Difference between revisions of "Aufgaben:Exercise 4.4: Two-dimensional Gaussian PDF"

From LNTwww
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Gaußsche Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables
 
}}
 
}}
  
[[File:P_ID261__Sto_A_4_4_neu.png|right|frame|Tabelle: Gaußsche Fehlerfunktionen]]
+
[[File:P_ID261__Sto_A_4_4_neu.png|right|frame|Table:  Gaussian error functions]]
Wir betrachten zweidimensionale Zufallsgrößen, wobei beide Komponenten stets als mittelwertfrei vorausgesetzt werden.  
+
We consider two-dimensional random variables,  where both components are always assumed to be mean-free.  
*Die 2D-WDF der Zufallsgröße  $(u, v)$  lautet:
+
*The  »two-dimensional probability density function«  of the random variable  $(u, v)$  is:
 
:$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
 
:$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  
*Von der ebenfalls Gaußschen 2D-Zufallsgröße  $(x, y)$  sind die folgenden Parameter bekannt:
+
*For another Gaussian two-dimensional random variable  $(x, y)$  the following parameters are known:
 
:$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
 
:$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
 +
*In the adjacent table can be found
 +
#the values of the  »Gaussian cumulative distribution function«  ${\rm \phi}(x)$  and
 +
#the  »complementary function«  ${\rm Q}(x) = 1- {\rm \phi}(x)$.
  
Die Werte des Gaußschen Fehlerintegrals  ${\rm \phi}(x)$  sowie der Komplementärfunktion  ${\rm Q}(x) = 1- {\rm \phi}(x)$  können Sie der nebenstehenden Tabelle entnehmen.
 
  
  
  
  
 +
Hints:
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|»Two-dimensional Gaussian Random Variables«]].
  
 
+
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|»Gaussian distributed random variables«]].  
 
 
 
 
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Zweidimensionale_Gaußsche_Zufallsgrößen|Zweidimensionale Gaußsche Zufallsgrößen]].
 
*Bezug genommen wird auch auf das Kapitel  [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|Gaußverteilte Zufallsgrößen]]
 
 
 
*Weitere Informationen zu dieser Thematik liefert das Lernvideo  [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|Gaußsche 2D-Zufallsgrößen]]:
 
::Teil 1:   Gaußsche Zufallsgrößen ohne statistische Bindungen, 
 
::Teil 2:   Gaußsche Zufallsgrößen mit statistischen Bindungen.  
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Aussagen gelten hinsichtlich der 2D-Zufallsgr&ouml;&szlig;e&nbsp; $(u, v)$&nbsp;?
+
{Which of the statements are true with respect to the two-dimensional random variable&nbsp; $(u, v)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die Zufallsgr&ouml;&szlig;en&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; sind unkorreliert.
+
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.
+ Die Zufallsgr&ouml;&szlig;en&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; sind statistisch unabh&auml;ngig.
+
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are statistically independent.
  
  
{Berechnen Sie die beiden Streuungen&nbsp; $\sigma_u$&nbsp; und&nbsp; $\sigma_v$.&nbsp; Geben Sie zur Kontrolle den Quotienten der beiden Streuungen ein.
+
{Calculate the two standard deviations&nbsp; $\sigma_u$&nbsp; and&nbsp; $\sigma_v$.&nbsp; Enter the quotient of the two standard deviations as a check.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_u/\sigma_v \ = \ $ { 0.5 3% }
 
$\sigma_u/\sigma_v \ = \ $ { 0.5 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass&nbsp; $u$&nbsp; kleiner als&nbsp; $1$&nbsp; ist.
+
{Calculate the probability that&nbsp; $u$&nbsp; is less than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% }
+
${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e&nbsp; $u$&nbsp; kleiner als&nbsp; $1$&nbsp; und gleichzeitig die Zufallsgr&ouml;&szlig;e&nbsp; $v$&nbsp; gr&ouml;&szlig;er als&nbsp; $1$&nbsp; ist.
+
{Calculate the probability that the random variable&nbsp; $u$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $v$&nbsp; is greater than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% }
+
${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% }
  
