&nbsp; (in&nbsp; &raquo;rad&laquo;$)$&nbsp; are numerically equal,  
  
  
thus applies to the frequency response of the coaxial cable:
+
thus applies to the&nbsp; &raquo;frequency response of the coaxial cable&laquo;:
 
:$$H_{\rm K}(f)    = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.05cm} \sqrt{2f/R} }\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.02cm} \sqrt{2f/R}}= {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R}} \hspace{0.05cm}.$$
 
:$$H_{\rm K}(f)    = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.05cm} \sqrt{2f/R} }\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.02cm} \sqrt{2f/R}}= {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R}} \hspace{0.05cm}.$$
 
The following abbreviations are used here:
 
The following abbreviations are used here:
 
:$$b_1\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm rad)}= \beta_1 \cdot l \hspace{0.05cm}, \hspace{0.8cm} {\rm a}_{\rm \star}\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm Np)}= \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}.$$
 
:$$b_1\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm rad)}= \beta_1 \cdot l \hspace{0.05cm}, \hspace{0.8cm} {\rm a}_{\rm \star}\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm Np)}= \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}.$$
  
The time domain display is obtained by applying the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|Fourier inverse transform]]&nbsp; and the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|Convolution theorem]]:
+
The time domain representation is obtained by applying the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|&raquo;inverse Fourier transform&laquo;]]&nbsp; and the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|&raquo;convolution theorem&laquo;]]:
 
:$$h_{\rm K}(t)  = \mathcal{F}^{-1} \left \{ {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1
 
:$$h_{\rm K}(t)  = \mathcal{F}^{-1} \left \{ {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1
 
  f}\right \} \star\mathcal{F}^{-1} \left \{ {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R} }\right \} \hspace{0.05cm}.$$
 
  f}\right \} \star\mathcal{F}^{-1} \left \{ {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R} }\right \} \hspace{0.05cm}.$$
  
To be considered here:
+
It must be taken into account here:
*The first term yields the Dirac function &nbsp;$δ(t τ_{\rm P})$ shifted by the phase delay &nbsp;$τ_{\rm P} = b_1/2π$&nbsp;.
+
*The first term yields the Dirac delta function &nbsp;$δ(t - τ_{\rm P})$&nbsp; shifted by the phase delay &nbsp;$τ_{\rm P} = b_1/2π$&nbsp;.
*The second term can be given analytically closed. We write &nbsp;$h_{\rm K}(t + τ_P)$, so that the phase delay &nbsp;$τ_{\rm P}$&nbsp; need not be considered further.
+
 
 +
*The second term can be given analytically closed.&nbsp; We write &nbsp;$h_{\rm K}(t + τ_P)$,&nbsp; so that the phase delay &nbsp;$τ_{\rm P}$&nbsp; need not be considered further.
 
:$$h_{\rm K}(t + \tau_{\rm P})  = \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \cdot R  \cdot t^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \cdot R\cdot t}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
 
:$$h_{\rm K}(t + \tau_{\rm P})  = \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \cdot R  \cdot t^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \cdot R\cdot t}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
*Since also the bit rate &nbsp;$R$&nbsp; has already been considered in the definition of the characteristic cable attenuation &nbsp;$a_∗$&nbsp; this equation can be easily represented with the normalized time &nbsp;$t\hspace{0.05cm}' = t/T$&nbsp;:
+
*Since the bit rate &nbsp;$R$&nbsp; also  has already been considered in the&nbsp;$\rm a_∗$&nbsp; definition;&nbsp;  this equation can be easily represented with the normalized time &nbsp;$t\hspace{0.05cm}' = t/T$&nbsp;:
 
:$$h_{\rm K}(t\hspace{0.05cm}' + \tau_{\rm P}\hspace{0.05cm} ')  = \frac {1}{T} \cdot \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2  \cdot t\hspace{0.05cm}'\hspace{0.05cm}^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \cdot t\hspace{0.05cm}'}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
 
:$$h_{\rm K}(t\hspace{0.05cm}' + \tau_{\rm P}\hspace{0.05cm} ')  = \frac {1}{T} \cdot \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2  \cdot t\hspace{0.05cm}'\hspace{0.05cm}^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \cdot t\hspace{0.05cm}'}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
:Here&nbsp; $T = 1/R$&nbsp; denotes the symbol duration of a binary system and it holds &nbsp;$τ_{\rm P} \hspace{0.05cm}' = τ_{\rm P}/T$.
+
:Here&nbsp; $T = 1/R$&nbsp; denotes&nbsp; &raquo;the symbol duration of a binary system&laquo;&nbsp; and it holds &nbsp;$τ_{\rm P} \hspace{0.05cm}' = τ_{\rm P}/T$.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;  
 
$\text{Example 1:}$&nbsp;  
The results of this page are illustrated by the following graph as an example.
+
The results of this section are illustrated by the following graph as an example.
*The normalized impulse response &nbsp;$T · h_{\rm K}(t)$&nbsp; of a coaxial cable with  &nbsp;$\rm a_∗ = 60 \ dB  \ \ (6.9\  Np)$ is shown.   
+
[[File:EN_LZI_4_2_S3_neu.png|right|frame| Impulse response of a coaxial cable with &nbsp;$\rm a_∗ = 60 \ dB$]]
*The attenuation function parameters &nbsp;$α_0$&nbsp; and &nbsp;$α_1$&nbsp; are thus neglected.
+
#The normalized impulse response &nbsp;$T · h_{\rm K}(t)$&nbsp; of a coaxial cable with  &nbsp;$\rm a_∗ = 60 \ dB  \ \ (6.9\  Np)$ is shown.   
*For the left graph, the parameter &nbsp;$β_1 = 0$&nbsp; was also set.
+
#The attenuation coefficients &nbsp;$α_0$&nbsp; and &nbsp;$α_1$&nbsp; can thus be neglected,&nbsp; as shown in the last section.
 +
#For the left graph, the parameter &nbsp;$β_1 = 0$&nbsp; was also set.
  
