Difference between revisions of "Digital Signal Transmission/Consideration of Channel Distortion and Equalization"

From LNTwww
 
(11 intermediate revisions by 2 users not shown)
Line 8: Line 8:
 
== Ideal channel equalizer==
 
== Ideal channel equalizer==
 
<br>
 
<br>
For a transmission system whose channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; causes severe distortion, we assume the following block diagram (upper graph) and equivalent circuit (lower graph).<br>
+
For a transmission system whose channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; causes severe distortion,&nbsp; we assume the following block diagram&nbsp; (upper graph)&nbsp; and&nbsp; equivalent circuit&nbsp; (lower graph).&nbsp; To these representations the following is to be noted:
  
[[File:P ID1405 Dig T 3 3 S1 version1.png|center|frame|Block diagram and equivalent circuit diagram for consideration of a channel frequency response|class=fit]]
+
[[File:EN_Dig_T_3_3_S1_neu.png|right|frame|Block diagram & equivalent circuit diagram for consideration of a channel frequency response|class=fit]]
  
To these representations the following is to be noted:
+
*The receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is &ndash; at least mentally &ndash; composed of an &nbsp;'''ideal equalizer'''&nbsp; $1/H_{\rm K}(f)$&nbsp; and a low-pass filter &nbsp;$H_{\rm G}(f)$.&nbsp; For the latter we use in this chapter exemplarily a&nbsp; '''Gaussian low-pass'''&nbsp; with the cutoff frequency &nbsp;$f_{\rm G}$.<br>
*The receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is &ndash; at least mentally &ndash; composed of an &nbsp;'''ideal equalizer'''&nbsp; $1/H_{\rm K}(f)$&nbsp; and a low-pass filter &nbsp;$H_{\rm G}(f)$.&nbsp; For the latter we use in this chapter exemplarily a Gaussian low-pass with the cutoff frequency &nbsp;$f_{\rm G}$.<br>
 
  
*If we now move the ideal equalizer &ndash; again purely mentally &ndash; to the left side of the noise addition point, nothing changes with respect to the S/N ratio at the sink and with respect to the error probability compared to the block diagram drawn above.<br>
+
*If we now move the ideal equalizer &ndash; again purely mentally &ndash; to the left side of the noise addition point,&nbsp; nothing changes with respect to the S/N ratio before the decision device and with respect to the error probability compared to the block diagram drawn above.<br>
  
*From the equivalent circuit below it can be seen that the channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; does not change anything with respect to the signal component of the detection signal &nbsp;$d_{\rm S}(t)$&nbsp; &ndash; originating from the transmitted signal &nbsp;$s(t)$&nbsp; &ndash; if it is fully compensated with &nbsp;$1/H_{\rm K}(f)$.&nbsp; Thus, the signal component has exactly the same shape as calculated in the chapter &nbsp;[[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen|Error Probability with Intersymbol Interference]].&nbsp; <br>
+
*From the equivalent diagram below it can be seen that the channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; does not change anything with respect to the signal component &nbsp;$d_{\rm S}(t)$&nbsp; of the detection signal   if it is fully compensated with &nbsp;$1/H_{\rm K}(f)$.&nbsp;  
  
*The degradation due to the channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; is rather shown by a significant increase of the detection noise power, i.e. the variance of the signal &nbsp;$d_{\rm N}(t)$&nbsp; &ndash; originating from the noise signal &nbsp;$n(t)$:
+
*Thus,&nbsp; the signal component &nbsp;$d_{\rm S}(t)$&nbsp; &ndash; originating from the transmitted signal &nbsp;$s(t)$&nbsp; &ndash; has exactly the same shape as calculated in the chapter &nbsp;[[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen|"Error Probability with Intersymbol Interference"]].&nbsp; <br>
 +
 
 +
*The degradation due to the frequency response &nbsp;$H_{\rm K}(f)$&nbsp; is rather shown by a significant increase of the detection noise power, i.e. the variance of the noise component &nbsp;$d_{\rm N}(t)$&nbsp; &ndash; originating from the noise signal &nbsp;$n(t)$&nbsp; at the receiver input:
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0}{2} \cdot
 
|H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0}{2} \cdot
Line 25: Line 26:
 
|H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
 
|H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
  
*The prerequisite for a finite noise power &nbsp;$\sigma_d^2$&nbsp; is that the low-pass &nbsp;$H_{\rm G}(f)$&nbsp; attenuates the noise &nbsp;$n(t)$&nbsp; at (very) high frequencies more than it is raised by the ideal equalizer &nbsp;$1/H_{\rm K}(f)$.&nbsp; <br><br>
+
*The prerequisite for a finite noise power &nbsp;$\sigma_d^2$&nbsp; is that the Gaussian low-pass &nbsp;$H_{\rm G}(f)$&nbsp; attenuates the noise &nbsp;$n(t)$&nbsp; at&nbsp; (very)&nbsp; high frequencies more than it is raised by the ideal equalizer &nbsp;$1/H_{\rm K}(f)$.&nbsp; <br><br>
  
<i>Note</i>: &nbsp; The channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; can be equalized according to magnitude and phase, but only in a limited frequency range given by &nbsp;$H_{\rm G}(f)$.&nbsp; However, a complete phase equalization is only possible at the expense of a (frequency-independent) running time, which will not be considered further in the following.
+
<u>Note</u>: &nbsp; The channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; must be equalized for magnitude and phase,&nbsp; but only in a limited frequency range specified by &nbsp;$H_{\rm G}(f)$&nbsp;.&nbsp; However,&nbsp; a complete phase equalization is only possible at the expense of a&nbsp; (frequency-independent)&nbsp; delay time,&nbsp; which will not be considered further in the following.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp; We consider again a binary system with NRZ rectangular pulses and Gaussian receiver filter &nbsp;$H_{\rm E}(f) = H_{\rm G}(f)$&nbsp; with (normalized) cutoff frequency &nbsp;$f_\text{G, opt} \cdot T = 0.4$.  
+
$\text{Example 1:}$&nbsp; We consider again a binary system with NRZ rectangular pulses and a Gaussian receiver filter &nbsp;$H_{\rm E}(f) = H_{\rm G}(f)$&nbsp; with&nbsp; (normalized)&nbsp; cutoff frequency &nbsp;$f_\text{G, opt} \cdot T = 0.4$.&nbsp; Due to this unfavorable receiver filter&nbsp; $H_{\rm E}(f)$&nbsp; intersymbol interference&nbsp; $\rm (ISI)$ occurs in all variants presented here.   
 +
 
 +
*The middle graph shows the eye diagram of the signal component &nbsp;$d_{\rm S}(t)$&nbsp;of the detection signal  for this case &ndash; i.e. without taking the noise into account.
  
