Difference between revisions of "Channel Coding/Channel Models and Decision Structures"

From LNTwww
 
(36 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Binäre Blockcodes zur Kanalcodierung
+
|Untermenü=Binary Block Codes for Channel Coding
 
|Vorherige Seite=Zielsetzung der Kanalcodierung
 
|Vorherige Seite=Zielsetzung der Kanalcodierung
 
|Nächste Seite=Beispiele binärer Blockcodes
 
|Nächste Seite=Beispiele binärer Blockcodes
 
}}
 
}}
  
== AWGN channel at Binary Input ==
+
== AWGN channel at binary input ==
 
<br>
 
<br>
We consider the well-known discrete-time&nbsp; [[Modulationsverfahren/Qualit%C3%A4tskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell| AWGN Channel model]]&nbsp; according to the lower left graph:
+
We consider the well-known discrete-time&nbsp; [[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model|$\text{AWGN}$]]&nbsp; channel model according to the left graph:
*The binary and discrete-time message signal&nbsp; $x$&nbsp; takes the values&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; with equal probability; that is, it is&nbsp; ${\rm Pr}(x = 0) = {\rm Pr}(\tilde{x} =+1) = 1/2$&nbsp; and&nbsp; ${\rm Pr}(x = 1) = {\rm Pr}(\tilde{x} =-1) = 1/2$. <br>
+
*The binary and discrete-time message signal&nbsp; $x$&nbsp; takes the values&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; with equal probability:
 +
:$${\rm Pr}(x = 0) ={\rm Pr}(x = 1) = 1/2.$$
 +
*We now transform the unipolar variable&nbsp; $x \in \{0,\ 1 \}$&nbsp; into the bipolar variable&nbsp; $\tilde{x} \in \{+1, -1 \}$&nbsp; more suitable for signal transmission.&nbsp; Then holds:
 +
[[File:EN_KC_T_1_2_S1.png|right|frame|Probability density function&nbsp; $\rm (PDF)$&nbsp;
 +
of the AWGN channel|class=fit]]
 +
:$${\rm Pr}(\tilde{x} =+1) ={\rm Pr}(\tilde{x} =-1) = 1/2.$$
 +
*The transmission is affected by&nbsp; [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Transmission_channel_and_interference| "additive white Gaussian noise"]]&nbsp; $\rm (AWGN)$&nbsp; $n$&nbsp; with&nbsp;  (normalized)&nbsp; noise power&nbsp; $\sigma^2 = N_0/E_{\rm B}$.&nbsp; The root mean square&nbsp; (rms value)&nbsp; of the Gaussian PDF is&nbsp; $\sigma$.<br>
  
*Transmission is affected by&nbsp; [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#.C3.9Cbertragungskanal_und_St.C3.B6rungen| additive white gaussian noise]]&nbsp; (AWGN)&nbsp; $n$&nbsp; with the (normalised) noise power&nbsp; $\sigma^2 = N_0/E_{\rm B}$&nbsp;. The dispersion of the Gaussian&ndash;WDF is&nbsp; $\sigma$.<br>
+
*Because of the Gaussian PDF,&nbsp; the output signal&nbsp; $y = \tilde{x} +n$&nbsp; can take on any real value in the range&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$.&nbsp; That means:
  
*Because of the Gaussian WDF, the output signal&nbsp; $y = \tilde{x} +n$&nbsp; can take on any real value in the range&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$&nbsp;. The signal value&nbsp; $y$&nbsp; is therefore discrete in time like&nbsp; $x$&nbsp; &nbsp;$($bzw. $\tilde{x})$&nbsp; but in contrast to the latter it is continuous in value.<br>
+
*The AWGN output value&nbsp; $y$&nbsp; is therefore discrete in time like&nbsp; $x$&nbsp; &nbsp;$($resp. $\tilde{x})$&nbsp; but in contrast to the latter it is continuous in value.<br>
 
+
<br clear=all>
 
+
The graph on the right shows&nbsp; $($in blue resp. red color$)$&nbsp; the conditional probability density functions:
[[File:P ID2340 KC T 1 2 S1 v2.png|right|frame|PDF of the AWGN Channel|class=fit]]
 
 
 
The graph on the right shows (in blue and red respectively) the conditional probability density functions:
 
  
 