[[File:EN_LZI_4_2_S3.png|center|frame| Impulse response of a coaxial cable with &nbsp;$\rm a_∗ = 60 \ dB$]]
 
  
Due to the parameterization by means of the characteristic cable attenuation &nbsp;$a_∗$&nbsp; and the normalization of the time to the symbol duration &nbsp;$T$&nbsp; the left curve is equally valid for systems with small or normal coaxial cable, different lengths and different bit rates, for example for a
+
Because of the parameterization by the coefficient &nbsp;$\rm a_∗$,&nbsp; and the time normalization to the symbol duration &nbsp;$T$&nbsp; the left curve is equally valid  
*normal coaxial cable&nbsp; $\text{2.6/9.5 mm}$,&nbsp; bit rate &nbsp;$R = 140 \ \rm Mbit/s$,&nbsp; cable length &nbsp;$l = 3 \ \rm km$  &nbsp; ⇒ &nbsp;  system $\rm A$,  
+
#for systems with small or normal coaxial cable,&nbsp;  
*small coaxial cable&nbsp; $\text{1.2/4.4 mm mm}$,&nbsp; bit rate &nbsp;$R = 35 \ \rm Mbit/s$, cable length &nbsp;$l = 2.8 \ \rm km$  &nbsp; ⇒ &nbsp; system $\rm B$.
+
#different lengths,  
 +
#different bit rates.&nbsp;  
  
  
Man erkennt, dass sich selbst bei dieser moderaten Kabeldämpfung &nbsp;$\rm a_∗ = 60 \ \rm dB$&nbsp; die Impulsantwort aufgrund des Skineffektes &nbsp;$(α_2 = β_2 ≠ 0)$&nbsp; schon über mehr als&nbsp; $200$&nbsp; Symboldauern erstreckt. Da das Integral über &nbsp;$h_{\rm K}(t)$&nbsp; gleich &nbsp;$H_{\rm K}(f = 0) = 1$&nbsp; ist, wird der Maximalwert  sehr klein:  
+
For example for 
 +
*normal coaxial cable&nbsp; $\text{2.6/9.5 mm}$,&nbsp; bit rate &nbsp;$R = 140 \ \rm Mbit/s$,&nbsp; cable length &nbsp;$l = 3 \ \rm km$  &nbsp; ⇒ &nbsp;  $\text{system A}$,
 +
*small coaxial cable&nbsp; $\text{1.2/4.4 mm}$,&nbsp; bit rate &nbsp;$R = 35 \ \rm Mbit/s$, <br>cable length &nbsp;$l = 2.8 \ \rm km$  &nbsp; ⇒ &nbsp;  $\text{system B}$.
 +
<br clear=all>
 +
It can be seen in the left&ndash;hand diagram that even at this moderate cable attenuation &nbsp;$\rm a_∗ = 60 \ \rm dB$&nbsp; the impulse response already extends over more than &nbsp; $200$&nbsp; symbol durations due to the skin effect &nbsp;$(α_2 = β_2 ≠ 0)$.&nbsp; Since the integral over &nbsp;$h_{\rm K}(t)$&nbsp; is equal to &nbsp;$H_{\rm K}(f = 0) = 1$,&nbsp; the maximum value becomes very small:  
 
:$${\rm Max}\big [h_{\rm K}(t)\big ] \approx 0.03.$$  
 
:$${\rm Max}\big [h_{\rm K}(t)\big ] \approx 0.03.$$  
  
In der rechten Grafik sind die Auswirkungen des Phasenparameters &nbsp;$β_1$&nbsp; zu sehen. Beachten Sie die unterschiedlichen Zeitmaßstäbe der linken und der rechten Skizze:  
+
In the diagram on the right,&nbsp; the effects of the phase parameter &nbsp;$β_1$&nbsp; can be seen.&nbsp; Note the different time scales of the left and the right diagram:
*Beim System $\rm A$ &nbsp;$(β_1 = 21.78 \ \rm rad/(km · MHz)$, &nbsp;$T = 7.14\ \rm  ns)$&nbsp; führt &nbsp;$β_1$&nbsp; zu einer Laufzeit von
+
*For&nbsp; $\text{system A}$ &nbsp;$(β_1 = 21.78 \ \rm rad/(km · MHz)$, &nbsp;$T = 7.14\ \rm  ns)$&nbsp; &nbsp;$β_1$&nbsp; leads to a phase delay of
 
:$$\tau_{\rm A}= \frac {\beta_1 \cdot l}{2\pi} =\frac {21.78\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 3\,{\rm km} }{2\pi} = 10.4\,{\rm \mu s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm A}\hspace{0.05cm}' = {\tau_{\rm A} }/{T} \approx 1457\hspace{0.05cm}.$$
 
:$$\tau_{\rm A}= \frac {\beta_1 \cdot l}{2\pi} =\frac {21.78\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 3\,{\rm km} }{2\pi} = 10.4\,{\rm \mu s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm A}\hspace{0.05cm}' = {\tau_{\rm A} }/{T} \approx 1457\hspace{0.05cm}.$$
*Dagegen erhält man für das System $\rm B$ &nbsp;$(β_1 = 22.18 \ \rm  rad/(km · MHz)$, &nbsp;$T = 30 \ \rm  ns)$:
+
*On the other hand,&nbsp; the following can be obtained for&nbsp; $\text{system B}$ &nbsp;$(β_1 = 22.18 \ \rm  rad/(km · MHz)$, &nbsp;$T = 30 \ \rm  ns)$:
 
