Difference between revisions of "Aufgaben:Exercise 4.2: Rectangular Spectra"

From LNTwww
 
(33 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Differences_and_Similarities_of_Low-Pass_and_Band-Pass_Signals
 
}}
 
}}
  
[[File:P_ID695__Sig_A_4_2_neu.png|250px|right|Rechteckförmige Tiefpass- und Bandpass-Spektren (Aufgabe A4.2)]]
+
[[File:P_ID695__Sig_A_4_2_neu.png|250px|right|frame|Given low–pass and band-pass spectra]]
 +
We consider two signals  $u(t)$  and  $w(t)$  with rectangular spectra  $U(f)$  and  $W(f)$ respectively.
 +
*It is obvious that
 +
 +
:$$u(t)  =  u_0  \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
 +
 
 +
:is a low-pass signal whose two parameters  $u_0$  and  $T_u$  are to be determined in subtask  '''(1)''' .
 +
*In contrast, the spectrum  $W(f)$ shows that  $w(t)$  describes a band-pass signal.
  
Wir betrachten zwei Signale u(t) und w(t) mit jeweils rechteckförmigen Spektralfunktionen U(f) bzw. W(f). Es ist offensichtlich, dass
 
 
$$u(t)  =  u_0  \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
 
  
ein TP–Signal ist, dessen zwei Parameter u0 und Tu in der Teilaufgabe a) zu bestimmen sind. Dagegen zeigt das Spektrum W(f), dass w(t) ein BP–Signal beschreibt.
+
This task also refers to the band-pass signal
In dieser Aufgabe wird außerdem auf das BP–Signal
 
 
   
 
   
$$d(t)  =  10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 \hspace{0.05cm}t)
+
:$$d(t)  =  10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 \hspace{0.05cm}t)
 
- 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$
 
- 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$
  
Bezug genommen, dessen Spektrum in Aufgabe A4.1 ermittelt wurde. Es sei f2 = 2 kHz.
+
whose spectrum was determined in  [[Aufgaben:Exercise_4.1Z:_High-Pass_System|Exercise 4.1Z]] . Let  $f_2 = 2 \ \rm kHz.$
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie bei der Lösung die folgende trigonometrische Beziehung:
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Differences_and_Similarities_of_Low-Pass_and_Band-Pass_Signals|Differences and Similarities of Low-Pass and Band-Pass Signals]].
 +
*In this task, the function  $\rm si(x) = \rm sin(x)/x = \rm sinc(x/π)$  is used.
  
$$\sin (\alpha) \cdot \cos (\beta)  =  \frac{1}{2}\left[ \sin
+
*Consider the following trigonometric relationship in the solution:
(\alpha + \beta)+ \sin (\alpha - \beta)\right].$$
+
 
===Fragebogen===
+
:$$\sin (\alpha) \cdot \cos (\beta)  =  {1}/{2} \cdot \big[ \sin
 +
(\alpha + \beta)+ \sin (\alpha - \beta)\big].$$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Werte besitzen die Parameter u0 und Tu des TP-Signals?
+
{What are the parameter values&nbsp; $u_0$&nbsp; and&nbsp; $T_u$&nbsp; of the low-pass signal?
 
|type="{}"}
 
|type="{}"}
$u_0 =$ { 2 } V
+
$u_0\ = \ $ { 2 3% } &nbsp;$\text{V}$
$T_u =$ { 0.5 } ms
+
$T_u\ = \ $ { 0.5 3% } &nbsp;$\text{ms}$
  
{Berechnen Sie das BP–Signal w(t). Wie groß sind die beiden Signalwerte bei t = 0 und t = 62.5 μs?
+
{Calculate the band-pass signal&nbsp; $w(t)$.&nbsp; What are the signal values at&nbsp; $t = 0$&nbsp; and&nbsp; $t = 62.5 \, {\rm &micro;}\text{s}$?
 
|type="{}"}
 
|type="{}"}
$w(t=0) = $ { 4 } V
+
$w(t=0)\ = \ $ { 4 3% } &nbsp;$\text{V}$
$w(t=62.5 \mu \text{s}) =$ { 0 } V
+
$w(t=62.5 \,{\rm &micro;}  \text{s})\ = \ $ { 0. } &nbsp;$\text{V}$
  