::<math>f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 )\hspace{-0.1cm} =  \hspace{-0.1cm}
 
::<math>f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 )\hspace{-0.1cm} =  \hspace{-0.1cm}
Line 26: Line 29:
 
\frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ -  (y+1)^2/(2\sigma^2) }\hspace{0.05cm}.</math>
 
\frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ -  (y+1)^2/(2\sigma^2) }\hspace{0.05cm}.</math>
  
Not shown is the total (unconditional) WDF, for which applies in the case of equally probable symbols:
+
Not shown is the total&nbsp; $($unconditional$)$&nbsp; PDF,&nbsp; for which applies in the case of equally probable symbols:
  
::<math>f_y(y) = {1}/{2} \cdot  \left [ f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 ) +   
+
::<math>f_y(y) = {1}/{2} \cdot  \big [ f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 ) +   
f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\right ]\hspace{0.05cm}.</math>
+
f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\big ]\hspace{0.05cm}.</math>
  
The two shaded areas &nbsp;$($each &nbsp;$\varepsilon)$&nbsp; mark decision errors under the condition&nbsp; $x=0$ &nbsp; &#8658; &nbsp; $\tilde{x} = +1$&nbsp; (blue) &nbsp; and respectively $x=1$ &nbsp; &#8658; &nbsp; $\tilde{x} = -1$&nbsp; (red) when hard decisions are made:
+
The two shaded areas &nbsp;$($each &nbsp;$\varepsilon)$&nbsp; mark decision errors under the condition&nbsp;  
 +
*$x=0$ &nbsp; &#8658; &nbsp; $\tilde{x} = +1$&nbsp; (blue),
  
 +
*$x=1$ &nbsp; &#8658; &nbsp; $\tilde{x} = -1$&nbsp; (red),
 +
 +
 +
when hard decisions are made:
 
::<math>z = \left\{ \begin{array}{c} 0\\
 
::<math>z = \left\{ \begin{array}{c} 0\\
 
  1  \end{array} \right.\quad
 
  1  \end{array} \right.\quad
Line 38: Line 46:
 
{\rm if} \hspace{0.15cm}y < 0\hspace{0.05cm}.\\ \end{array}</math>
 
{\rm if} \hspace{0.15cm}y < 0\hspace{0.05cm}.\\ \end{array}</math>
  
For equally probable input symbols, the mean bit error probability&nbsp; ${\rm Pr}(z \ne x)$&nbsp; is then also equal&nbsp; $\varepsilon$. With the&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|complementary gaussian error integral]]&nbsp; ${\rm Q}(x)$ the following holds:
+
For equally probable input symbols, the bit error probability&nbsp; ${\rm Pr}(z \ne x)$&nbsp; is then also&nbsp; $\varepsilon$. With the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]&nbsp; ${\rm Q}(x)$&nbsp; the following holds:
  
 
::<math>\varepsilon = {\rm Q}(1/\sigma) = {\rm Q}(\sqrt{\rho}) =  
 
::<math>\varepsilon = {\rm Q}(1/\sigma) = {\rm Q}(\sqrt{\rho}) =  
Line 44: Line 52:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
where&nbsp; $\rho = 1/\sigma^2 = 2 \cdot E_{\rm S}/N_0$&nbsp; denotes the signal&ndash;to&ndash;noise ratio (SNR) before the decision maker, using the following system quantities:
+
where&nbsp; $\rho = 1/\sigma^2 = 2 \cdot E_{\rm S}/N_0$&nbsp; denotes the signal&ndash;to&ndash;noise ratio&nbsp; $\rm (SNR)$&nbsp; before the decision,&nbsp; using the following system quantities:
*$E_{\rm S}$&nbsp; is the signal energy per symbol (without coding equal &nbsp;$E_{\rm B}$, thus equal to the signal energy per bit),<br>
+
*$E_{\rm S}$&nbsp; is the signal energy per symbol&nbsp; (without coding: &nbsp;$E_{\rm S}=E_{\rm B}$,&nbsp; thus equal to the signal energy per bit),<br>
  
*$N_0$&nbsp; denotes the constant (one-sided) noise power density of the AWGN&ndash;channel.<br><br>
+
*$N_0$&nbsp; denotes the constant&nbsp; (one-sided)&nbsp; noise power density of the AWGN channel.<br><br>
  