*The middle graph shows the eye diagram of the signal component of the detection signal &nbsp;$d_{\rm S}(t)$&nbsp; for this case &ndash; i.e. without taking the noise into account.
+
*This is identical with the eye diagram shown in the section &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|"Definition and statements of the eye diagram"]]&nbsp; in&nbsp; $\text{Example 3}$&nbsp; of the last chapter&nbsp; (right diagram).<br>
*This is identical with the eye diagram shown in the chapter &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram| Definition and statements of the eye diagram]]&nbsp; in $\text{example 3}$ (right diagram).<br>
 
  
[[File:P ID1397 Dig T 3 3 S1b version1.png|right|frame|Binary eye diagrams with intersymbol interferences|class=fit]]
+
[[File:EN_Dig_T_3_3_S1b_neu.png|right|frame|Binary eye diagrams&nbsp; (noisy or noiseless)&nbsp; with intersymbol interferences|class=fit]]
 
<br>
 
<br>
The left eye diagram is obtained for ideal channel, i.e., for&nbsp; $H_{\rm K}(f) = 1$ &nbsp; &rArr; &nbsp; $1/H_{\rm K}(f) = 1$. It takes into account the AWGN noise, but here it was assumed to be very small, &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 30 \ \rm dB$.&nbsp; For this configuration, it was determined by simulation:
+
&rArr; &nbsp; The left&nbsp; (noisy)&nbsp; diagram is obtained for the ideal channel, i.e., for&nbsp;  
 +
:$$H_{\rm K}(f) = 1 \ \ &rArr; \ \ 1/H_{\rm K}(f) = 1.$$
 +
It takes into account the AWGN noise,&nbsp; but here it was assumed to be very small, &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 30 \ \rm dB$.&nbsp; For this configuration,&nbsp; the&nbsp; worst-case&nbsp; SNR it was determined by simulation:
 
:$$10 \cdot {\rm
 
:$$10 \cdot {\rm
 
lg}\hspace{0.1cm}\rho_{\rm U}\approx 26.8\,{\rm dB}
 
lg}\hspace{0.1cm}\rho_{\rm U}\approx 26.8\,{\rm dB}
Line 43: Line 47:
 
10^{-40}\hspace{0.05cm}.$$
 
10^{-40}\hspace{0.05cm}.$$
  
In contrast, the right diagram applies to a &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable| coaxial cable]], where the characteristic cable attenuation &nbsp;$a_\star = 40 \ \rm dB$.&nbsp; This results in significantly worse system sizes for the same &nbsp;$E_{\rm B}/N_0$:&nbsp;
+
&rArr; &nbsp;  The right&nbsp; (also noisy)&nbsp; diagram applies to a &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable|coaxial cable]],&nbsp; where the characteristic cable attenuation &nbsp;$a_\star = 40 \ \rm dB$.&nbsp; This results in significantly worse system performance for the same &nbsp;$E_{\rm B}/N_0$:&nbsp;
 
:$$10 \cdot {\rm
 
:$$10 \cdot {\rm
 
lg}\hspace{0.1cm}\rho_{\rm U}\approx -4.6\,{\rm dB}
 
lg}\hspace{0.1cm}\rho_{\rm U}\approx -4.6\,{\rm dB}
Line 49: Line 53:
 
0.28\hspace{0.05cm}.$$
 
0.28\hspace{0.05cm}.$$
  
 +
This result can be interpreted as follows:
 +
*Assuming an ideal channel equalizer &nbsp;$1/H_{\rm K}(f)$,&nbsp; the same&nbsp; "eye diagram without noise"&nbsp; (left diagram)&nbsp; results for the distorting channel as for the ideal, distortion-free channel &nbsp;$H_{\rm K}(f) = 1$&nbsp; (middle graph).<br>
  
This result can be interpreted as follows:
+
*Channel equalization &nbsp;$1/H_{\rm K}(f)$&nbsp; extremely amplifies the noise component&nbsp; $d_{\rm N}(t)$&nbsp; of the detection signal.&nbsp; In the right-hand example,&nbsp; equally strong equalization is required over a wide frequency range because of the strong distortion.
*Assuming an ideal channel equalizer &nbsp;$1/H_{\rm K}(f)$,&nbsp; the same "eye diagram without noise" (left graph) results for the distorting channel as for the ideal channel &nbsp;$H_{\rm K}(f) = 1$&nbsp; (middle graph).<br>
 
  
*Channel equalization &nbsp;$1/H_{\rm K}(f)$&nbsp; extremely amplifies the noise component. In the right-hand example, equally strong equalization is required over a wide frequency range because of the strong distortion.
+
*The noise power &nbsp;$\sigma_d^2$&nbsp; here is larger by a factor of &nbsp;$1300$&nbsp; than in the left constellation&nbsp; $($no distortion &nbsp; &#8658; &nbsp; no equalization$)$.&nbsp; Thus,&nbsp; the error probability results in &nbsp;$p_{\rm S}\approx p_{\rm U}\approx 50 \%$.<br>
*The noise power &nbsp;$\sigma_d^2$&nbsp; here is larger by a factor of &nbsp;$1300$&nbsp; than in the left constellation (no distortion &nbsp; &#8658; &nbsp; no equalization). Thus, the error probability results in &nbsp;$p_{\rm S}\approx p_{\rm U}\approx 50 \%$.<br>
 
  
*An acceptable error probability results only with smaller noise power density &nbsp;$N_0$. For example, with &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 50 \ \rm dB$&nbsp; $($instead of $30 \ \rm dB)$&nbsp; the following result is obtained:
+
*An acceptable worst-case error probability results only with smaller noise power density &nbsp;$N_0$.&nbsp; For example,&nbsp; with &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 50 \ \rm dB$&nbsp; $($instead of $30 \ \rm dB)$&nbsp; the following result is obtained:
 
:$$10 \cdot {\rm
 
:$$10 \cdot {\rm
 
lg}\hspace{0.1cm}\rho_{\rm U} = -4.6 +20 \approx 15.4\,{\rm dB}
 
lg}\hspace{0.1cm}\rho_{\rm U} = -4.6 +20 \approx 15.4\,{\rm dB}
Line 64: Line 68:
 
== Increase of the noise power by linear equalization==
 
== Increase of the noise power by linear equalization==
 
<br>
 
<br>
The eye diagrams on the last section impressively document the increase of the noise power &nbsp;$\sigma_d^2$&nbsp; with unchanged vertical eye opening, if one compensates the channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; on the receiving side by its inverse. This result shall now be interpreted in terms of the noise power density &nbsp;${\it \Phi}_{d{\rm N}}(f)$&nbsp; after the receiver filter (before the decision), with the following settings:
+
The eye diagrams on the last section impressively document the increase of the noise power &nbsp;$\sigma_d^2$&nbsp; with unchanged vertical eye opening,&nbsp; if one compensates the channel frequency response &nbsp;$H_{\rm K}(f)$&nbsp; on the receiving side by its inverse.&nbsp; This result shall now be interpreted in terms of the noise power density &nbsp;${\it \Phi}_{d{\rm N}}(f)$&nbsp; after the receiver filter&nbsp; (before the decision),&nbsp; with the following settings:
*Let the channel be a &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable| coaxial cable]]&nbsp; with the magnitude frequency response
+
*Let the channel be a &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable|coaxial cable]]&nbsp; with the magnitude frequency response
 
:$$|H_{\rm K}(f)| = {\rm exp}\left [- a_{\star}\cdot \sqrt{2  f
 
:$$|H_{\rm K}(f)| = {\rm exp}\left [- a_{\star}\cdot \sqrt{2  f
 
  T}\hspace{0.05cm} \right ]\hspace{0.2cm}{\rm with}\hspace{0.2cm} a_{\star}
 
  T}\hspace{0.05cm} \right ]\hspace{0.2cm}{\rm with}\hspace{0.2cm} a_{\star}
= 1.7\,\,{\rm Np}\hspace{0.2cm} ({\rm corresponding to} \hspace{0.2cm}
+
= 1.7\,\,{\rm Np}\hspace{0.2cm} ({\rm corresponding \hspace{0.2cm} to} \hspace{0.2cm}
 