{Welche Aussagen sind bezüglich der BP–Signale d(t) und w(t) zutreffend? Begründen Sie Ihr Ergebnis im Zeitbereich.
+
{Which statements are true regarding the band-pass signals&nbsp; $d(t)$&nbsp; and&nbsp; $w(t)$&nbsp;?&nbsp; Justify your result in the time domain.
|type="[]"}
+
|type="()"}
+ Die Signale d(t) und w(t) sind identisch.
+
+ The signals&nbsp; $d(t)$&nbsp; and&nbsp; $w(t)$&nbsp; are identical.
- d(t) und w(t) unterscheiden sich durch einen konstanten Faktor.
+
- $d(t)$&nbsp; and&nbsp; $w(t)$&nbsp; differ by a constant factor.
- d(t) und w(t) haben unterschiedliche Form.
+
- $d(t)$&nbsp; und&nbsp; $w(t)$&nbsp; have different shapes.
  
 
</quiz>
 
</quiz>
  
  
===Musterlösung===
+
===Solution===
  
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
[[File:P_ID704__Sig_A_4_2_b_neu.png|250px|right|Multiplikation mit Cosinus (ML zu Aufgabe A4.2)]]
+
'''(1)'''&nbsp;  The time&nbsp; $T_u$ &nbsp; &rArr; &nbsp; first zero of the low-pass signal&nbsp; $u(t)$&nbsp; &ndash; is equal to the reciprocal of the width of the rectangular spectrum, i.e. &nbsp; $1/(2\, \text{kHz} ) \hspace{0.15 cm}\underline{= 0.5 \, \text{ms}}$.
 +
*The pulse amplitude is equal to the rectangular area as shown in the sample solution for&nbsp; [[Aufgaben:Aufgabe_4.1:_Tiefpass-_und_Bandpass-Signale|Exercise 4.1]]&nbsp;.&nbsp; From this follows&nbsp; $u_0\hspace{0.15 cm}\underline{= 2 \, \text{V}}$.
  
'''1.''' a)  Die Zeit Tu, welche die erste Nullstelle des TP-Signals u(t) angibt, ist gleich dem Kehrwert der Breite des Rechteckspektrums, also 1/(2 kHz) = 0.5 ms. Die Impulsamplitude ist, wie in der Musterlösung zur Aufgabe A4.1 ausführlich dargelegt wurde, gleich der Rechteckfläche. Daraus folgt u0 = 2V.
 
  
bDas BP-Spektrum kann mit fT = 4 kHz wie folgt dargestellt werden:
+
 
 +
[[File:P_ID704__Sig_A_4_2_b_neu.png|250px|right|frame|Multiplication with a cosine function]]
 +
'''(2)'''&nbsp; The band-pass spectrum can be represented with&nbsp; $f_{\rm T} = 4\, \text{kHz}$&nbsp; as follows:
 
   
 
   
$$W(f) \hspace{-0.15 cm} & = &  \hspace{-0.15 cm}U(f- f_{\rm T}) + U(f+ f_{\rm T}) = \\
+
:$$ W(f)   = U(f- f_{\rm T}) + U(f+ f_{\rm T}) =  U(f)\star \left[
& = &   \hspace{-0.15 cm}  U(f)\star \left[
 
 
\delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$
 
\delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$
  
Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal:
+
According to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|Shifting Theorem]],&nbsp; the following then applies to the associated time signal:
 
   
 
   
$$w(t) \hspace{-0.15 cm} &  = & \hspace{-0.15 cm} 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = \\ & = &\hspace{-0.15 cm} 2 u_0
+
:$$w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) =   2 u_0
  \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T}
+
  \cdot {\rm si} ( \pi {t}/{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). $$
t).$$
 
  
Die Grafik zeigt
+
The graph shows
oben das TP-Signal u(t),
+
*above the low&ndash;pass signal $u(t)$,
dann die Schwingung c(t) = 2 · cos(2πfTt),
+
*then the oscillation $c(t) = 2 · \cos(2 \pi f_{\rm T}t$ ),
unten das BP-Signal w(t) = u(t) · c(t).
+
*below the band-pass signal&nbsp; $w(t) = u(t) \cdot c(t)$.
Insbesondere erhält man zum Zeitpunkt t = 0:
+
 