:$$\tau_{\rm B}= \frac {\beta_1 \cdot l}{2\pi} =\frac {22.18\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 2.8\,{\rm km} }{2\pi} = 9.9\,{\rm &micro; s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm B}\hspace{0.05cm}' ={\tau_{\rm B} }/{T} \approx 330\hspace{0.05cm}.$$
 
:$$\tau_{\rm B}= \frac {\beta_1 \cdot l}{2\pi} =\frac {22.18\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 2.8\,{\rm km} }{2\pi} = 9.9\,{\rm &micro; s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm B}\hspace{0.05cm}' ={\tau_{\rm B} }/{T} \approx 330\hspace{0.05cm}.$$
  
Obwohl hier &nbsp;$τ_{\rm A} ≈ τ_{\rm B}$&nbsp; gilt, ergeben sich wegen der Zeitnormierung auf &nbsp;$T = 1/R$&nbsp; völlig unterschiedliche Verhältnisse. }}
+
Although &nbsp;$τ_{\rm A} ≈ τ_{\rm B}$&nbsp; holds,&nbsp; completely different ratios result because of the time normalization to &nbsp;$T = 1/R$&nbsp;. }}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Bei der Simulation und Optimierung von Nachrichtensystemen verzichtet man meist auf den Phasenterm mit &nbsp;$b_1 = β_1 · l$, da dieser ausschließlich eine&nbsp; (oft nicht störende)&nbsp; Laufzeit  zur Folge hat, aber keine Signalverzerrung.}}
+
$\text{Conclusion:}$&nbsp; When simulating and optimizing transmission systems,&nbsp; <br>'''one usually omits the linear phase term''' &nbsp;$b_1 = β_1 · f$,&nbsp; since this results exclusively in a&nbsp; $($often not disturbing$)$&nbsp; phase delay,&nbsp; '''but no signal distortions'''.}}
 +
 
 +
==Basic receiver pulse==
  
==Empfangsgrundimpuls==
 
 
<br>
 
<br>
Mit dem Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; und der Impulsantwort &nbsp;$h_{\rm K}(t)$&nbsp; ergibt sich für den Empfangsgrundimpuls:
+
With the&nbsp; &raquo;basic transmission pulse&laquo; &nbsp;$g_s(t)$ &nbsp; &rArr; &nbsp; &raquo;basic  pulse of the transmitted signal&laquo;&nbsp; $s(t)$&nbsp; and the&nbsp; &raquo;impulse response &nbsp;$h_{\rm K}(t)$&nbsp; of the channel,&nbsp; the result for the&nbsp; &raquo;basic receiver pulse&laquo; &nbsp;$g_r(t)$ &nbsp; &rArr; &nbsp; &raquo;basic  pulse of the received signal&laquo;&nbsp; $r(t)$&nbsp; is:
 
:$$g_r(t) = g_s(t) \star h_{\rm K}(t)\hspace{0.05cm}.$$
 
:$$g_r(t) = g_s(t) \star h_{\rm K}(t)\hspace{0.05cm}.$$
Verwendet man am Sender einen NRZ–Rechteckimpuls &nbsp;$g_s(t)$&nbsp; mit Amplitude &nbsp;$s_0$&nbsp; und Dauer &nbsp;$Δt_s = T$, so ergibt sich für den Grundimpuls am Ausgang des Koaxialkabels:
+
If a non-return-to-zero&nbsp; $\rm (NRZ)$&nbsp; rectangular pulse &nbsp;$g_s(t)$&nbsp; with amplitude &nbsp;$s_0$&nbsp; and duration &nbsp;$Δt_s = T$&nbsp; is used at the transmitter,&nbsp; the following results for the basic pulse at the receiver input:
 
:$$g_r(t) = 2 s_0 \cdot \left [ {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T - 0.5)}}\right  ) -
 
:$$g_r(t) = 2 s_0 \cdot \left [ {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T - 0.5)}}\right  ) -
 
  {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T + 0.5)}}\right  ) \right ]\hspace{0.05cm}.$$
 
  {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T + 0.5)}}\right  ) \right ]\hspace{0.05cm}.$$
Hierbei bezeichnet  &nbsp;$\rm a_∗$&nbsp; die charakteristische Kabeldämpfung in Neper und &nbsp;${\rm Q}(x)$&nbsp; die&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgröße#.C3.9Cberschreitungswahrscheinlichkeit|komplementäre Gaußsche Fehlerfunktion]].
+
Here &nbsp;$\rm a_∗$&nbsp; denotes the&nbsp; &raquo;characteristic cable attenuation&laquo;&nbsp; $($in Neper$)$&nbsp; and &nbsp;${\rm Q}(x)$&nbsp; the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|&raquo;complementary Gaussian error function&laquo;]].
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Die Abbildung zeigt für die charakteristischen Kabeldämpfungen &nbsp;$\rm a_∗ = 40 \ \rm dB$, &nbsp;$60 \ \rm dB$, &nbsp;$80 \ \rm dB$&nbsp; und &nbsp;$100 \ \rm dB$&nbsp; jeweils
+
The figure shows for the characteristic cable attenuations &nbsp;$\rm a_∗ = 40 \ \rm dB$, ... ,&nbsp; $100 \ \rm dB$&nbsp; $($smaller&nbsp; $\rm a_∗$&ndash;values &nbsp; are not relevant for practice$)$
*die normierte Koaxialkabelimpulsantwort &nbsp;$T · h_{\rm K}(t)$ &nbsp; &rArr; &nbsp; Impulsantwort (durchgezogene Kurven), und
 
*den auf die Sendeamplitude &nbsp;$s_0$&nbsp; normierten Empfangsgrundimpuls &nbsp;$g_r(t)$ &nbsp; &rArr; &nbsp; Rechteckantwort  (gepunktete Linie).
 