15\,\,{\rm dB}) \hspace{0.05cm}.$$
 
15\,\,{\rm dB}) \hspace{0.05cm}.$$
 
+
[[File:P ID1399 Dig T 3 3 S2 version1.png|right|frame|Noise power-spectral density before the decision due to distorting channel.<br>Note that here,&nbsp; for reasons of presentation,&nbsp; the characteristic cable attenuation of &nbsp;$a_\star = 15 \ \rm dB$&nbsp; &nbsp;$($corresponding to &nbsp;$1.7 \ \rm Np)$&nbsp; is chosen to be significantly smaller than in the right eye diagram in &nbsp;[[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization#Ideal_channel_equalizer|Example 1]]&nbsp; in the last section &nbsp;$($valid for &nbsp;$a_\star = 40 \ \rm dB)$.|class=fit]]
*The &nbsp;[[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization#Ideal_channel_equalizer|ideal channel equalizer]]&nbsp; $1/H_{\rm K}(f)$&nbsp; compensates the channel frequency response completely. No statement is made here about the realization of the attenuation and phase equalization.<br>
+
*The &nbsp;[[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization#Ideal_channel_equalizer|ideal channel equalizer]]&nbsp; $1/H_{\rm K}(f)$&nbsp; compensates the channel frequency response completely.&nbsp; No statement is made here about the realization of the attenuation and phase equalization.<br>
  
 
*For noise power limitation a &nbsp;[[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Gaussian_low-pass_filter|Gaussian low-pass filter]]&nbsp; is used:
 
*For noise power limitation a &nbsp;[[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Gaussian_low-pass_filter|Gaussian low-pass filter]]&nbsp; is used:
:$$|H_{\rm G}(f)| = {\rm exp}\left [- \pi \cdot \left (\frac{f }{2 f_{\rm G}}\right )^2  \right ]\hspace{0.2cm}{\rm
+
:$$|H_{\rm G}(f)| = {\rm exp}\left [- \pi \cdot \left (\frac{f }{2 f_{\rm G}}\right )^2  \right ] \hspace{0.05cm}.$$
with}\hspace{0.2cm} f_{\rm G} = 0.8/T \hspace{0.2cm} {\rm
 
and} \hspace{0.2cm} f_{\rm G} = 0.4/T \hspace{0.05cm}.$$
 
  
Thus, the noise power density before the decision is:
+
Thus,&nbsp; the noise power-spectral density before the decision is:
 
:$${\it \Phi}_{d{\rm N}}(f) = \frac{N_0}{2} \cdot \frac{|H_{\rm G
 
:$${\it \Phi}_{d{\rm N}}(f) = \frac{N_0}{2} \cdot \frac{|H_{\rm G
}(f)|^2}{|H_{\rm K}(f)|^2} = \frac{N_0}{2} \cdot {\rm exp}\left [2 \cdot  
+
}(f)|^2}{|H_{\rm K}(f)|^2} $$
 +
:$$\Rightarrow \hspace{0.3cm} {\it \Phi}_{d{\rm N}}(f)  = \frac{N_0}{2} \cdot {\rm exp}\left [2 \cdot  
 
a_{\star}\cdot \sqrt{2  f  T} - {\pi}/{2} \cdot \left ({f }/{f_{\rm G}}\right )^2 \right ] \hspace{0.05cm}.$$
 
a_{\star}\cdot \sqrt{2  f  T} - {\pi}/{2} \cdot \left ({f }/{f_{\rm G}}\right )^2 \right ] \hspace{0.05cm}.$$
  
[[File:P ID1399 Dig T 3 3 S2 version1.png|right|frame|Noise rise due to distorting channel|class=fit]]
+
This curve is shown for two&nbsp; (normalized)&nbsp; cutoff frequencies  
 
+
*$f_\text{G} \cdot T = 0.8$&nbsp; (on the left),
This curve is shown on the left for the two (normalized) cutoff frequencies  
+
*$f_\text{G} \cdot T = 0.4$&nbsp; (on the right).
*$f_\text{G} \cdot T = 0.8$ (left) and
 
*$f_\text{G} \cdot T = 0.4$ (right)  
 
 
 
  
Note that here, for reasons of presentation, the characteristic cable attenuation of &nbsp;$a_\star = 15 \ \rm dB$&nbsp; &nbsp;$($corresponding to &nbsp;$1.7 \ \rm Np)$&nbsp; is chosen to be significantly smaller than in the right eye diagram in &nbsp;[[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization#Ideal_channel_equalizer| $\text{Example 1}$]]&nbsp; in the last section &nbsp;$($valid for &nbsp;$a_\star = 40 \ \rm dB)$.
 
<br clear=all>
 
Let us first consider the left graph for the (normalized) cutoff frequency &nbsp;$f_\text{G} \cdot T = 0.8$ which, according to the calculations in the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Optimization_of_the_cutoff_frequency|last chapter]]&nbsp; represents the optimum for the ideal channel &nbsp; &rArr; &nbsp; $H_{\rm K}(f) = 1$.&nbsp;
 
*The constant noise power density &nbsp;$N_0/2$&nbsp; at the receiver input is highlighted in yellow. With an ideal channel, this is limited by the Gaussian receive filter &nbsp;$H_{\rm E}(f) = H_{\rm G}(f)$&nbsp; and results in the detection noise power &nbsp;$\sigma_d^2$&nbsp; (indicated by the blue area in the graph).<br>
 
  
*If &ndash; as usual for conducted transmission üblich &ndash; higher frequencies are strongly attenuated,  &nbsp;$|H_{\rm E}(f)| = |H_{\rm G}(f)|/|H_{\rm K}(f)|$&nbsp; increases very strongly due to the ideal channel equalizer before the attenuating influence of the Gaussian filter becomes effective for &nbsp;$f \cdot T \ge 0.6$&nbsp; $($only valid for &nbsp;$a_\star = 15 \ \rm dB$&nbsp; and &nbsp;$f_\text{G} \cdot T = 0.8)$.&nbsp; <br>
+
Let us first consider the left graph for the (normalized) cutoff frequency &nbsp;$f_\text{G} \cdot T = 0.8$,&nbsp; which&nbsp; &ndash; according to the calculations in the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Optimization_of_the_cutoff_frequency|last chapter]]&nbsp; &ndash;&nbsp; represents the optimum for the ideal channel &nbsp; &rArr; &nbsp; $H_{\rm K}(f) = 1$.&nbsp;
 +
#The constant noise power density &nbsp;$N_0/2$&nbsp; at the receiver input is highlighted in yellow.&nbsp; With an ideal channel,&nbsp; this is limited by the Gaussian receiver filter &nbsp;$H_{\rm E}(f) = H_{\rm G}(f)$&nbsp; and results in the detection noise power &nbsp;$\sigma_d^2$&nbsp; (indicated by the blue area in the graph).<br><br>
 +
#If &ndash; as usual for&nbsp; "Wireline Transmission Technology"&nbsp; &ndash; higher frequencies are strongly attenuated,  &nbsp;$|H_{\rm E}(f)| = |H_{\rm G}(f)|/|H_{\rm K}(f)|$&nbsp; increases very strongly due to the ideal channel equalizer before the attenuating influence of the Gaussian filter becomes effective for &nbsp;$f \cdot T \ge 0.6$&nbsp; $($only valid for &nbsp;$a_\star = 15 \ \rm dB$&nbsp; and &nbsp;$f_\text{G} \cdot T = 0.8)$.&nbsp; <br><br>
 +
#The noise power &nbsp;$\sigma_d^2$&nbsp; is now equal to the area under the red curve,&nbsp; which is about a factor of &nbsp;$28$&nbsp; larger than the blue area.&nbsp; The effects of these different noise powers can be seen qualitatively in the left and right eye diagrams on the last section,&nbsp; but for &nbsp;$a_\star = 40 \ \rm dB$.<br><br>
  