''Notes'':&nbsp;The presented facts are clarified with the interactive applet&nbsp; [[Applets:FehlerwahrscheinlichkeitS|Symbol error probability of digital systems]]
+
:<u>Notes:</u> &nbsp; The presented facts are clarified with the&nbsp; $($German language$)$&nbsp; SWF applet&nbsp; [[Applets:Fehlerwahrscheinlichkeit|"Symbolfehlerwahrscheinlichkeit von Digitalsystemen"]] &nbsp; <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &rArr;  "Symbol error probability of digital systems"
 
== Binary Symmetric Channel – BSC ==
 
== Binary Symmetric Channel – BSC ==
 
<br>
 
<br>
The AWGN&ndash;channel model is not a digital channel model as we have presupposed in the paragraph&nbsp;  [[Channel_Coding/Zielsetzung_der_Kanalcodierung#Blockschaltbild_und_Voraussetzungen|block diagram and prerequisities]]&nbsp; for the introductory description of channel coding methods. However, if we take into account a hard decision, we arrive at the digital model&nbsp; <i>Binary Symmetric Channel</i>&nbsp; (BSC):<br>
+
The AWGN channel model is not a digital channel model as we have presupposed in the paragraph&nbsp;  [[Channel_Coding/Objective_of_Channel_Coding#Block_diagram_and_requirements|"Block diagram and prerequisities"]]&nbsp; for the introductory description of channel coding methods.&nbsp; However,&nbsp; if we take into account a hard decision,&nbsp; we arrive at the digital model&nbsp; "Binary Symmetric Channel"&nbsp; $\rm (BSC)$:<br>
  
[[File:P ID2341 KC T 1 2 S2 v2.png|center|frame|BSC–Model and relation with The AWGN Model|class=fit]]
+
[[File:EN_KC_T_1_2_S2_neu.png|right|frame|BSC model and relation with the AWGN model.&nbsp;<u>Note:</u>&nbsp; In the AWGN model,&nbsp; we have denoted the binary output as&nbsp; $z \in \{0, \hspace{0.05cm}1\}$.&nbsp; For the digital channel models&nbsp; (BSC, BEC, BSEC),&nbsp; we now denote the discrete value output again by&nbsp; $y$.&nbsp; To avoid confusion, we now call the output signal of the AWGN model&nbsp; $y_{\rm A}$&nbsp; and for the analog received signal then&nbsp; $y_{\rm A} = \tilde{x} +n$|class=fit]]
  
Choosing the falsification probabilities&nbsp; ${\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)$&nbsp; respectively,&nbsp; ${\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$&nbsp; respectively to be
+
*We choose the falsification probabilities&nbsp; ${\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)$&nbsp; resp.&nbsp; ${\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$&nbsp; to be
 +
::<math>\varepsilon =  {\rm Q}(\sqrt{\rho})\hspace{0.05cm}.</math>
  
::<math>\varepsilon =  {\rm Q}(\sqrt{\rho})\hspace{0.05cm},</math>
+
*Then the connection to the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_binary_input|$\text{AWGN}$]]&nbsp;  channel model&nbsp; is established.&nbsp;
  
then the connection to the&nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang |AWGN&ndash;Kanalmodell]]&nbsp; &nbsp; is established. The decision boundary is at&nbsp; $G = 0$, which also gives rise to the property "symmetrical".<br>
+
*The decision line is at&nbsp; $G = 0$,&nbsp; which also gives rise to the property&nbsp; "symmetrical".<br>
  
<i>Note:</i>&nbsp; In the AWGN&ndash;model, we have denoted the binary output (after threshold decision) as&nbsp; $z \in \{0, \hspace{0.05cm}1\}$&nbsp;. For the digital channel models (BSC, BEC, BSEC), we now denote the discrete value output again by&nbsp; $y$. To avoid confusion, we now call the output signal of the AWGN&ndash;model&nbsp; $y_{\rm A}$. For the analog receive signal then&nbsp; $y_{\rm A} = \tilde{x} +n$.<br>
 
  
The BSC&ndash;model provides a statistically independent error sequence and is thus suitable for modeling memoryless zero feedback channels, which are considered without exception in this book.<br>
+
The BSC model provides a statistically independent error sequence and is thus suitable for modeling memoryless feedback-free channels,&nbsp; which are considered without exception in this book.<br>
  
