Difference between revisions of "Aufgaben:Exercise 5.7Z: Application of the IDFT"

From LNTwww
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Realisierung von OFDM-Systemen
+
{{quiz-Header|Buchseite=Modulation_Methods/Implementation_of_OFDM_Systems
 
}}
 
}}
  
[[File:P_ID1670__Mod_Z_5_7.png|right|frame|Drei Sätze &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; und &nbsp;$\rm C$&nbsp;  <br>für die Spektralkoeffizienten]]
+
[[File:P_ID1670__Mod_Z_5_7.png|right|frame|Three sets &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; and &nbsp;$\rm C$&nbsp;  <br>for the spectral coefficients]]
Bei der &nbsp;[[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Diskreten Fouriertransformation]]&nbsp; $\rm (DFT)$&nbsp; werden aus den Zeitabtastwerten &nbsp;$d(ν)$&nbsp; mit der Laufvariablen &nbsp;$ν = 0$, ... , $N – 1$&nbsp; die diskreten Spektralkoeffizienten &nbsp;$D(μ)$&nbsp; mit &nbsp;$μ = 0$, ... , $N – 1$&nbsp; wie folgt berechnet:
+
In the &nbsp;[[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform]]&nbsp; $\rm (DFT)$,&nbsp; the discrete spectral coefficients &nbsp;$D(μ)$&nbsp; with control variable &nbsp;$μ = 0$, ... , $N – 1$&nbsp; are calculated from the time sample values &nbsp;$d(ν)$&nbsp; with &nbsp;$ν = 0$, ... , $N – 1$&nbsp;as follows:
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
Hierbei ist mit &nbsp;$w$&nbsp; der komplexe Drehfaktor abgekürzt, der wie folgt definiert ist:
+
Here, &nbsp;$w$&nbsp; abbreviates the complex rotation factor:
 
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$
 
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$
Entsprechend gilt für die &nbsp;[[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Inverse_Diskrete_Fouriertransformation|Inverse Diskrete Fouriertransformation]]&nbsp; $\rm (IDFT)$&nbsp; quasi als "Umkehrfunktion" der DFT:
+
Correspondingly,&nbsp; for the &nbsp;[[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Inverse_discrete_Fourier_transform|Inverse discrete Fourier transform]]&nbsp; $\rm (IDFT)$&nbsp; practically as an&nbsp; "inverse function"&nbsp; of the DFT applies:
 
:$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
 
:$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
In dieser Aufgabe sollen für verschiedene komplexwertige Beispielfolgen &nbsp;$D(μ)$ – die in der Tabelle mit &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; und &nbsp;$\rm C$&nbsp; bezeichnet sind – die Zeitkoeffizienten &nbsp;$d(ν)$&nbsp; ermittelt werden.&nbsp; Es gilt somit stets &nbsp;$N = 8$.
+
*In this exercise,&nbsp; the time coefficients &nbsp;$d(ν)$&nbsp; are to be determined for different complex-valued example sequences &nbsp;$D(μ)$ – which are labeled &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; and &nbsp;$\rm C$&nbsp; in the table.&nbsp;  
 +
*Thus, &nbsp;$N = 8$ is always valid.
  
  
Line 17: Line 18:
  
  
 
+
Notes:  
 
+
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Realisierung_von_OFDM-Systemen|Implementation of OFDM Systems]].
 
+
*Reference is also made to the chapter&nbsp;  [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform]]&nbsp; in the book "Signal Representation".
''Hinweise:''
+
*You can check your results with the interactive applet &nbsp;[[Applets:Discrete_Fouriertransform_and_Inverse|Discrete Fourier Transform and Inverse]].&nbsp;  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulation_Methods/Realisierung_von_OFDM-Systemen|Realisierung von OFDM-Systemen]].
 
*Bezug genommen wird auch  auf das Kapitel&nbsp;  [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Diskrete Fouriertransformation]]&nbsp; im Buch „Signaldarstellung”.
 