  
 +
*the normalized coaxial cable impulse response &nbsp;$T · h_{\rm K}(t)$ &nbsp;  &rArr; &nbsp; solid curves,
 +
 +
*the basic receiver pulse&nbsp; $($&raquo;rectangular response&laquo;$)$&nbsp; $g_r(t)$&nbsp; normalized to the transmission amplitude &nbsp;$s_0$ &nbsp;  &rArr; &nbsp; dotted line.
 +
[[File:EN_LZI_4_2_S4.png|right|frame|Impulse response of the coaxial cable and basic receiver pulse]]
  
Kleinere Werte von &nbsp;$\rm a_∗$&nbsp; sind für die Praxis nicht relevant.
 
  
[[File:EN_LZI_4_2_S4.png|center|frame| Impulsantwort und Rechteckantwort (Empfangsgrundimpuls) des Koaxialkabels]]
+
One recognizes the following from this diagram:
 +
#With &nbsp;$\rm a_∗ = 40 \ \rm dB$,&nbsp; the normalized basic receiver pulse  &nbsp;$g_r(t)/s_0$&nbsp; is at the peak slightly&nbsp; $($about a factor of $0.95)$&nbsp; smaller than the normalized impulse response &nbsp;$T · h_{\rm K}(t)$.&nbsp; Here is a small difference between impulse response and basic receiver pulse .
 +
#In contrast,&nbsp; for  &nbsp;$a_∗ ≥ 60 \ \rm dB$,&nbsp; the basic receiver pulse and the impulse response are indistinguishable within the drawing accuracy.
 +
#For a return-to-zero&nbsp; $\rm (RZ)$&nbsp; pulse,&nbsp; the above equation for &nbsp;$g_r(t)$&nbsp;  would still need to be multiplied by the factor &nbsp;$Δt_s/T$.&nbsp; In this case &nbsp;$g_r(t)/s_0$&nbsp; is smaller than &nbsp;$T · h_{\rm K}(t)$&nbsp; by at least this factor.
 +
#The equation modified in this way is also a good approximation for other basic transmission pulses as long as &nbsp;$\rm a_∗≥ 60 \ \rm dB$&nbsp; is sufficiently large.&nbsp; $Δt_s$&nbsp; then indicates the&nbsp;[[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|&raquo;equivalent pulse duration&laquo;]]&nbsp; of &nbsp;$g_r(t)$.}}
  
Man erkennt aus dieser Darstellung:
 
*Mit &nbsp;$\rm a_∗ = 40 \ \rm dB$&nbsp; ist die normierte Rechteckantwort &nbsp;$g_r(t)/s_0$&nbsp; an der Spitze geringfügig&nbsp; (etwa um den Faktor $0.95)$&nbsp; kleiner als die normierte Impulsantwort &nbsp;$T · h_{\rm K}(t)$.&nbsp; Hier gibt es eine kleine Differenz zwischen Impulsantwort und Rechteckantwort.
 
*Dagegen sind für den Fall &nbsp;$a_∗ ≥ 60 \ \rm dB$&nbsp; die Rechteckantwort und die Impulsantwort innerhalb der Zeichengenauigkeit nicht zu unterscheiden.
 
*Bei einem RZ–Impuls wäre die obige Gleichung für den Empfangsgrundimpuls noch mit dem Tastverhältnis &nbsp;$Δt_s/T$&nbsp; zu multiplizieren.&nbsp; In diesem Fall ist &nbsp;$g_r(t)/s_0$&nbsp; mindestens um diesen Faktor kleiner als &nbsp;$T · h_{\rm K}(t)$.
 
*Die so modifizierte Gleichung stellt auch eine gute Näherung für andere Sendegrundimpulse dar, so lange &nbsp;$\rm a_∗≥ 60 \ \rm dB$&nbsp; hinreichend groß ist.&nbsp; $Δt_s$&nbsp; gibt dann die&nbsp;[[Signal_Representation/Special_Cases_of_Impulse_Signals#Gau.C3.9Fimpuls|äquivalente Impulsdauer]]&nbsp; des Sendegrundimpulses an.}}
 
  
 +
==Special features of coaxial cable systems==
 +
<br>
 +
[[File:EN_LZI_4_2_S5_v2.png |right|frame| Binary transmission system with coaxial cable]]
 +
Assuming binary transmission
 +
 +
*with non-return-to-zero&nbsp; $\rm (NRZ)$&nbsp; rectangular pulses&nbsp; $($duration $T)$&nbsp;
  
Wir weisen Sie auf das interaktive Applet &nbsp;[[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]]&nbsp;  hin, das die hier behandelte Thematik zum Inhalt hat.
+
*and a coaxial transmission channel,&nbsp;  
  
  
 +
the following system model is obtained.&nbsp; In particular,&nbsp; it should be noted:
  
==Besonderheiten von Koaxialkabelsystemen==
+
$(1)$&nbsp; In a simulation,&nbsp; the phase delay time of the coaxial cable is conveniently left out of consideration.&nbsp; Then the basic receiver pulse &nbsp;$g_r(t)$&nbsp; is approximated by&nbsp; $($with ${\rm a}_{\rm \star}$&nbsp;in Neper$)$:
<br>
+
:$$g_r(t) \approx s_0 \cdot T \cdot h_{\rm K}(t)  =  \frac {s_0 \cdot {\rm a}_{\rm \star}/\pi}{ \sqrt{2    \cdot(t/T)^3}}\cdot {\rm e}^{  -{{\rm a}_{\rm \star}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}t/T}) } \hspace{0.05cm}.$$
Geht man von binärer Übertragung mit NRZ–Rechteckimpulsen&nbsp; $($Symboldauer $T)$&nbsp; und einem koaxialen Übertragungskanal aus, so ergibt sich das folgende Systemmodell:
 
  
[[File:EN_LZI_4_2_S5.png |center|frame| Binäres Übertragungssystem mit Koaxialkabel]]
+
$(2)$&nbsp; Because of the good shielding of coaxial cables against other impairments,&nbsp; the&nbsp; [[Aufgaben:Exercise_1.3Z:_Thermal_Noise|&raquo;thermal noise&laquo;]]&nbsp;  is the dominant stochastic perturbation.&nbsp; In this case,&nbsp; the signal &nbsp;$n(t)$&nbsp; is Gaussian and white.&nbsp; It can described by the&nbsp; $($two-sided$)$&nbsp; noise power density &nbsp;$N_0/2$.
  