 +
 
 +
In particular, at time&nbsp; $t = 0$ one obtains:
 
   
 
   
$$w(t = 0)  =  2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
+
:$$w(t = 0)  =  2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
  
Der Zeitpunkt t = 62.5 μs entspricht genau einer viertel Periodendauer des Signals c(t):
+
The time&nbsp; $t=62.5 \,{\rm &micro;} \text{s}$&nbsp; corresponds exactly to a quarter of the period of the signal&nbsp; $c(t)$:
 
   
 
   
$$ w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) & = & 2 u_0 \cdot{\rm si} ( \pi \frac{62.5 \hspace{0.05cm}{\rm \mu s}}
+
:$$ w(t = 62.5 \hspace{0.05cm}{\rm &micro; s}) = 2 u_0 \cdot {\rm si} ( \pi \cdot \frac{62.5 \hspace{0.05cm}{\rm &micro;  s}}
  {500 \hspace{0.05cm}{\rm \mu s}})
+
  {500 \hspace{0.05cm}{\rm &micro;  s}})
 
  \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot
 
  \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot
  62.5 \hspace{0.05cm}{\rm \mu s}) \\ & =
+
  62.5 \hspace{0.05cm}{\rm &micro;  s}) $$
 +
:$$ \Rightarrow  \hspace{0.3cm}w(t =  
 
  4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$
 
  4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$
  
cVergleicht man die Spektralfunktion W(f) dieser Aufgabe mit dem Spektrum D(f) in der Musterlösung zu Aufgabe A4.1, so erkennt man, dass w(t) und d(t) identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit f2 = 2 kHz kann für das hier betrachtete Signal geschrieben werden:
+
 
 +
 
 +
'''(3)'''&nbsp; Proposed <u>solution 1 is correct</u>:
 +
*If we compare the spectral function&nbsp; $W(f)$&nbsp; of this task with the spectrum&nbsp; $D(f)$&nbsp; in the sample solution to&nbsp;  [[Aufgaben:Exercise_4.1:_Low-Pass_and_Band-Pass_Signals|Exercise 4.1]], we see that&nbsp; $w(t)$&nbsp; and&nbsp; $d(t)$&nbsp; are identical.
 +
*This proof is somewhat more complex in the time domain.&nbsp; With&nbsp; $f_2 = 2 \,\text{kHz}$&nbsp; can be written for the signal considered here:
 
   
 
   
$$w(t )  =  4\hspace{0.05cm}{\rm V}
+
:$$w(t )  =  4\hspace{0.05cm}{\rm V}
 
  \cdot {\rm si} ( \pi f_2 t)
 
  \cdot {\rm si} ( \pi f_2 t)
 
  \cdot {\cos} ( 4 \pi f_2 t)  =  
 
  \cdot {\cos} ( 4 \pi f_2 t)  =  
 
({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .$$
 
({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .$$
  
Wegen der trigonometrischen Beziehung
+
*Because of the trigonometric relationship
 
   
 
   
$$\sin (\alpha) \cdot \cos (\beta)  =  {1}/{2} \cdot \left[ \sin
+
:$$\sin (\alpha) \cdot \cos (\beta)  =  {1}/{2} \cdot \big[ \sin
(\alpha + \beta)+ \sin (\alpha - \beta)\right]$$
+
(\alpha + \beta)+ \sin (\alpha - \beta)\big]$$
  
kann obige Gleichung umgeformt werden:
+
:the above equation can be transformed:
 
   
 
   
$$w(t )  =
+
:$$w(t )  =
  \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \left[\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\right]  
+
  \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \big [\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\big ]  
 
  = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}-
 
  = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}-
 
  6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
 
  6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
  
Damit ist gezeigt, dass beide Signale tatsächlich identisch sind ⇒  Lösungsvorschlag 1:
+
*This shows that both signals are actually identical &nbsp; ⇒  &nbsp; Proposed solution 1:
 
   
 
   
$$w(t)  =  10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t)
+
:$$w(t)  =  10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t)
 
- 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).$$
 
- 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.1 Differences between Low-Pass and Band-Pass^]]

Latest revision as of 14:49, 5 May 2021

Given low–pass and band-pass spectra

We consider two signals  $u(t)$  and  $w(t)$  with rectangular spectra  $U(f)$  and  $W(f)$ respectively.