*Sie können Ihre Ergebnisse mit dem interaktiven Applet &nbsp;[[Applets:Diskrete_Fouriertransformation_und_Inverse|Diskrete Fouriertransformation und Inverse]]&nbsp; kontrollieren.
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Zeitkoeffizienten &nbsp;$d(ν)$&nbsp; für die Spektralkoeffizienten &nbsp;$D(μ)$&nbsp; gemäß &nbsp;$\rm A$? <br> Geben Sie den ersten Koeffizienten &nbsp;$d(1)$&nbsp; mit Real&ndash; und Imaginärteil ein.
+
{What are the time coefficients &nbsp;$d(ν)$&nbsp; for the spectral coefficients &nbsp;$D(μ)$&nbsp; according to &nbsp;$\rm A$? <br> Enter the first coefficient &nbsp;$d(1)$&nbsp; with real and imaginary parts.
 
|type="{}"}
 
|type="{}"}
 
${\rm Re}\big[d(1)\big] \ = \ $ { 1 1% }  
 
${\rm Re}\big[d(1)\big] \ = \ $ { 1 1% }  
 
${\rm Im}\big[d(1)\big] \ = \ $ { -1.03--0.97 }   
 
${\rm Im}\big[d(1)\big] \ = \ $ { -1.03--0.97 }   
  
{Wie lauten die Zeitkoeffizienten &nbsp;$d(ν)$&nbsp; für die Spektralkoeffizienten &nbsp;$D(μ)$&nbsp; gemäß &nbsp;$\rm B$? <br> Geben Sie den ersten Koeffizienten &nbsp;$d(1)$&nbsp; mit Real&ndash; und Imaginärteil ein.
+
{What are the time coefficients &nbsp;$d(ν)$&nbsp; for the spectral coefficients &nbsp;$D(μ)$&nbsp; according to &nbsp;$\rm B$? <br> Enter the first coefficient &nbsp;$d(1)$&nbsp; with real and imaginary parts.
 
|type="{}"}
 
|type="{}"}
 
${\rm Re}\big[d(1)\big] \ = \ $ { 2.828 1% }  
 
${\rm Re}\big[d(1)\big] \ = \ $ { 2.828 1% }  
 
${\rm Im}\big[d(1)\big] \ = \ $ { 0. }   
 
${\rm Im}\big[d(1)\big] \ = \ $ { 0. }   
  
{Wie lauten die Zeitkoeffizienten &nbsp;$d(ν)$&nbsp; für die Spektralkoeffizienten &nbsp;$D(μ)$&nbsp; gemäß &nbsp;$\rm C$? <br> Geben Sie den ersten Koeffizienten &nbsp;$d(1)$&nbsp; mit Real&ndash; und Imaginärteil ein.
+
{What are the time coefficients &nbsp;$d(ν)$&nbsp; for the spectral coefficients &nbsp;$D(μ)$&nbsp; according to &nbsp;$\rm C$? <br> Enter the first coefficient &nbsp;$d(1)$&nbsp; with real and imaginary parts.  
 
|type="{}"}
 
|type="{}"}
 
${\rm Re}\big[d(1)\big] \ = \ $ { -6.9--6.7 }  
 
${\rm Re}\big[d(1)\big] \ = \ $ { -6.9--6.7 }  
Line 48: Line 46:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Wegen&nbsp; $D(μ) = 0$&nbsp; für&nbsp; $μ ≠ 0$&nbsp; sind alle Zeitkoeffizienten&nbsp; $d(ν) = D(0)= 1 - {\rm  j}$.&nbsp; Damit gilt auch:
+
'''(1)'''&nbsp;  Because of&nbsp; $D(μ) = 0$&nbsp; for&nbsp; $μ ≠ 0$&nbsp; all time coefficients&nbsp; $d(ν) = D(0)= 1 - {\rm  j}$.&nbsp; Thus:
 
:$${\rm Re}[d(1)] \hspace{0.15cm}\underline {=+ 1}, \hspace{0.3cm}{\rm Im}[d(1)]  \hspace{0.15cm}\underline {= -1}.$$
 
:$${\rm Re}[d(1)] \hspace{0.15cm}\underline {=+ 1}, \hspace{0.3cm}{\rm Im}[d(1)]  \hspace{0.15cm}\underline {= -1}.$$
  
  
'''(2)'''&nbsp;  Hier sind alle Spektralkoeffizienten Null mit Ausnahme von&nbsp; $D_1 = 1 - {\rm  j}$&nbsp; und&nbsp; $D_7 = 1 + {\rm  j}$.&nbsp; Daraus folgt für alle Zeitkoeffizienten&nbsp; $(0 ≤ ν ≤ 7)$:
+
'''(2)'''&nbsp;  Here,&nbsp; all spectral coefficients are zero except&nbsp; $D_1 = 1 - {\rm  j}$&nbsp; and&nbsp; $D_7 = 1 + {\rm  j}$.&nbsp; It follows for all time coefficients&nbsp; $(0 ≤ ν ≤ 7)$:
 
:$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {7\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}.$$
 
:$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {7\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}.$$
*Aufgrund der Periodizität gilt aber auch:
+
*However,&nbsp; due to periodicity,&nbsp; also holds:
 