Insbesondere ist zu beachten:
+
$(3)$&nbsp; By far the largest noise component arises in the input stage of the receiver,&nbsp; so that it is expedient to add the noise signal &nbsp;$n(t)$&nbsp; at the&nbsp; interface&nbsp; &raquo;cable ⇒ receiver&laquo;.&nbsp; This noise addition point is also useful because the frequency response &nbsp;$H_{\rm K}(f)$&nbsp; decisively attenuates all noise accumulated along the cable.
*Bei einer Simulation lässt man zweckmäßigerweise die Laufzeit des Koaxialkabels außer Betracht. Dann gilt für den Empfangsgrundimpuls &nbsp;$g_r(t)$&nbsp; näherungsweise:
+
   
:$$g_r(t) \approx s_0 \cdot T \cdot h_{\rm K}(t) =  \frac {s_0 \cdot {\rm a}_{\rm \star}/\pi}{ \sqrt{2    \cdot(t/T)^3}}\cdot {\rm e}^{  -{{\rm a}_{\rm \star}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}t/T}) } \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm} {\rm mit}\hspace{0.15cm}{\rm a}_{\rm \star}\hspace{0.15cm} {\rm in}\hspace{0.15cm} {\rm Neper}\hspace{0.05cm}.$$
+
$(3)$&nbsp; Then the received signal is with the amplitude coefficients &nbsp;$a_{\nu}$:
*Wegen der guten Abschirmung der Koaxialkabel gegenüber anderen Störungen ist das&nbsp; [[Aufgaben:1.3Z_Thermisches_Rauschen|thermische Rauschen]]&nbsp; die dominante Störursache.&nbsp; Das Störsignal &nbsp;$n(t)$&nbsp; ist in diesem Fall gaußverteilt und weiß und wird durch die (zweiseitige) Rauschleistungsdichte &nbsp;$N_0/2$&nbsp; beschrieben.
 
*Der weitaus größte Rauschanteil entsteht in der Eingangsstufe des Empfängers, so dass man das Rauschsignal &nbsp;$n(t)$&nbsp; zweckmäßigerweise an der Schnittstelle&nbsp; "Kabel–Empfänger"&nbsp; addiert.&nbsp; Mit den Amplitudenkoeffizienten &nbsp;$a_{\nu}$&nbsp; gilt dann für das Empfangssignal:
 
 
:$$r(t) = \sum_{\nu = - \infty}^{+ \infty}a_{\nu}\cdot g_r(t - \nu \cdot T)+ n(t) \hspace{0.05cm} .$$
 
:$$r(t) = \sum_{\nu = - \infty}^{+ \infty}a_{\nu}\cdot g_r(t - \nu \cdot T)+ n(t) \hspace{0.05cm} .$$
*Dieser Rauschadditionspunkt ist auch deshalb sinnvoll, da durch den Frequenzgang &nbsp;$H_{\rm K}(f)$&nbsp; alle entlang des Kabels akkumulierten Rauschstörungen  entscheidend gedämpft werden.
 
  
==Aufgaben zum Kapitel==
+
 
 +
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:4.4_Koaxialkabel – Frequenzgang| Aufgabe 4.4: Koaxialkabel – Frequenzgang]]
+
[[Aufgaben:Exercise_4.4:_Coaxial_Cable_-_Frequency_Response| Exercise 4.4: Coaxial Cable - Frequency Response]]
  
[[Aufgaben:4.5_Koaxialkabel – Impulsantwort| Aufgabe 4.5: Koaxialkabel – Impulsantwort]]
+
[[Aufgaben:Exercise_4.5:_Coaxial_Cable_-_Impulse_Response| Exercise 4.5: Coaxial Cable - Impulse Response]]
  
[[Aufgaben:4.5Z_Nochmals Impulsantwort|Aufgabe 4.5Z: Nochmals Impulsantwort]]
+
[[Aufgaben:Exercise_4.5Z:_Impulse_Response_once_again|Exercise 4.5Z: Impulse Response once again]]
  
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 18:37, 24 November 2023

Complex propagation function of coaxial cables


Coaxial cables consist of an inner conductor and – separated by a dielectric – an outer conductor.  Two different types of cable have been standardized,  with the diameters of the inner and outer conductors mentioned for identification purposes:

  • the  »standard coaxial cable«  whose inner conductor has a diameter of  $\text{2.6 mm}$  and whose outer diameter is  $\text{9.5 mm}$,
  • the  »small coaxial cable«  with diameters  $\text{1.2 mm}$  and  $\text{4.4 mm}$.