*The noise power &nbsp;$\sigma_d^2$&nbsp; is now equal to the area under the red curve, which is about a factor of &nbsp;$28$&nbsp; larger than the blue area. The effects of these different noise powers can also be seen in the eye diagrams on the last section, but for &nbsp;$a_\star = 40 \ \rm dB$.<br><br>
+
The right graph shows the noise power density &nbsp;${\it \Phi}_{d{\rm N}}(f)$&nbsp; for the normalized cutoff frequency &nbsp;$f_\text{G} \cdot T = 0.4$. Here the noise power is only increased by a factor of &nbsp;$9$&nbsp; by the ideal channel equalizer&nbsp; (ratio between the area under the red curve and the blue area).<br>
 
 
The right graph shows the noise power density &nbsp;${\it \Phi}_{d{\rm N}}(f)$&nbsp; for the normalized cutoff frequency &nbsp;$f_\text{G} \cdot T = 0.4$. Here the noise power is only increased by a factor of &nbsp;$9$&nbsp; by the ideal channel equalizer (ratio between the area under the red curve and the blue area).<br>
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Line 107: Line 104:
 
== Optimization of the cutoff frequency==
 
== Optimization of the cutoff frequency==
 
<br>
 
<br>
The graph shows the signal-to-noise ratios as a function of the cutoff frequency &nbsp;$f_{\rm G}$&nbsp; of the overall Gaussian frequency response &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$. This picture is valid for
+
The graph shows the signal-to-noise ratios as a function of the cutoff frequency &nbsp;$f_{\rm G}$&nbsp; of the overall Gaussian frequency response &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.  
*a &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable| coaxial transmission channel]]&nbsp; with characteristic cable attenuation &nbsp;$a_\star = 15 \ \rm dB$,<br>
+
[[File:EN Dig T 3 3 S1b.png|right|frame|Optimal cutoff frequency of the Gaussian low-pass with distorting channel &nbsp;$(a_\star = 15 \ \rm dB).$<br>&rArr; &nbsp; The circles show the dB values for &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$ &nbsp; &#8658; &nbsp; "mean detection SNR" &nbsp; &#8658; &nbsp; measure of mean error probability &nbsp;$p_{\rm S}$.<br>&rArr; &nbsp; The squares show the dB values for &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$ &nbsp; &#8658; &nbsp; "worst-case SNR" &nbsp; &#8658; &nbsp; measure of worst-case error probability &nbsp;$p_{\rm U}$.|class=fit]]
*AWGN noise with &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$, where &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; is to be set &nbsp; &rArr; &nbsp; NRZ rectangular pulses.<br><br>
 
  
[[File:P ID1401 Dig T 3 3 S3a version1.png|right|frame|Optimal cut-off frequency of the GTP with distorting channel &nbsp;$(a_\star = 15 \ \rm dB)$|class=fit]]
+
This graphic is valid for
''Notes:''
+
*a &nbsp;[[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#Frequency_response_of_a_coaxial_cable|coaxial transmission channel]]&nbsp; with characteristic cable attenuation &nbsp;$a_\star = 15 \ \rm dB$,<br>
*The circles show the dB values for &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$ &nbsp; &#8658; &nbsp; "mean" detection SNR (measure of mean error probability &nbsp;$p_{\rm S})$.
 
*The squares show the dB values for &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$ &nbsp; &#8658; &nbsp; "worst-case" SNR &nbsp;$($measure of worst-case error probability &nbsp;$p_{\rm U})$.
 
<br clear = all>
 
One can see from this plot and by comparison with the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Optimization_of_the_cutoff_frequency|corresponding plot]]&nbsp; in the last chapter, which was valid for &nbsp;$H_{\rm K}(f) = 1$&nbsp; and &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$:&nbsp;
 
*Even with a highly distorting channel, &nbsp;$\rho_{\rm U}$&nbsp; is a suitable lower bound for &nbsp;$\rho_d$ &nbsp; &rArr; &nbsp; $\rho_{d} \ge \rho_{\rm U}$. Correspondingly, &nbsp;$p_{\rm U} \ge p_{\rm S} $&nbsp; is also a reasonable upper bound for &nbsp;$p_{\rm S}$.
 
  
*For the considered cable attenuation &nbsp;$a_\star = 15 \ \rm dB$,&nbsp; the cutoff frequency &nbsp;$f_\text{G} \cdot T \approx 0.55$&nbsp; is optimal and &nbsp;$\ddot{o}/s_0 \approx 1.327$&nbsp; and &nbsp;$\sigma_d/s_0 \approx 0.106$ hold.
+
*AWGN noise with &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$,&nbsp; with &nbsp;$E_{\rm B} = s_0^2 \cdot T$ &nbsp; &rArr; &nbsp; NRZ rectangular pulses.<br>
*This gives the (worst-case) signal-to-noise ratio &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 \ dB$&nbsp; and the  worst&ndash;case error probability &nbsp;$p_{\rm U} \approx  2 \cdot 10^{-9}.$<br>
 
  
*A smaller cutoff frequency would result in a significantly smaller eye opening without equally reducing &nbsp;$\sigma_d$.&nbsp; For &nbsp;$f_\text{G} \cdot T = 0.4$&nbsp; holds:
+
 
:$$\ddot{o}/s_0 \approx 0.735,\hspace{0.2cm}\sigma_d/s_0 \approx 0.072\hspace{0.3cm}\Rightarrow
+
One can see by comparison with the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Optimization_of_the_cutoff_frequency|corresponding plot]]&nbsp; in the last chapter, which was valid for &nbsp;$H_{\rm K}(f) = 1$,&nbsp; $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$:&nbsp;
 +
*Even with a highly distorting channel, &nbsp;$\rho_{\rm U}$&nbsp; is a suitable lower bound for &nbsp;$\rho_d$ &nbsp; &rArr; &nbsp; $\rho_{d} \ge \rho_{\rm U}$. Correspondingly, &nbsp;$p_{\rm U} \ge p_{\rm S} $&nbsp; is also a reasonable upper bound for &nbsp;$p_{\rm S}$.<br>
 +
*For the considered cable attenuation &nbsp;$a_\star = 15 \ \rm dB$,&nbsp; the cutoff frequency &nbsp;$f_\text{G} \cdot T \approx 0.55$&nbsp; is optimal and &nbsp;$\ddot{o}/s_0 \approx 1.327$&nbsp; and &nbsp;$\sigma_d/s_0 \approx 0.106$&nbsp; hold.<br>
 +
*This gives the&nbsp;  worst-case SNR  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 \ dB$&nbsp; and the  worst&ndash;case error probability &nbsp;$p_{\rm U} \approx  2 \cdot  10^{-9}.$<br>
 +
*A smaller cutoff frequency would result in a significantly smaller eye opening without equally reducing &nbsp;$\sigma_d$.&nbsp; For &nbsp;$f_\text{G} \cdot T = 0.4$:
 +
:$$\ddot{o}/s_0 \approx 0.735,\hspace{0.2cm}\sigma_d/s_0 \approx 0.072$$
 +
:$$\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
 