  
{Welche der Aussagen sind f&uuml;r die 2D&ndash;Zufallsgr&ouml;&szlig;e&nbsp; $(x, y)$&nbsp; zutreffend?
+
{Which of the statements are true for the two-dimensional random variable&nbsp; $(x, y)$?
 
|type="[]"}
 
|type="[]"}
+ Die 2D-WDF $f_{xy}(x, y)$&nbsp; ist au&szlig;erhalb der Geraden&nbsp; $y = 2x$&nbsp; stets Null.
+
+ The joint probability density function&nbsp; $f_{xy}(x, y)$&nbsp; is always zero outside the straight line&nbsp; $y = 2x$.
- F&uuml;r alle Wertepaare auf der Geraden&nbsp; $y = 2x$&nbsp; gilt $f_{xy}(x, y)= 0.5$.
+
- For all pairs of values on the straight line&nbsp; $y = 2x$&nbsp; holds: &nbsp;$f_{xy}(x, y)= 0.5$.
+ Bez&uuml;glich der Rand-WDF gilt $f_{x}(x) = f_{u}(u)$&nbsp; sowie $f_{y}(y) = f_{v}(v)$.
+
+ With respect to the edge PDFs:&nbsp; $f_{x}(x) = f_{u}(u)$&nbsp; and $f_{y}(y) = f_{v}(v)$ holds.
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass&nbsp; $x$&nbsp; kleiner als&nbsp; $1$&nbsp; ist.
+
{Calculate the probability that&nbsp; $x$&nbsp; is less than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% }
+
${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% }
  
  
{Berechnen Sie nun die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e&nbsp; $x$&nbsp; kleiner als&nbsp; $1$&nbsp; und gleichzeitig die Zufallsgr&ouml;&szlig;e&nbsp; $y$&nbsp; gr&ouml;&szlig;er als&nbsp; $1$&nbsp; ist.
+
{Now calculate the probability that the random variable&nbsp; $x$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $y$&nbsp; is greater than&nbsp; $1$.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% }
+
${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% }
  
  
Line 75: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Beide Aussagen treffen zu</u>:  
+
'''(1)'''&nbsp; <u>Both statements are true</u>:  
*Vergleicht man die gegebene 2D-WDF mit der allgemeing&uuml;ltigen 2D-WDF
+
*Comparing the given 2D&ndash;PDF with the general 2D&ndash;PDF
 
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
 
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
  
:so erkennt man, dass im Exponenten kein Term mit&nbsp; $u \cdot v$&nbsp; auftritt, was nur bei&nbsp; $\rho_{uv} = 0$&nbsp; m&ouml;glich ist.  
+
:so it can be seen that no term with&nbsp; $u \cdot v$&nbsp; occurs in the exponent,&nbsp; which is only possible with&nbsp; $\rho_{uv} = 0$.  
*Dies bedeutet aber, dass&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; unkorreliert sind.  
+
*But this means that&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.  
*Bei Gau&szlig;schen Zufallsgr&ouml;&szlig;en folgt aus der Unkorreliertheit aber auch stets die statistische Unabh&auml;ngigkeit.
+
*For Gaussian random variables,&nbsp; however,&nbsp; statistical independence always follows from uncorrelatedness.
  
  
  
'''(2)'''&nbsp; Bei statistischer Unabh&auml;ngigkeit gilt:
+
'''(2)'''&nbsp; With statistical independence holds:
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v), \hspace{0.5cm}
+
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$
f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , \hspace{0.5cm} \it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
+
:$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$
 +
:$$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  
*Durch Koeffizientenvergleich erh&auml;lt man&nbsp; $\sigma_u = 0.5$&nbsp; und&nbsp; $\sigma_v = 1$.  
+
*By comparing coefficients,&nbsp; we get&nbsp; $\sigma_u = 0.5$&nbsp; and&nbsp; $\sigma_v = 1$.  
*Der Quotient ist somit&nbsp; $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
+
*The quotient is thus&nbsp; $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
  