The cable frequency response  $H_{\rm K}(f)$  results from the cable length  $l$  and the complex propagation function $($per unit length$)$

$$\gamma(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot (\beta_1 \cdot f + \beta_2 \cdot \sqrt {f})\hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-\gamma(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = {\rm e}^{-\alpha(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l}\hspace{0.05cm}.$$

The cable specific constants for the  »standard coaxial cable«  $\text{(2.6/9.5 mm)}$  are:

$$\begin{align*}\alpha_0 & = 0.00162\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.000435\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 21.78\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$

Accordingly,  the kilometric attenuation and phase constants for the  »small coaxial cable«  $\text{(1.2/4.4 mm)}$:

$$\begin{align*}\alpha_0 & = 0.00783\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.000443\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.5984\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 22.18\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.5984\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$

These values can be calculated from the geometric dimensions of the cables and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt - see [Wel77][1].  They apply to a temperature of  $20^\circ\ \text{C (293 K)}$  and frequencies greater than  $\text{200 kHz}$. 

There is the following connection to the  »primary line parameters«:

  1. The ohmic losses originating from the frequency-independent component  $R\hspace{0.05cm}'$  are modeled by the parameter  $α_0$  and cause a  $($for coaxial cables small$)$  frequency-independent attenuation.
  2. The component  $α_1 · f$  of the  »attenuation function (per unit length)«  is due to the derivation losses  $(G\hspace{0.08cm}’)$  and the frequency-proportional term  $β_1 · f$  causes only delay but no distortion.
  3. The components  $α_2$  and  $β_2$  are due to the  »skin effect«,  which causes the current density inside the conductor to be lower than at the surface in the case of higher-frequency alternating current.  As a result,  the  »serial resistance (per unit length)«   $R\hspace{0.05cm}’$  of an electric line increases with the square root of the frequency.

Characteristic cable attenuation


The graph shows the frequency-dependent attenuation curve for the normal coaxial cable and the small coaxial cable.  Shown on the left is the cable attenuation per unit length of the two coaxial cable types in the frequency range up to  $\text{500 MHz}$:

Attenuation function and characteristic attenuation of coaxial cables
$${\alpha}_{\rm K}(f) \hspace{-0.05cm} = \alpha_0 \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_1 \cdot f \hspace{-0.05cm}+ \hspace{-0.05cm} \alpha_2 \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt {f} \hspace{0.01cm} \hspace{0.01cm}.$$
$$\Rightarrow \hspace{0.3cm}{\rm a}_{\rm K}(f) =\alpha_{\rm K}(f) \cdot l $$

Notes on the representation chosen here

  1. To make the difference between the attenuation function per unit length  »alpha«  and the function  »a«  $($after multiplication by length$)$  more recognizable,  the attenuation function is written here as  ${\rm a}_{\rm K}(f)$  and not  $($italics$)$  as  ${a}_{\rm K}(f)$.
  2. The ordinate labeling is given here in  »Np/km«.  Often it is also done in  »dB/km«,  with the following conversion:
$$\ln(10)/20 = 0.11513\text{...} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 \ \rm dB = 0.11513\text{... Np.} $$

Interpretation of the left graph

  • It can be seen from the curves shown that the error is still tolerable when neglecting the frequency-independent component  $α_0$  and the frequency-proportional term  $(α_1\cdot f)$.
  • Sometimes,  we assume the  »simplified attenuation function«:
$${\rm a}_{\rm K}(f) = \alpha_2 \cdot \sqrt {f} \cdot l = {\rm a}_{\rm \star}\cdot \sqrt { {2f}/{R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = {\rm e}^{- {\rm a}_{\rm K}(f)}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_{\rm K}(f)\hspace{0.15cm}{\rm in }\hspace{0.15cm}{\rm Np}\hspace{0.05cm}.$$

$\text{Definition:}$  We denote as  »characteristic cable attenuation«  $\rm a_∗$ 

  • the attenuation of a coaxial cable at half the bit rate
  • due to the  $α_2$ term alone   ⇒   »skin effect«,  thus neglecting the  $α_0$  and the  $α_1$ term:
$${\rm a}_{\rm \star} = {\rm a}_{\rm K}(f = {R}/{2}) = \alpha_2 \cdot \sqrt {{R}/{2}} \cdot l\hspace{0.05cm}.$$

This value is particularly suitable for comparing different conducted transmission systems with different

  1. coaxial cable types  $($normal or small coaxial cable$)$,  each identified by the parameter  $\alpha_2$,
  2. bit rates  $(R)$,  and
  3. cable lengths  $(l)$.


Interpretation of the right graph

The right–hand diagram above shows the characteristic cable attenuation  $\rm a_∗$  in  »Neper«  $\rm (Np)$  as a function of the bit rate  $R$  and the cable length  $l$  for

  • the normal coaxial cable  $\text{(2.6/9.5 mm)}$   ⇒   left ordinate labeling,  and
  • for the small coaxial cable  $\text{(1.2/4.4 mm)}$   ⇒   right ordinate labeling.


This diagram shows the PCM systems of hierarchy levels   $3$  to  $5$  proposed by the  $\text{ITU-T}$  $($»ITU Telecommunication Standardization Sector«$)$  in the 1970s.  One recognizes:

  1. For all these systems for PCM speech transmission,  the characteristic cable attenuation assumes values between  $7 \ \rm Np \ \ (≈ 61 \ dB)$  and  $10.6 \ \rm Np \ \ (≈ 92 \ dB)$ .
  2. The system  $\text{PCM 480}$  – designed for 480 simultaneous telephone calls - with bit rate  $R ≈ 35 \ \rm Mbit/s$  was specified for both the normal coaxial cable  $($with  $l = 9.3 \ \rm km)$  and the small coaxial cable  $($with  $l = 4 \ \rm km)$.  The  $\rm a_∗$–values  $10.4\ \rm Np$  resp.  $9.9\ \rm Np$  are in the same order of magnitude.
  3. The system  $\text{PCM 1920}$  of the fourth hierarchy level  $($specified for the normal coaxial cable$)$  with  $R ≈ 140 \ \rm Mbit/s$  and  $l = 4.65 \ \rm km$  is parameterized by  $\rm a_∗ = 10.6 \ \rm Np$  or  $10.6 \ {\rm Np}· 8.688 \ \rm dB/Np ≈ 92\ \rm dB$ .
  4. Although the system  $\text{PCM 7680}$  has a four times greater bit rate  $R ≈ 560 \ \rm Mbit/s$ ,  the characteristic cable attenuation of   $\rm a_∗ ≈ 61 \ dB$  is due to the better medium  »normal coaxial cable« and the shorter cable sections $(l = 1. 55 \ \rm km)$  by a factor of  $3$  significantly lower .
  5. These numerical values also show that for coaxial cable systems,  the cable length  $l$  is more critical than the bit rate  $R$.  If one wants to double the cable length,  one has to reduce the bit rate by a factor  $4$.