14.1\,{\rm dB}
 
14.1\,{\rm dB}
 
  \hspace{0.3cm}\Rightarrow
 
  \hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm} p_{\rm U}\approx 1.8 \cdot 10^{-7}\hspace{0.05cm}.$$
 
\hspace{0.3cm} p_{\rm U}\approx 1.8 \cdot 10^{-7}\hspace{0.05cm}.$$
 
+
*If the cutoff frequency &nbsp;$f_\text{G}$&nbsp; is too large, the noise is limited less effectively. <br>For example,&nbsp; the values for the cutoff frequency are &nbsp;$f_\text{G} \cdot T =0.8$:
*If the cutoff frequency &nbsp;$f_\text{G}$&nbsp; is too large, the noise is limited less effectively. For example, the values for the cutoff frequency are &nbsp;$f_\text{G} \cdot T =0.8$:
 
 
:$$\ddot{o}/s_0 \approx 1.819,\hspace{0.2cm}\sigma_d/s_0 \approx 0.178\hspace{0.3cm}\Rightarrow
 
:$$\ddot{o}/s_0 \approx 1.819,\hspace{0.2cm}\sigma_d/s_0 \approx 0.178\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
Line 135: Line 130:
 
  \hspace{0.3cm}\Rightarrow
 
  \hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm} p_{\rm U}\approx 1.7 \cdot 10^{-7}\hspace{0.05cm}.$$
 
\hspace{0.3cm} p_{\rm U}\approx 1.7 \cdot 10^{-7}\hspace{0.05cm}.$$
 
+
*The optimal values &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{d} \approx 16.2 \ \rm dB$&nbsp; and &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 dB$&nbsp; are much more pronounced than for the ideal channel.
*The optimal values of &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{d} \approx 16.2 \ \rm dB$&nbsp; and &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 dB$&nbsp; are much more pronounced than for ideal channel.
 
  
  
When comparing the signal-to-noise ratios, however, it must be taken into account that &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$&nbsp; is the basis here; in contrast, &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; was assumed in the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Optimization_of_the_cutoff_frequency|corresponding graph]]&nbsp; for the ideal channel.<br>
+
When comparing the signal-to-noise ratios,&nbsp; however,&nbsp; it must be taken into account that &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$&nbsp; is the basis here;&nbsp; in contrast, &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; was assumed in the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Optimization_of_the_cutoff_frequency|"corresponding graph"]]&nbsp; for the ideal channel.<br>
  
== Optimal cut-off frequency as a function of cable attenuation==
+
== Optimal cutoff frequency as a function of cable attenuation==
 
<br>
 
<br>
[[File:Dig_T_3_3_S3b_version2.png|right|frame|Optimal cutoff frequency and system efficiency as a function of characteristic cable attenuation. In particular:    <br>$\hspace{0.8cm} 10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) =  -1.4 \ dB;$  &nbsp; $\hspace{0.8cm} 10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 80 \ \rm dB) =  -78.2 \ dB;$|class=fit|center]]
 
 
We further consider
 
We further consider
 
*a binary system with NRZ transmission pulses &nbsp; &rArr; &nbsp; $E_{\rm B} = s_0^2 \cdot T$,<br>
 
*a binary system with NRZ transmission pulses &nbsp; &rArr; &nbsp; $E_{\rm B} = s_0^2 \cdot T$,<br>
*a coaxial cable $H_{\rm K}(f)$, characteristic attenuation &nbsp;$a_\star$,<br>
+
*a coaxial cable $H_{\rm K}(f)$,&nbsp; characteristic attenuation &nbsp;$a_\star$,<br>
 
*a Gaussian total frequency response &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.
 
*a Gaussian total frequency response &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.
  
  
The blue circles (left axis labels) mark the optimal cutoff frequencies &nbsp;$f_\text{G, opt}$&nbsp; for the respective cable attenuation &nbsp;$a_\star$.  
+
The blue circles&nbsp; (left axis labels)&nbsp; mark the optimal cutoff frequencies &nbsp;$f_\text{G, opt}$&nbsp; for the respective cable attenuation &nbsp;$a_\star$.  
 +
 
 +
In addition,&nbsp; the graph shows with red squares the &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_peak_limitation|"system efficiency"]]&nbsp; (at peak limitation) &nbsp;  $\eta$,&nbsp; which is the ratio of the SNR &nbsp;$\rho_{d}$&nbsp; achievable with the considered configuration to the maximum possible S/N ratio &nbsp;$\rho_{d, \ {\rm max}}$.&nbsp;
 +
[[File:Dig_T_3_3_S3b_version2.png|right|frame|Optimal cutoff frequency and system efficiency as a function of characteristic cable attenuation. In particular:    <br>&rArr; &nbsp; $10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) =  -1.4 \ dB$;<br>&rArr; &nbsp; $10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 80 \ \rm dB) =  -78.2 \ dB.$|class=fit|center]]
 +
 
  
In addition, the graph shows with red squares the &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_peak_limitation|system efficiency]]&nbsp; (at peak limitation) &nbsp;$\eta$,&nbsp; which is the ratio of the SNR &nbsp;$\rho_{d}$&nbsp; achievable with the considered configuration to the maximum possible S/N ratio &nbsp;$\rho_{d, \ {\rm max}}$.&nbsp;
 
  
 
Replacing &nbsp;$\rho_d$&nbsp; by &nbsp;$\rho_{\rm U}$, i.e., &nbsp;$p_{\rm S}$&nbsp; by &nbsp;$p_{\rm U}$, the system efficiency can be represented as follows:
 
Replacing &nbsp;$\rho_d$&nbsp; by &nbsp;$\rho_{\rm U}$, i.e., &nbsp;$p_{\rm S}$&nbsp; by &nbsp;$p_{\rm U}$, the system efficiency can be represented as follows:
Line 158: Line 154:
 
  A}}}=  \frac{\rho_d}{2 \cdot E_{\rm B}/N_0}\approx \frac{\rho_{\rm U}}{2 \cdot E_{\rm B}/N_0}.$$
 
  A}}}=  \frac{\rho_d}{2 \cdot E_{\rm B}/N_0}\approx \frac{\rho_{\rm U}}{2 \cdot E_{\rm B}/N_0}.$$
 
   
 
   
 
 
One can see from the arrangement of the blue circles:
 
One can see from the arrangement of the blue circles:
*The optimal cutoff frequency &nbsp;$f_\text{G, opt}$&nbsp; depends significantly on the strength of the distortions of the coaxial cable, more precisely: &nbsp; exclusively on the characteristic cable attenuation &nbsp;$a_\star$&nbsp; at half the bit rate.
+
*The optimal cutoff frequency &nbsp;$f_\text{G, opt}$&nbsp; depends significantly on the strength of the coaxial cable distortions,&nbsp; &nbsp; exclusively on the characteristic cable attenuation &nbsp;$a_\star$&nbsp; at half the bit rate.
*The larger the cable attenuation &nbsp;$a_\star$&nbsp; and thus the noise influence, the lower the optimal cutoff frequency &nbsp;$f_\text{G, opt}$.<br>
 
*However, always &nbsp;$f_\text{G, opt} > 0.27/T$. Otherwise, the eye would be closed, equivalent to the "worst&ndash;case" error probability &nbsp;$p_{\rm U} = 0.5$.
 