  
  
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|Wahrscheinlichkeit: &nbsp; $\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
+
'''(3)'''&nbsp; Because&nbsp; $u$&nbsp; is a continuous random variable:
'''(3)'''&nbsp; Da&nbsp; $u$&nbsp; eine kontinuierliche Zufallsgr&ouml;&szlig;e ist, gilt:
 
 
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
 
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  
*Mit dem  Mittelwert&nbsp; $m_u = 0$&nbsp; und der  Streuung&nbsp; $\sigma_u = 0.5$&nbsp; erhält man:
+
*With the mean&nbsp; $m_u = 0$&nbsp; and the standard deviation&nbsp; $\sigma_u = 0.5$&nbsp; we get:
 
:$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
 
:$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
  
  
 
+
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
'''(4)'''&nbsp; Aufgrund der statistischen Unabh&auml;ngigkeit zwischen&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; gilt:
+
'''(4)'''&nbsp; Due to the statistical independence between&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; holds:
 
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
 
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  
*Die Wahrscheinlichkeit&nbsp; ${\rm Pr}(u < 1) =0.9772$&nbsp; wurde bereits  berechnet.  
+
*The probability&nbsp; ${\rm Pr}(u < 1) =0.9772$&nbsp; has already been calculated.  
*F&uuml;r die zweite Wahrscheinlichkeit&nbsp; ${\rm Pr}(v > 1)$&nbsp; gilt aus Symmetriegr&uuml;nden:
+
*For the second probability&nbsp; ${\rm Pr}(v > 1)$&nbsp; holds for reasons of symmetry:
 
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
 
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
 
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
 
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
  
Die Skizze verdeutlicht die vorgegebene Konstellation:  
+
The sketch on the right illustrates the given constellation:  
*Die H&ouml;henlinien der WDF (blau) sind wegen&nbsp; $\sigma_v > \sigma_u$&nbsp; in vertikaler Richtung gestreckte Ellipsen.  
+
*The PDF contour lines&nbsp; (blue)&nbsp; are stretched ellipses due to&nbsp; $\sigma_v > \sigma_u$&nbsp; in vertical direction.  
*Rot schraffiert eingezeichnet ist das Gebiet, dessen Wahrscheinlichkeit in dieser Teilaufgabe berechnet werden sollte.
+
*Drawn in red&nbsp; (shading)&nbsp; is the area whose probability should be calculated in this subtask.
  
  
  
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|2D-Diracwand auf der Korrelationsgeraden]]
+
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|"Dirac wall"&nbsp; on the correlation line]]
'''(5)'''&nbsp; Richtig sind <u>der erste und der dritte Lösungsvorschlag</u>:
+
'''(5)'''&nbsp; Correct are&nbsp; <u>the first and the third suggested solutions</u>:
*Wegen&nbsp; $\rho_{xy} = 1$&nbsp; besteht ein deterministischer Zusammenhang zwischen&nbsp; $x$&nbsp; und&nbsp; $y$  
+
*Because&nbsp; $\rho_{xy} = 1$&nbsp; there is a deterministic correlation between&nbsp; $x$&nbsp; and&nbsp; $y$  
:&#8658; &nbsp; Alle Werte liegen auf der Geraden&nbsp; $y =K(x) \cdot x$.  
+
:&#8658; &nbsp; All values lie on the straight line&nbsp; $y =K \cdot x$.  
*Aufgrund der Streuungen&nbsp; $\sigma_x = 0.5$&nbsp; und&nbsp; $\sigma_y = 1$&nbsp; gilt&nbsp; $K = 2$.
+
*Because of the standard deviations&nbsp; $\sigma_x = 0.5$&nbsp; and&nbsp; $\sigma_y = 1$&nbsp; it holds&nbsp; $K = 2$.
*Auf dieser Geraden&nbsp; $y = 2x$&nbsp; sind alle WDF-Werte unendlich gro&szlig;.
+
*On this straight line&nbsp; $y = 2x$ &nbsp; &rArr; &nbsp; all PDF values are infinitely large.  
*Das bedeutet: &nbsp; Die 2D-WDF ist hier eine "Diracwand".
+
*This means: &nbsp; The joint PDF is here a&nbsp; "Dirac wall".
*Wie aus der Skizze hervorgeht, sind die WDF&ndash;Werte auf der Geraden&nbsp; $y = 2x$&nbsp; gau&szlig;verteilt.
+
*As you can see from the sketch,&nbsp; the PDF values are Gaussian distributed on the straight line $y = 2x$.
*Die Gerade&nbsp; $y = 2x$&nbsp; stellt gleichzeitig die Korrelationsgerade dar.
+
*The two marginal probability densities are also Gaussian functions,&nbsp; each with zero mean.  
*Auch die beiden Randwahrscheinlichkeitsdichten sind Gau&szlig;funktionen, jeweils mit Mittelwert Null.  
+
*Because of&nbsp; $\sigma_x = \sigma_u$&nbsp; and&nbsp; $\sigma_y = \sigma_v$&nbsp; also holds:
*Wegen&nbsp; $\sigma_x = \sigma_u$&nbsp; und&nbsp; $\sigma_y = \sigma_v$&nbsp; gilt auch:
+
:$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
:$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
 