You can view the topic described here with the interactive HTLM 5/JavaScript applet  »Attenuation of Copper Cables« .

Impulse response of a coaxial cable


To calculate the impulse response,  the first two of the in total five  components of the complex propagation function  $($per unit length$)$  can be neglected  $($the reasoning can be found in the previous section$)$.  So we start from the following equation:

$$\gamma(f) = \alpha_0 + \alpha_1 \cdot f + {\rm j} \cdot \beta_1 \cdot f +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \approx {\rm j} \cdot \beta_1 \cdot f +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \hspace{0.05cm}.$$

Considering

  1. the cable length  $l$,
  2. the characteristic cable attenuation  $\rm a_∗$,  and
  3. that  $α_2$  $($in  »Np«$)$  and  $β_2$  (in  »rad«$)$  are numerically equal,


thus applies to the  »frequency response of the coaxial cable«:

$$H_{\rm K}(f) = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.05cm} \sqrt{2f/R} }\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.02cm} \sqrt{2f/R}}= {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R}} \hspace{0.05cm}.$$

The following abbreviations are used here:

$$b_1\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm rad)}= \beta_1 \cdot l \hspace{0.05cm}, \hspace{0.8cm} {\rm a}_{\rm \star}\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm Np)}= \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}.$$

The time domain representation is obtained by applying the  »inverse Fourier transform«  and the  »convolution theorem«:

$$h_{\rm K}(t) = \mathcal{F}^{-1} \left \{ {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f}\right \} \star\mathcal{F}^{-1} \left \{ {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R} }\right \} \hspace{0.05cm}.$$

It must be taken into account here:

  • The first term yields the Dirac delta function  $δ(t - τ_{\rm P})$  shifted by the phase delay  $τ_{\rm P} = b_1/2π$ .
  • The second term can be given analytically closed.  We write  $h_{\rm K}(t + τ_P)$,  so that the phase delay  $τ_{\rm P}$  need not be considered further.
$$h_{\rm K}(t + \tau_{\rm P}) = \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \cdot R \cdot t^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \cdot R\cdot t}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
  • Since the bit rate  $R$  also has already been considered in the $\rm a_∗$  definition;  this equation can be easily represented with the normalized time  $t\hspace{0.05cm}' = t/T$ :
$$h_{\rm K}(t\hspace{0.05cm}' + \tau_{\rm P}\hspace{0.05cm} ') = \frac {1}{T} \cdot \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \cdot t\hspace{0.05cm}'\hspace{0.05cm}^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \cdot t\hspace{0.05cm}'}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
Here  $T = 1/R$  denotes  »the symbol duration of a binary system«  and it holds  $τ_{\rm P} \hspace{0.05cm}' = τ_{\rm P}/T$.

$\text{Example 1:}$  The results of this section are illustrated by the following graph as an example.

Impulse response of a coaxial cable with  $\rm a_∗ = 60 \ dB$
  1. The normalized impulse response  $T · h_{\rm K}(t)$  of a coaxial cable with  $\rm a_∗ = 60 \ dB \ \ (6.9\ Np)$ is shown.
  2. The attenuation coefficients  $α_0$  and  $α_1$  can thus be neglected,  as shown in the last section.
  3. For the left graph, the parameter  $β_1 = 0$  was also set.


Because of the parameterization by the coefficient  $\rm a_∗$,  and the time normalization to the symbol duration  $T$  the left curve is equally valid

  1. for systems with small or normal coaxial cable, 
  2. different lengths,
  3. different bit rates. 


For example for

  • normal coaxial cable  $\text{2.6/9.5 mm}$,  bit rate  $R = 140 \ \rm Mbit/s$,  cable length  $l = 3 \ \rm km$   ⇒   $\text{system A}$,
  • small coaxial cable  $\text{1.2/4.4 mm}$,  bit rate  $R = 35 \ \rm Mbit/s$,
    cable length  $l = 2.8 \ \rm km$   ⇒   $\text{system B}$.


It can be seen in the left–hand diagram that even at this moderate cable attenuation  $\rm a_∗ = 60 \ \rm dB$  the impulse response already extends over more than   $200$  symbol durations due to the skin effect  $(α_2 = β_2 ≠ 0)$.  Since the integral over  $h_{\rm K}(t)$  is equal to  $H_{\rm K}(f = 0) = 1$,  the maximum value becomes very small:

$${\rm Max}\big [h_{\rm K}(t)\big ] \approx 0.03.$$

In the diagram on the right,  the effects of the phase parameter  $β_1$  can be seen.  Note the different time scales of the left and the right diagram:

  • For  $\text{system A}$  $(β_1 = 21.78 \ \rm rad/(km · MHz)$,  $T = 7.14\ \rm ns)$   $β_1$  leads to a phase delay of
$$\tau_{\rm A}= \frac {\beta_1 \cdot l}{2\pi} =\frac {21.78\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 3\,{\rm km} }{2\pi} = 10.4\,{\rm \mu s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm A}\hspace{0.05cm}' = {\tau_{\rm A} }/{T} \approx 1457\hspace{0.05cm}.$$
  • On the other hand,  the following can be obtained for  $\text{system B}$  $(β_1 = 22.18 \ \rm rad/(km · MHz)$,  $T = 30 \ \rm ns)$:
$$\tau_{\rm B}= \frac {\beta_1 \cdot l}{2\pi} =\frac {22.18\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 2.8\,{\rm km} }{2\pi} = 9.9\,{\rm µ s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm B}\hspace{0.05cm}' ={\tau_{\rm B} }/{T} \approx 330\hspace{0.05cm}.$$

Although  $τ_{\rm A} ≈ τ_{\rm B}$  holds,  completely different ratios result because of the time normalization to  $T = 1/R$ .