 
 
  
 +
*The larger the cable attenuation &nbsp;$a_\star$&nbsp; and thus the noise influence,&nbsp; the lower the optimal cutoff frequency &nbsp;$f_\text{G, opt}$.<br>
  
Let us now discuss the dependence of the system efficiency &nbsp;$\eta$&nbsp; (red squares) on the characteristic cable attenuation &nbsp;$a_\star$. The right ordinate starts at the top at &nbsp;$0 \ \rm dB$&nbsp; and extends downward to &nbsp;$-100 \ \rm dB$.
+
*However,&nbsp; always &nbsp;$f_\text{G, opt} > 0.27/T$.&nbsp; Otherwise,&nbsp; the eye would be closed,&nbsp; equivalent to the&nbsp; "worst&ndash;case error probability" &nbsp;$p_{\rm U} = 0.5$.
  
As will now be illustrated by some numerical examples, the representation &nbsp;$\eta = \eta\hspace{0.05cm}(a_\star)$&nbsp;avoids some problems arising from the wide range of values of S/N ratios:
 
* The ordinate value &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}  \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ \rm dB$&nbsp; states that the best possible Gaussian low-pass with cutoff frequency &nbsp;$f_\text{G} \cdot T = 0.8$&nbsp; at ideal channel is &nbsp;$1.4 \ \rm dB$&nbsp; worse than the optimal (matched filter) receiver.<br>
 
  
 +
Let us now discuss the dependence of the&nbsp; '''system efficiency''' &nbsp;$\eta$&nbsp; (red squares)&nbsp; on the characteristic cable attenuation &nbsp;$a_\star$.&nbsp; The right ordinate starts at the top at &nbsp;$0 \ \rm dB$&nbsp; and extends downward to &nbsp;$-100 \ \rm dB$.
  
*If we assume ideal channel &nbsp;$(a_\star = 0 \ \rm dB)$&nbsp; and &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 10 \ \rm dB$,&nbsp; the above equation also states that this configuration will lead to the following (worst-case) error probability:
+
As will now be illustrated by some numerical examples,&nbsp; the representation &nbsp;$\eta = \eta\hspace{0.05cm}(a_\star)$&nbsp;avoids some problems arising from the wide value range  of S/N ratios:
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}  = 10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} + 10 \cdot {\rm lg}\hspace{0.1cm}(2) + 10 \cdot {\rm lg}\hspace{0.1cm}(\eta) \approx  \approx  10\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}1.4\, {\rm dB}= 11.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 7 \cdot 10^{-5}\hspace{0.05cm}.$$
+
* The ordinate value &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}  \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ \rm dB$&nbsp; states that the best possible Gaussian low-pass with cutoff frequency &nbsp;$f_\text{G} \cdot T = 0.8$&nbsp; at ideal channel is &nbsp;$1.4 \ \rm dB$&nbsp; worse than the optimal&nbsp; (matched filter)&nbsp; receiver.<br>
  
*Accordingly, if this (worst-case) error probability &nbsp;$p_{\rm U} =  7 \cdot 10^{-5}$  &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} = 11.6  \ \rm dB$&nbsp; is not to be exceeded for the channel with characteristic cable attenuation &nbsp;$a_\star = 80 \ \rm dB$,&nbsp; then the following must apply to the &nbsp;$E_{\rm B}/N_0$&nbsp; ratio:
+
*If we assume an ideal channel &nbsp;$(a_\star = 0 \ \rm dB)$&nbsp; and &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 10 \ \rm dB$,&nbsp; the above equation also states that this configuration will lead to the following&nbsp; "worst-case error probability":
 +
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}  =  10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} + 10 \cdot {\rm lg}\hspace{0.1cm}(2) + 10 \cdot {\rm lg}\hspace{0.1cm}(\eta) \approx    10\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}1.4\, {\rm dB}= 11.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 7 \cdot 10^{-5}\hspace{0.05cm}.$$
 +
*Accordingly, if this worst-case error probability &nbsp;$p_{\rm U} =  7 \cdot 10^{-5}$  &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} = 11.6  \ \rm dB$&nbsp; is not to be exceeded for the channel with characteristic cable attenuation &nbsp;$a_\star = 80 \ \rm dB$,&nbsp; then the following must apply to the &nbsp;$E_{\rm B}/N_0$&nbsp; ratio:
  
 
::<math>10 \cdot {\rm
 
::<math>10 \cdot {\rm
Line 185: Line 179:
 
10^{8}\hspace{0.05cm}.</math>
 
10^{8}\hspace{0.05cm}.</math>
  
*To achieve this, however, the cutoff frequency of the Gaussian low-pass filter must be lowered to &nbsp;$f_{\rm G}= 0.33/T$&nbsp; according to the blue circles in the graph.<br>
+
*To achieve this,&nbsp; however,&nbsp; the cutoff frequency of the Gaussian low-pass filter must be lowered to &nbsp;$f_{\rm G}= 0.33/T$&nbsp; according to the blue circles in the graph.<br>
  
 
== Exercises for the chapter==
 
== Exercises for the chapter==

Latest revision as of 15:40, 28 June 2022

Ideal channel equalizer


For a transmission system whose channel frequency response  $H_{\rm K}(f)$  causes severe distortion,  we assume the following block diagram  (upper graph)  and  equivalent circuit  (lower graph).  To these representations the following is to be noted:

Block diagram & equivalent circuit diagram for consideration of a channel frequency response
  • The receiver filter  $H_{\rm E}(f)$  is – at least mentally – composed of an  ideal equalizer  $1/H_{\rm K}(f)$  and a low-pass filter  $H_{\rm G}(f)$.  For the latter we use in this chapter exemplarily a  Gaussian low-pass  with the cutoff frequency  $f_{\rm G}$.
  • If we now move the ideal equalizer – again purely mentally – to the left side of the noise addition point,  nothing changes with respect to the S/N ratio before the decision device and with respect to the error probability compared to the block diagram drawn above.
  • From the equivalent diagram below it can be seen that the channel frequency response  $H_{\rm K}(f)$  does not change anything with respect to the signal component  $d_{\rm S}(t)$  of the detection signal if it is fully compensated with  $1/H_{\rm K}(f)$. 
  • The degradation due to the frequency response  $H_{\rm K}(f)$  is rather shown by a significant increase of the detection noise power, i.e. the variance of the noise component  $d_{\rm N}(t)$  – originating from the noise signal  $n(t)$  at the receiver input:
$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} \frac{1}{|H_{\rm K}(f)|^2}\cdot |H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
  • The prerequisite for a finite noise power  $\sigma_d^2$  is that the Gaussian low-pass  $H_{\rm G}(f)$  attenuates the noise  $n(t)$  at  (very)  high frequencies more than it is raised by the ideal equalizer  $1/H_{\rm K}(f)$. 