:$$d(\nu)  =  (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ +{\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}=  
 
:$$d(\nu)  =  (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ +{\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}=  
 
  \left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} + {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right]+ {\rm{j}} \cdot\left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} - {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right].$$
 
  \left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} + {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right]+ {\rm{j}} \cdot\left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} - {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right].$$
*Mit dem Satz von Euler lässt sich dieser Ausdruck wie folgt umformen:
+
*Using Euler's theorem,&nbsp; this expression can be transformed as follows:
 
:$$d(\nu) = 2 \cdot \cos \left( {\pi}/{4}\cdot \nu \right)+ 2 \cdot \sin \left(  {\pi}/{4}\cdot \nu \right).$$
 
:$$d(\nu) = 2 \cdot \cos \left( {\pi}/{4}\cdot \nu \right)+ 2 \cdot \sin \left(  {\pi}/{4}\cdot \nu \right).$$
*Diese Zeitfunktion&nbsp; $d(ν)$&nbsp; ist rein reell und kennzeichnet eine harmonische Schwingung mit der Amplitude&nbsp; $ 2 \cdot \sqrt{2}$&nbsp; und der Phase&nbsp; $φ = 45^\circ$.  
+
*This time function&nbsp; $d(ν)$&nbsp; is purely real and characterizes a harmonic oscillation with amplitude&nbsp; $ 2 \cdot \sqrt{2}$&nbsp; and phase&nbsp; $φ = 45^\circ$.  
*Der Zeitkoeffizient mit Index&nbsp; $ν = 1$&nbsp; gibt das Maximum an:
+
*The time coefficient with index&nbsp; $ν = 1$&nbsp; indicates the maximum:
 
:$$ {\rm Re}[d(1)] = 2 \cdot \frac {\sqrt{2}}{2}+ 2 \cdot \frac {\sqrt{2}}{2} = 2 \cdot {\sqrt{2}} \hspace{0.15cm}\underline {\approx 2.828}, \hspace{0.5cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= 0}.$$
 
:$$ {\rm Re}[d(1)] = 2 \cdot \frac {\sqrt{2}}{2}+ 2 \cdot \frac {\sqrt{2}}{2} = 2 \cdot {\sqrt{2}} \hspace{0.15cm}\underline {\approx 2.828}, \hspace{0.5cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= 0}.$$
  
  
'''(3)'''&nbsp;  Entsprechend der allgemeinen Gleichung gilt:
+
'''(3)'''&nbsp;  According to the general equation:
 
:$$d(1) =  \sum\limits_{\mu = 0}^{7} D(\mu)\cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\mu} = \left[ D(1) + D(7) \right]\cdot \cos \left( {\pi}/{4} \right) + \left[ D(3) + D(5) \right]\cdot \cos \left( {3\pi}/{4} \right)+
 
:$$d(1) =  \sum\limits_{\mu = 0}^{7} D(\mu)\cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\mu} = \left[ D(1) + D(7) \right]\cdot \cos \left( {\pi}/{4} \right) + \left[ D(3) + D(5) \right]\cdot \cos \left( {3\pi}/{4} \right)+
 
   {\rm j} \cdot \left[ D(2) - D(6) \right]\cdot \sin \left( {\pi}/{2} \right) + D(4) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}}.$$
 
   {\rm j} \cdot \left[ D(2) - D(6) \right]\cdot \sin \left( {\pi}/{2} \right) + D(4) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}}.$$
*Die ersten drei Terme liefern rein reelle Ergebnisse:
+
*The first three terms give pure real results:
 
:$${\rm Re}[d(1)]  =  (1+1) \cdot \frac{1}{\sqrt{2}}-(3+3) \cdot \frac{1}{\sqrt{2}}+ {\rm j} \cdot4{\rm j} \cdot 1 = -\frac{4}{\sqrt{2}}-4\hspace{0.15cm}\underline { \approx -6.829}.$$
 
:$${\rm Re}[d(1)]  =  (1+1) \cdot \frac{1}{\sqrt{2}}-(3+3) \cdot \frac{1}{\sqrt{2}}+ {\rm j} \cdot4{\rm j} \cdot 1 = -\frac{4}{\sqrt{2}}-4\hspace{0.15cm}\underline { \approx -6.829}.$$
*Für den Imaginärteil ergibt sich:
+
*For the imaginary part, we obtain:
 
:$${\rm Im}[d(1)] = {\rm Im}\left[4 \cdot{\rm j} \cdot (-1) \right] \hspace{0.15cm}\underline {= -4}.$$
 