  
  
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Wahrscheinlichkeitsberechnung für die Diracwand]]
+
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Probability calculation for the Dirac wall]]
'''(6)'''&nbsp; Da die WDF der Zufallsgr&ouml;&szlig;e&nbsp; $x$&nbsp; identisch mit der WDF&nbsp; $f_u(u)$ ist, ergibt sich auch genau die gleiche Wahrscheinlichkeit wie in der Teilaufgabe&nbsp; '''(3)'''&nbsp; berechnet:
+
'''(6)'''&nbsp; Since the PDF of the random variable&nbsp; $x$&nbsp; is identical to the PDF&nbsp; $f_u(u)$,&nbsp; it also results in exactly the same probability as calculated in the subtask&nbsp; '''(3)''':
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
  
  
  
'''(7)'''&nbsp; Das Zufallsereignis&nbsp; $y > 1$&nbsp; ist identisch mit dem Ereignis&nbsp; $x > 0.5$.&nbsp;  
+
'''(7)'''&nbsp; The random event&nbsp; $y > 1$&nbsp; is identical to the event&nbsp; $x > 0.5$.&nbsp;  
*Damit ist die gesuchte Wahrscheinlichkeit gleich
+
*Thus, the wanted probability is equal to:
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
+
:$${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
  
*Mit der Streuung&nbsp; $\sigma_x = 0.5$&nbsp; folgt weiter:
+
*With the standard deviation&nbsp; $\sigma_x = 0.5$&nbsp; it follows further:
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Theory of Stochastic Signals: Exercises|^4.2 Gaußsche 2D-Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.2 Gaussian 2D Random Variables^]]

Latest revision as of 17:37, 9 January 2024

Table:  Gaussian error functions

We consider two-dimensional random variables,  where both components are always assumed to be mean-free.

  • The  »two-dimensional probability density function«  of the random variable  $(u, v)$  is:
$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  • For another Gaussian two-dimensional random variable  $(x, y)$  the following parameters are known:
$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$
  • In the adjacent table can be found
  1. the values of the  »Gaussian cumulative distribution function«  ${\rm \phi}(x)$  and
  2. the  »complementary function«  ${\rm Q}(x) = 1- {\rm \phi}(x)$.



Hints:



Questions

1

Which of the statements are true with respect to the two-dimensional random variable  $(u, v)$ ?

The random variables  $u$  and  $v$  are uncorrelated.
The random variables  $u$  and  $v$  are statistically independent.

2

Calculate the two standard deviations  $\sigma_u$  and  $\sigma_v$.  Enter the quotient of the two standard deviations as a check.