  • It is obvious that
$$u(t) = u_0 \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
is a low-pass signal whose two parameters  $u_0$  and  $T_u$  are to be determined in subtask  (1) .
  • In contrast, the spectrum  $W(f)$ shows that  $w(t)$  describes a band-pass signal.


This task also refers to the band-pass signal

$$d(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 \hspace{0.05cm}t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$

whose spectrum was determined in  Exercise 4.1Z . Let  $f_2 = 2 \ \rm kHz.$




Hints:

  • Consider the following trigonometric relationship in the solution:
$$\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big].$$


Questions

1

What are the parameter values  $u_0$  and  $T_u$  of the low-pass signal?

$u_0\ = \ $

 $\text{V}$
$T_u\ = \ $

 $\text{ms}$

2

Calculate the band-pass signal  $w(t)$.  What are the signal values at  $t = 0$  and  $t = 62.5 \, {\rm µ}\text{s}$?

$w(t=0)\ = \ $

 $\text{V}$
$w(t=62.5 \,{\rm µ} \text{s})\ = \ $

 $\text{V}$

3

Which statements are true regarding the band-pass signals  $d(t)$  and  $w(t)$ ?  Justify your result in the time domain.

The signals  $d(t)$  and  $w(t)$  are identical.
$d(t)$  and  $w(t)$  differ by a constant factor.
$d(t)$  und  $w(t)$  have different shapes.


Solution

(1)  The time  $T_u$   ⇒   first zero of the low-pass signal  $u(t)$  – is equal to the reciprocal of the width of the rectangular spectrum, i.e.   $1/(2\, \text{kHz} ) \hspace{0.15 cm}\underline{= 0.5 \, \text{ms}}$.

  • The pulse amplitude is equal to the rectangular area as shown in the sample solution for  Exercise 4.1 .  From this follows  $u_0\hspace{0.15 cm}\underline{= 2 \, \text{V}}$.


Multiplication with a cosine function

(2)  The band-pass spectrum can be represented with  $f_{\rm T} = 4\, \text{kHz}$  as follows:

$$ W(f) = U(f- f_{\rm T}) + U(f+ f_{\rm T}) = U(f)\star \left[ \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$

According to the  Shifting Theorem,  the following then applies to the associated time signal:

$$w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = 2 u_0 \cdot {\rm si} ( \pi {t}/{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). $$

The graph shows

  • above the low–pass signal $u(t)$,
  • then the oscillation $c(t) = 2 · \cos(2 \pi f_{\rm T}t$ ),
  • below the band-pass signal  $w(t) = u(t) \cdot c(t)$.


In particular, at time  $t = 0$ one obtains:

$$w(t = 0) = 2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$

The time  $t=62.5 \,{\rm µ} \text{s}$  corresponds exactly to a quarter of the period of the signal  $c(t)$:

$$ w(t = 62.5 \hspace{0.05cm}{\rm µ s}) = 2 u_0 \cdot {\rm si} ( \pi \cdot \frac{62.5 \hspace{0.05cm}{\rm µ s}} {500 \hspace{0.05cm}{\rm µ s}}) \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot 62.5 \hspace{0.05cm}{\rm µ s}) $$
$$ \Rightarrow \hspace{0.3cm}w(t = 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$


(3)  Proposed solution 1 is correct:

  • If we compare the spectral function  $W(f)$  of this task with the spectrum  $D(f)$  in the sample solution to  Exercise 4.1, we see that  $w(t)$  and  $d(t)$  are identical.
  • This proof is somewhat more complex in the time domain.  With  $f_2 = 2 \,\text{kHz}$  can be written for the signal considered here:
$$w(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi f_2 t) \cdot {\cos} ( 4 \pi f_2 t) = ({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .$$
  • Because of the trigonometric relationship
$$\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \big[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\big]$$
the above equation can be transformed:
$$w(t ) = \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \big [\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\big ] = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}- 6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
  • This shows that both signals are actually identical   ⇒   Proposed solution 1:
$$w(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).$$