:$${\rm Im}[d(1)] = {\rm Im}\left[4 \cdot{\rm j} \cdot (-1) \right] \hspace{0.15cm}\underline {= -4}.$$
  
Line 79: Line 77:
  
  
[[Category:Modulation Methods: Exercises|^5.6 Realisierung von OFDM-Systemen^]]
+
[[Category:Modulation Methods: Exercises|^5.6 Realization of OFDM Systems^]]

Latest revision as of 09:35, 12 January 2022

Three sets  $\rm A$,  $\rm B$  and  $\rm C$ 
for the spectral coefficients

In the  Discrete Fourier Transform  $\rm (DFT)$,  the discrete spectral coefficients  $D(μ)$  with control variable  $μ = 0$, ... , $N – 1$  are calculated from the time sample values  $d(ν)$  with  $ν = 0$, ... , $N – 1$ as follows:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

Here,  $w$  abbreviates the complex rotation factor:

$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$

Correspondingly,  for the  Inverse discrete Fourier transform  $\rm (IDFT)$  practically as an  "inverse function"  of the DFT applies:

$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.08cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  • In this exercise,  the time coefficients  $d(ν)$  are to be determined for different complex-valued example sequences  $D(μ)$ – which are labeled  $\rm A$,  $\rm B$  and  $\rm C$  in the table. 
  • Thus,  $N = 8$ is always valid.




Notes:


Questions

1

What are the time coefficients  $d(ν)$  for the spectral coefficients  $D(μ)$  according to  $\rm A$?
Enter the first coefficient  $d(1)$  with real and imaginary parts.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $

2

What are the time coefficients  $d(ν)$  for the spectral coefficients  $D(μ)$  according to  $\rm B$?
Enter the first coefficient  $d(1)$  with real and imaginary parts.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $

3

What are the time coefficients  $d(ν)$  for the spectral coefficients  $D(μ)$  according to  $\rm C$?
Enter the first coefficient  $d(1)$  with real and imaginary parts.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $


Solution

(1)  Because of  $D(μ) = 0$  for  $μ ≠ 0$  all time coefficients  $d(ν) = D(0)= 1 - {\rm j}$.  Thus:

$${\rm Re}[d(1)] \hspace{0.15cm}\underline {=+ 1}, \hspace{0.3cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= -1}.$$


(2)  Here,  all spectral coefficients are zero except  $D_1 = 1 - {\rm j}$  and  $D_7 = 1 + {\rm j}$.  It follows for all time coefficients  $(0 ≤ ν ≤ 7)$:

$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {7\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}.$$
  • However,  due to periodicity,  also holds:
$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ +{\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}= \left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} + {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right]+ {\rm{j}} \cdot\left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} - {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right].$$
  • Using Euler's theorem,  this expression can be transformed as follows:
$$d(\nu) = 2 \cdot \cos \left( {\pi}/{4}\cdot \nu \right)+ 2 \cdot \sin \left( {\pi}/{4}\cdot \nu \right).$$
  • This time function  $d(ν)$  is purely real and characterizes a harmonic oscillation with amplitude  $ 2 \cdot \sqrt{2}$  and phase  $φ = 45^\circ$.
  • The time coefficient with index  $ν = 1$  indicates the maximum:
$$ {\rm Re}[d(1)] = 2 \cdot \frac {\sqrt{2}}{2}+ 2 \cdot \frac {\sqrt{2}}{2} = 2 \cdot {\sqrt{2}} \hspace{0.15cm}\underline {\approx 2.828}, \hspace{0.5cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= 0}.$$


(3)  According to the general equation:

$$d(1) = \sum\limits_{\mu = 0}^{7} D(\mu)\cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\mu} = \left[ D(1) + D(7) \right]\cdot \cos \left( {\pi}/{4} \right) + \left[ D(3) + D(5) \right]\cdot \cos \left( {3\pi}/{4} \right)+ {\rm j} \cdot \left[ D(2) - D(6) \right]\cdot \sin \left( {\pi}/{2} \right) + D(4) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}}.$$
  • The first three terms give pure real results:
$${\rm Re}[d(1)] = (1+1) \cdot \frac{1}{\sqrt{2}}-(3+3) \cdot \frac{1}{\sqrt{2}}+ {\rm j} \cdot4{\rm j} \cdot 1 = -\frac{4}{\sqrt{2}}-4\hspace{0.15cm}\underline { \approx -6.829}.$$
  • For the imaginary part, we obtain:
$${\rm Im}[d(1)] = {\rm Im}\left[4 \cdot{\rm j} \cdot (-1) \right] \hspace{0.15cm}\underline {= -4}.$$