$\sigma_u/\sigma_v \ = \ $

3

Calculate the probability that  $u$  is less than  $1$.

${\rm Pr}(u < 1)\ = \ $

4

Calculate the probability that the random variable  $u$  is less than  $1$  and at the same time the random variable  $v$  is greater than  $1$.

${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $

5

Which of the statements are true for the two-dimensional random variable  $(x, y)$?

The joint probability density function  $f_{xy}(x, y)$  is always zero outside the straight line  $y = 2x$.
For all pairs of values on the straight line  $y = 2x$  holds:  $f_{xy}(x, y)= 0.5$.
With respect to the edge PDFs:  $f_{x}(x) = f_{u}(u)$  and $f_{y}(y) = f_{v}(v)$ holds.

6

Calculate the probability that  $x$  is less than  $1$.

${\rm Pr}(x < 1)\ = \ $

7

Now calculate the probability that the random variable  $x$  is less than  $1$  and at the same time the random variable  $y$  is greater than  $1$.

${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $


Solution

(1)  Both statements are true:

  • Comparing the given 2D–PDF with the general 2D–PDF
$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
so it can be seen that no term with  $u \cdot v$  occurs in the exponent,  which is only possible with  $\rho_{uv} = 0$.
  • But this means that  $u$  and  $v$  are uncorrelated.
  • For Gaussian random variables,  however,  statistical independence always follows from uncorrelatedness.


(2)  With statistical independence holds:

$$f_{uv}(u, v) = f_u(u)\cdot f_v(v) $$
$$f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , $$
$$\it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  • By comparing coefficients,  we get  $\sigma_u = 0.5$  and  $\sigma_v = 1$.
  • The quotient is thus  $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.


(3)  Because  $u$  is a continuous random variable:

$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  • With the mean  $m_u = 0$  and the standard deviation  $\sigma_u = 0.5$  we get:
$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$


$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$

(4)  Due to the statistical independence between  $u$  and  $v$  holds:

$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  • The probability  ${\rm Pr}(u < 1) =0.9772$  has already been calculated.
  • For the second probability  ${\rm Pr}(v > 1)$  holds for reasons of symmetry:
$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$

The sketch on the right illustrates the given constellation:

  • The PDF contour lines  (blue)  are stretched ellipses due to  $\sigma_v > \sigma_u$  in vertical direction.
  • Drawn in red  (shading)  is the area whose probability should be calculated in this subtask.


"Dirac wall"  on the correlation line

(5)  Correct are  the first and the third suggested solutions:

  • Because  $\rho_{xy} = 1$  there is a deterministic correlation between  $x$  and  $y$
⇒   All values lie on the straight line  $y =K \cdot x$.
  • Because of the standard deviations  $\sigma_x = 0.5$  and  $\sigma_y = 1$  it holds  $K = 2$.
  • On this straight line  $y = 2x$   ⇒   all PDF values are infinitely large.
  • This means:   The joint PDF is here a  "Dirac wall".
  • As you can see from the sketch,  the PDF values are Gaussian distributed on the straight line $y = 2x$.
  • The two marginal probability densities are also Gaussian functions,  each with zero mean.
  • Because of  $\sigma_x = \sigma_u$  and  $\sigma_y = \sigma_v$  also holds:
$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$


Probability calculation for the Dirac wall

(6)  Since the PDF of the random variable  $x$  is identical to the PDF  $f_u(u)$,  it also results in exactly the same probability as calculated in the subtask  (3):

$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$


(7)  The random event  $y > 1$  is identical to the event  $x > 0.5$. 

  • Thus, the wanted probability is equal to:
$${\rm Pr}\big[(x < 1) ∩ (y > 1)\big] = \rm Pr \big[ (\it x < \rm 1)\cap (\it x > \rm 0.5) \big] = \it F_x \rm( 1) - \it F_x\rm (0.5). $$
  • With the standard deviation  $\sigma_x = 0.5$  it follows further:
$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$