For the description of memory-affected channels, other models must be used, which are discussed in the fifth main chapter of the book "Digital Signal Transmission", for example, bundle error channels according to the
+
For the description of memory-affected channels,&nbsp; other models must be used,&nbsp; which are discussed in the fifth main chapter of the book "Digital Signal Transmission",&nbsp; e.g.&nbsp; "bundle error channels"&nbsp; according to the
*&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_Gilbert-Elliott| Gilbert&ndash;Elliott model]],<br>
+
*&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_Gilbert-Elliott|$\text{Gilbert&ndash;Elliott model}$]],<br>
  
*&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_McCullough| McCullough model]].<br><br>
+
*&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels#Channel_model_according_to_McCullough|$\text{McCullough model}$]].<br><br>
 +
 
 +
{{GraueBox|TEXT=
 +
[[File:P ID2342 KC T 1 2 S2b.png|right|frame|Statistically independent errors&nbsp; (left)&nbsp; and bundle errors&nbsp; (right)|class=fit]]
 +
$\text{Example 1:}$&nbsp;  The figure shows
 +
*the original image in the middle,
 +
 +
*statistically independent errors according to the BSC model&nbsp; (left),
 +
 +
*so-called&nbsp; "bundle errors"&nbsp; according to Gilbert&ndash;Elliott&nbsp; (right).
  
[[File:P ID2342 KC T 1 2 S2b.png|right|frame|Statistically independent errors (left) and burst errors (right)|class=fit]]
 
{{GraueBox|TEXT= 
 
$\text{Example 1:}$&nbsp;  The figure shows
 
*statistically independent errors according to the BSC&ndash;model (left), and
 
*so-called burst errors according to Gilbert&ndash;Elliott (right).
 
  
 +
The bit error rate is $10\%$ in both cases.
  
The bit error rate is $10\%$ in both cases. From the right graph it can be seen from the burst noise that the image was transmitted line by line.}}<br>
+
From the right graph,&nbsp; it can be seen from the bundle error structure that the image was transmitted line by line.}}<br>
  
 
== Binary Erasure Channel – BEC ==
 
== Binary Erasure Channel – BEC ==
 
<br>
 
<br>
The BSC&ndash;model only provides the statements "correct" and "incorrect". However, some receivers&ndash; such as the so-called&nbsp;  [[Channel_Coding/Soft-in_Soft-Out_Decoder#Hard_Decision_vs._Soft_Decision|Soft&ndash;in Soft&ndash;out Decoder]]&nbsp; &ndash; can also provide some information about the certainty of the decision, although they must of course be informed about which of their input values are certain and which are rather uncertain.<br>
+
The BSC model only provides the statements&nbsp; "correct"&nbsp; and&nbsp; "incorrect".&nbsp; However,&nbsp; some receivers&nbsp; &ndash; such as the so-called&nbsp;  [[Channel_Coding/Soft-in_Soft-Out_Decoder#Hard_Decision_vs._Soft_Decision|$\text{soft&ndash;in soft&ndash;out decoder}$]]&nbsp; &ndash; can also provide some information about the certainty of the decision,&nbsp; although they must of course be informed about which of their input values are certain and which are rather uncertain.<br>
 +
 
 +
The&nbsp; "Binary Erasure Channel"&nbsp; $\rm (BEC)$&nbsp; provides such information.&nbsp; On the basis of the graph you can see:
 +
[[File:EN_KC_T_1_2_S3_neu.png|right|frame|BEC and connection with the AWGN model|class=fit]]
  
[[File:P ID2343 KC T 1 2 S3 v2.png|center|frame|Binary Erasure Channel (BEC) and connection with the AWGN model|class=fit]]
+
*The input alphabet of the BEC model is binary &nbsp; &#8658; &nbsp; $x &#8712; \{0, \hspace{0.05cm}1\}$ and the output alphabet is ternary &nbsp; &#8658; &nbsp;  $y &#8712; \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.  
The&nbsp; <i>Binary Erasure Channel</i>&nbsp; (BEC) provides such information. On the basis of the graph you can see:
 
*The input alphabet of the BEC&ndash;channel model is binary &nbsp; &#8658; &nbsp; $x &#8712; \{0, \hspace{0.05cm}1\}$ and the output alphabet is ternary &nbsp; &#8658; &nbsp;  $y &#8712; \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$. A&nbsp; $\rm E$&nbsp; denotes an uncertain decision. This new "symbol" stands for <i>Erasure</i>.
 