Note:   The channel frequency response  $H_{\rm K}(f)$  must be equalized for magnitude and phase,  but only in a limited frequency range specified by  $H_{\rm G}(f)$ .  However,  a complete phase equalization is only possible at the expense of a  (frequency-independent)  delay time,  which will not be considered further in the following.

$\text{Example 1:}$  We consider again a binary system with NRZ rectangular pulses and a Gaussian receiver filter  $H_{\rm E}(f) = H_{\rm G}(f)$  with  (normalized)  cutoff frequency  $f_\text{G, opt} \cdot T = 0.4$.  Due to this unfavorable receiver filter  $H_{\rm E}(f)$  intersymbol interference  $\rm (ISI)$ occurs in all variants presented here.

  • The middle graph shows the eye diagram of the signal component  $d_{\rm S}(t)$ of the detection signal for this case – i.e. without taking the noise into account.
Binary eye diagrams  (noisy or noiseless)  with intersymbol interferences


⇒   The left  (noisy)  diagram is obtained for the ideal channel, i.e., for 

$$H_{\rm K}(f) = 1 \ \ ⇒ \ \ 1/H_{\rm K}(f) = 1.$$

It takes into account the AWGN noise,  but here it was assumed to be very small,  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 30 \ \rm dB$.  For this configuration,  the  worst-case  SNR it was determined by simulation:

$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 26.8\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}< 10^{-40}\hspace{0.05cm}.$$

⇒   The right  (also noisy)  diagram applies to a  coaxial cable,  where the characteristic cable attenuation  $a_\star = 40 \ \rm dB$.  This results in significantly worse system performance for the same  $E_{\rm B}/N_0$: 

$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx -4.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 0.28\hspace{0.05cm}.$$

This result can be interpreted as follows:

  • Assuming an ideal channel equalizer  $1/H_{\rm K}(f)$,  the same  "eye diagram without noise"  (left diagram)  results for the distorting channel as for the ideal, distortion-free channel  $H_{\rm K}(f) = 1$  (middle graph).
  • Channel equalization  $1/H_{\rm K}(f)$  extremely amplifies the noise component  $d_{\rm N}(t)$  of the detection signal.  In the right-hand example,  equally strong equalization is required over a wide frequency range because of the strong distortion.
  • The noise power  $\sigma_d^2$  here is larger by a factor of  $1300$  than in the left constellation  $($no distortion   ⇒   no equalization$)$.  Thus,  the error probability results in  $p_{\rm S}\approx p_{\rm U}\approx 50 \%$.
  • An acceptable worst-case error probability results only with smaller noise power density  $N_0$.  For example,  with  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 50 \ \rm dB$  $($instead of $30 \ \rm dB)$  the following result is obtained:
$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} = -4.6 +20 \approx 15.4\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 2 \cdot 10^{-9} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} \ge p_{\rm U}/4 \approx 0.5 \cdot 10^{-9}\hspace{0.05cm}.$$


Increase of the noise power by linear equalization


The eye diagrams on the last section impressively document the increase of the noise power  $\sigma_d^2$  with unchanged vertical eye opening,  if one compensates the channel frequency response  $H_{\rm K}(f)$  on the receiving side by its inverse.  This result shall now be interpreted in terms of the noise power density  ${\it \Phi}_{d{\rm N}}(f)$  after the receiver filter  (before the decision),  with the following settings:

  • Let the channel be a  coaxial cable  with the magnitude frequency response
$$|H_{\rm K}(f)| = {\rm exp}\left [- a_{\star}\cdot \sqrt{2 f T}\hspace{0.05cm} \right ]\hspace{0.2cm}{\rm with}\hspace{0.2cm} a_{\star} = 1.7\,\,{\rm Np}\hspace{0.2cm} ({\rm corresponding \hspace{0.2cm} to} \hspace{0.2cm} 15\,\,{\rm dB}) \hspace{0.05cm}.$$
Noise power-spectral density before the decision due to distorting channel.
Note that here,  for reasons of presentation,  the characteristic cable attenuation of  $a_\star = 15 \ \rm dB$   $($corresponding to  $1.7 \ \rm Np)$  is chosen to be significantly smaller than in the right eye diagram in  Example 1  in the last section  $($valid for  $a_\star = 40 \ \rm dB)$.
  • The  ideal channel equalizer  $1/H_{\rm K}(f)$  compensates the channel frequency response completely.  No statement is made here about the realization of the attenuation and phase equalization.
$$|H_{\rm G}(f)| = {\rm exp}\left [- \pi \cdot \left (\frac{f }{2 f_{\rm G}}\right )^2 \right ] \hspace{0.05cm}.$$

Thus,  the noise power-spectral density before the decision is:

$${\it \Phi}_{d{\rm N}}(f) = \frac{N_0}{2} \cdot \frac{|H_{\rm G }(f)|^2}{|H_{\rm K}(f)|^2} $$
$$\Rightarrow \hspace{0.3cm} {\it \Phi}_{d{\rm N}}(f) = \frac{N_0}{2} \cdot {\rm exp}\left [2 \cdot a_{\star}\cdot \sqrt{2 f T} - {\pi}/{2} \cdot \left ({f }/{f_{\rm G}}\right )^2 \right ] \hspace{0.05cm}.$$

This curve is shown for two  (normalized)  cutoff frequencies

  • $f_\text{G} \cdot T = 0.8$  (on the left),
  • $f_\text{G} \cdot T = 0.4$  (on the right).


Let us first consider the left graph for the (normalized) cutoff frequency  $f_\text{G} \cdot T = 0.8$,  which  – according to the calculations in the  last chapter  –  represents the optimum for the ideal channel   ⇒   $H_{\rm K}(f) = 1$. 

  1. The constant noise power density  $N_0/2$  at the receiver input is highlighted in yellow.  With an ideal channel,  this is limited by the Gaussian receiver filter  $H_{\rm E}(f) = H_{\rm G}(f)$  and results in the detection noise power  $\sigma_d^2$  (indicated by the blue area in the graph).

  2. If – as usual for  "Wireline Transmission Technology"  – higher frequencies are strongly attenuated,  $|H_{\rm E}(f)| = |H_{\rm G}(f)|/|H_{\rm K}(f)|$  increases very strongly due to the ideal channel equalizer before the attenuating influence of the Gaussian filter becomes effective for  $f \cdot T \ge 0.6$  $($only valid for  $a_\star = 15 \ \rm dB$  and  $f_\text{G} \cdot T = 0.8)$. 

  3. The noise power  $\sigma_d^2$  is now equal to the area under the red curve,  which is about a factor of  $28$  larger than the blue area.  The effects of these different noise powers can be seen qualitatively in the left and right eye diagrams on the last section,  but for  $a_\star = 40 \ \rm dB$.

The right graph shows the noise power density  ${\it \Phi}_{d{\rm N}}(f)$  for the normalized cutoff frequency  $f_\text{G} \cdot T = 0.4$. Here the noise power is only increased by a factor of  $9$  by the ideal channel equalizer  (ratio between the area under the red curve and the blue area).