$\text{Conclusion:}$  When simulating and optimizing transmission systems, 
one usually omits the linear phase term  $b_1 = β_1 · f$,  since this results exclusively in a  $($often not disturbing$)$  phase delay,  but no signal distortions.

Basic receiver pulse


With the  »basic transmission pulse«  $g_s(t)$   ⇒   »basic pulse of the transmitted signal«  $s(t)$  and the  »impulse response  $h_{\rm K}(t)$  of the channel,  the result for the  »basic receiver pulse«  $g_r(t)$   ⇒   »basic pulse of the received signal«  $r(t)$  is:

$$g_r(t) = g_s(t) \star h_{\rm K}(t)\hspace{0.05cm}.$$

If a non-return-to-zero  $\rm (NRZ)$  rectangular pulse  $g_s(t)$  with amplitude  $s_0$  and duration  $Δt_s = T$  is used at the transmitter,  the following results for the basic pulse at the receiver input:

$$g_r(t) = 2 s_0 \cdot \left [ {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T - 0.5)}}\right ) - {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T + 0.5)}}\right ) \right ]\hspace{0.05cm}.$$

Here  $\rm a_∗$  denotes the  »characteristic cable attenuation«  $($in Neper$)$  and  ${\rm Q}(x)$  the  »complementary Gaussian error function«.

$\text{Example 2:}$  The figure shows for the characteristic cable attenuations  $\rm a_∗ = 40 \ \rm dB$, ... ,  $100 \ \rm dB$  $($smaller  $\rm a_∗$–values   are not relevant for practice$)$

  • the normalized coaxial cable impulse response  $T · h_{\rm K}(t)$   ⇒   solid curves,
  • the basic receiver pulse  $($»rectangular response«$)$  $g_r(t)$  normalized to the transmission amplitude  $s_0$   ⇒   dotted line.
Impulse response of the coaxial cable and basic receiver pulse


One recognizes the following from this diagram:

  1. With  $\rm a_∗ = 40 \ \rm dB$,  the normalized basic receiver pulse  $g_r(t)/s_0$  is at the peak slightly  $($about a factor of $0.95)$  smaller than the normalized impulse response  $T · h_{\rm K}(t)$.  Here is a small difference between impulse response and basic receiver pulse .
  2. In contrast,  for  $a_∗ ≥ 60 \ \rm dB$,  the basic receiver pulse and the impulse response are indistinguishable within the drawing accuracy.
  3. For a return-to-zero  $\rm (RZ)$  pulse,  the above equation for  $g_r(t)$  would still need to be multiplied by the factor  $Δt_s/T$.  In this case  $g_r(t)/s_0$  is smaller than  $T · h_{\rm K}(t)$  by at least this factor.
  4. The equation modified in this way is also a good approximation for other basic transmission pulses as long as  $\rm a_∗≥ 60 \ \rm dB$  is sufficiently large.  $Δt_s$  then indicates the »equivalent pulse duration«  of  $g_r(t)$.


Special features of coaxial cable systems


Binary transmission system with coaxial cable

Assuming binary transmission

  • with non-return-to-zero  $\rm (NRZ)$  rectangular pulses  $($duration $T)$ 
  • and a coaxial transmission channel, 


the following system model is obtained.  In particular,  it should be noted:

$(1)$  In a simulation,  the phase delay time of the coaxial cable is conveniently left out of consideration.  Then the basic receiver pulse  $g_r(t)$  is approximated by  $($with ${\rm a}_{\rm \star}$ in Neper$)$:

$$g_r(t) \approx s_0 \cdot T \cdot h_{\rm K}(t) = \frac {s_0 \cdot {\rm a}_{\rm \star}/\pi}{ \sqrt{2 \cdot(t/T)^3}}\cdot {\rm e}^{ -{{\rm a}_{\rm \star}^2}/( {2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}t/T}) } \hspace{0.05cm}.$$

$(2)$  Because of the good shielding of coaxial cables against other impairments,  the  »thermal noise«  is the dominant stochastic perturbation.  In this case,  the signal  $n(t)$  is Gaussian and white.  It can described by the  $($two-sided$)$  noise power density  $N_0/2$.

$(3)$  By far the largest noise component arises in the input stage of the receiver,  so that it is expedient to add the noise signal  $n(t)$  at the  interface  »cable ⇒ receiver«.  This noise addition point is also useful because the frequency response  $H_{\rm K}(f)$  decisively attenuates all noise accumulated along the cable.

$(3)$  Then the received signal is with the amplitude coefficients  $a_{\nu}$:

$$r(t) = \sum_{\nu = - \infty}^{+ \infty}a_{\nu}\cdot g_r(t - \nu \cdot T)+ n(t) \hspace{0.05cm} .$$


Exercises for the chapter


Exercise 4.4: Coaxial Cable - Frequency Response

Exercise 4.5: Coaxial Cable - Impulse Response

Exercise 4.5Z: Impulse Response once again


References

  1. Wellhausen, H. W.:  Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren.  Frequenz 31, S. 23-28, 1977.