$\text{Conclusion:}$  From the above graph and the previous explanations it is already clear that with distorting channel   ⇒   $H_{\rm K}(f) \ne 1$ the cutoff frequency  $f_\text{G} \cdot T = 0.8$  of the Gaussian low-pass filter $H_{\rm G}(f)$ will no longer be optimal after the ideal channel equalizer  $1/H_{\rm K}(f)$. 



Optimization of the cutoff frequency


The graph shows the signal-to-noise ratios as a function of the cutoff frequency  $f_{\rm G}$  of the overall Gaussian frequency response  $H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.

Optimal cutoff frequency of the Gaussian low-pass with distorting channel  $(a_\star = 15 \ \rm dB).$
⇒   The circles show the dB values for  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$   ⇒   "mean detection SNR"   ⇒   measure of mean error probability  $p_{\rm S}$.
⇒   The squares show the dB values for  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$   ⇒   "worst-case SNR"   ⇒   measure of worst-case error probability  $p_{\rm U}$.

This graphic is valid for

  • AWGN noise with  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$,  with  $E_{\rm B} = s_0^2 \cdot T$   ⇒   NRZ rectangular pulses.


One can see by comparison with the  corresponding plot  in the last chapter, which was valid for  $H_{\rm K}(f) = 1$,  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$: 

  • Even with a highly distorting channel,  $\rho_{\rm U}$  is a suitable lower bound for  $\rho_d$   ⇒   $\rho_{d} \ge \rho_{\rm U}$. Correspondingly,  $p_{\rm U} \ge p_{\rm S} $  is also a reasonable upper bound for  $p_{\rm S}$.
  • For the considered cable attenuation  $a_\star = 15 \ \rm dB$,  the cutoff frequency  $f_\text{G} \cdot T \approx 0.55$  is optimal and  $\ddot{o}/s_0 \approx 1.327$  and  $\sigma_d/s_0 \approx 0.106$  hold.
  • This gives the  worst-case SNR  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 \ dB$  and the worst–case error probability  $p_{\rm U} \approx 2 \cdot 10^{-9}.$
  • A smaller cutoff frequency would result in a significantly smaller eye opening without equally reducing  $\sigma_d$.  For  $f_\text{G} \cdot T = 0.4$:
$$\ddot{o}/s_0 \approx 0.735,\hspace{0.2cm}\sigma_d/s_0 \approx 0.072$$
$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 14.1\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 1.8 \cdot 10^{-7}\hspace{0.05cm}.$$
  • If the cutoff frequency  $f_\text{G}$  is too large, the noise is limited less effectively.
    For example,  the values for the cutoff frequency are  $f_\text{G} \cdot T =0.8$:
$$\ddot{o}/s_0 \approx 1.819,\hspace{0.2cm}\sigma_d/s_0 \approx 0.178\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 14.2\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 1.7 \cdot 10^{-7}\hspace{0.05cm}.$$
  • The optimal values  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{d} \approx 16.2 \ \rm dB$  and  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 dB$  are much more pronounced than for the ideal channel.


When comparing the signal-to-noise ratios,  however,  it must be taken into account that  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$  is the basis here;  in contrast,  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$  was assumed in the  "corresponding graph"  for the ideal channel.

Optimal cutoff frequency as a function of cable attenuation


We further consider

  • a binary system with NRZ transmission pulses   ⇒   $E_{\rm B} = s_0^2 \cdot T$,
  • a coaxial cable $H_{\rm K}(f)$,  characteristic attenuation  $a_\star$,
  • a Gaussian total frequency response  $H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.


The blue circles  (left axis labels)  mark the optimal cutoff frequencies  $f_\text{G, opt}$  for the respective cable attenuation  $a_\star$.

In addition,  the graph shows with red squares the  "system efficiency"  (at peak limitation)   $\eta$,  which is the ratio of the SNR  $\rho_{d}$  achievable with the considered configuration to the maximum possible S/N ratio  $\rho_{d, \ {\rm max}}$. 

Optimal cutoff frequency and system efficiency as a function of characteristic cable attenuation. In particular:
⇒   $10 · \lg \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ dB$;
⇒   $10 · \lg \eta\hspace{0.05cm}(a_\star = 80 \ \rm dB) = -78.2 \ dB.$


Replacing  $\rho_d$  by  $\rho_{\rm U}$, i.e.,  $p_{\rm S}$  by  $p_{\rm U}$, the system efficiency can be represented as follows:

$$\eta = \eta_{\rm A}=\frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm} A}}}= \frac{\rho_d}{2 \cdot E_{\rm B}/N_0}\approx \frac{\rho_{\rm U}}{2 \cdot E_{\rm B}/N_0}.$$

One can see from the arrangement of the blue circles:

  • The optimal cutoff frequency  $f_\text{G, opt}$  depends significantly on the strength of the coaxial cable distortions,    exclusively on the characteristic cable attenuation  $a_\star$  at half the bit rate.
  • The larger the cable attenuation  $a_\star$  and thus the noise influence,  the lower the optimal cutoff frequency  $f_\text{G, opt}$.
  • However,  always  $f_\text{G, opt} > 0.27/T$.  Otherwise,  the eye would be closed,  equivalent to the  "worst–case error probability"  $p_{\rm U} = 0.5$.


Let us now discuss the dependence of the  system efficiency  $\eta$  (red squares)  on the characteristic cable attenuation  $a_\star$.  The right ordinate starts at the top at  $0 \ \rm dB$  and extends downward to  $-100 \ \rm dB$.

As will now be illustrated by some numerical examples,  the representation  $\eta = \eta\hspace{0.05cm}(a_\star)$ avoids some problems arising from the wide value range of S/N ratios:

  • The ordinate value  $10 \cdot {\rm lg}\hspace{0.1cm} \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ \rm dB$  states that the best possible Gaussian low-pass with cutoff frequency  $f_\text{G} \cdot T = 0.8$  at ideal channel is  $1.4 \ \rm dB$  worse than the optimal  (matched filter)  receiver.
  • If we assume an ideal channel  $(a_\star = 0 \ \rm dB)$  and  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 10 \ \rm dB$,  the above equation also states that this configuration will lead to the following  "worst-case error probability":
$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} = 10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} + 10 \cdot {\rm lg}\hspace{0.1cm}(2) + 10 \cdot {\rm lg}\hspace{0.1cm}(\eta) \approx 10\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}1.4\, {\rm dB}= 11.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 7 \cdot 10^{-5}\hspace{0.05cm}.$$
  • Accordingly, if this worst-case error probability  $p_{\rm U} = 7 \cdot 10^{-5}$   ⇒   $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} = 11.6 \ \rm dB$  is not to be exceeded for the channel with characteristic cable attenuation  $a_\star = 80 \ \rm dB$,  then the following must apply to the  $E_{\rm B}/N_0$  ratio:
\[10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} \ge 11.6\,{\rm dB} \hspace{0.1cm}-3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}(-78.2)\,{\rm dB}= 86.8\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}{E_{\rm B}}/{N_0}\approx 5 \cdot 10^{8}\hspace{0.05cm}.\]
  • To achieve this,  however,  the cutoff frequency of the Gaussian low-pass filter must be lowered to  $f_{\rm G}= 0.33/T$  according to the blue circles in the graph.

Exercises for the chapter


Exercise 3.3: Noise at Channel Equalization

Exercise 3.3Z: Optimization of a Coaxial Cable System