  
*Bit errors are excluded by the BEC&ndash;model per se. An unsafe decision&nbsp; $\rm (E)$&nbsp; is made with probability $\lambda$, while the probability for a correct (and at the same time safe) decision&nbsp; is $1-\lambda$&nbsp;.
+
*An&nbsp; "$\rm E$"&nbsp; denotes an uncertain decision.&nbsp; This new&nbsp; "symbol"&nbsp; stands for&nbsp; "Erasure".
  
*In the upper right, the relationship between BEC&ndash; and AWGN&ndash;channel model is shown, with the erasure&ndash;decision area&nbsp; $\rm (E)$&nbsp; highlighted in gray. In contrast to the BSC&ndash;model, there are now two decision boundaries&nbsp; $G_0 = G$ &nbsp;and&nbsp; $G_1 = -G$. It holds:
+
*Bit errors are excluded by the BEC model per se.&nbsp; An unsafe decision&nbsp; $\rm (E)$&nbsp; is made with probability&nbsp; $\lambda$,&nbsp; while the probability for a correct&nbsp; (and at the same time safe)&nbsp; decision&nbsp; is&nbsp; $1-\lambda$&nbsp;.
 +
 
 +
*In the upper right,&nbsp; the relationship between BEC and AWGN model is shown,&nbsp; with the erasure area&nbsp; $\rm (E)$&nbsp; highlighted in gray.  
 +
 
 +
*In contrast to the BSC model,&nbsp; there are now two decision lines&nbsp; $G_0 = G$ &nbsp;and&nbsp; $G_1 = -G$.&nbsp; It holds:
  
 
::<math>\lambda =  {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big]\hspace{0.05cm}.</math>
 
::<math>\lambda =  {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big]\hspace{0.05cm}.</math>
  
 
We refer here again to the following applets:  
 
We refer here again to the following applets:  
*[[Applets:Fehlerwahrscheinlichkeit|Symbol error probability of digital systems]],
+
*[[Applets:Fehlerwahrscheinlichkeit|"Symbol error probability of digital systems"]],
*[[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Function]].
+
 
 +
*[[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Function"]].
  
 
   
 
   
 
== Binary Symmetric Error & Erasure Channel – BSEC ==
 
== Binary Symmetric Error & Erasure Channel – BSEC ==
 
<br>
 
<br>
The BEC&ndash;model &nbsp;$($error probability $0)$&nbsp; is rather unrealistic and only an approximation for an extremely large signal&ndash;to&ndash;noise&ndash;power ratio (SNR for short)&nbsp; $\rho$.  
+
The BEC model is rather unrealistic &nbsp;$($error probability:&nbsp; $0)$&nbsp; and only an approximation for an extremely large signal&ndash;to&ndash;noise&ndash;power ratio&nbsp; $\rho$.  
  
More severe disturbances &nbsp; &#8658; &nbsp; a smaller&nbsp; $\rho$&nbsp; would be better served by the&nbsp; <i>Binary Symmetric Error & Erasure Channel</i>&nbsp; (BSEC) with the two parameters
+
Stronger noise&nbsp; $($a smaller&nbsp; $\rho)$&nbsp; would be better served by the&nbsp; "Binary Symmetric Error & Erasure Channel"&nbsp; $\rm (BSEC)$&nbsp; with the two parameters
 
*Falsification probability &nbsp; $\varepsilon = {\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$,<br>
 
*Falsification probability &nbsp; $\varepsilon = {\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$,<br>
  
*Erasure&ndash;Probability &nbsp; $\lambda = {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=1)$
+
*Erasure probability &nbsp; $\lambda = {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=1).$
  
  
can be modeled. As with the BEC&ndash;model,&nbsp; $x &#8712; \{0, \hspace{0.05cm}1\}$ &nbsp;and&nbsp; $y &#8712; \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.<br>
+
As with the BEC model,&nbsp; $x &#8712; \{0, \hspace{0.05cm}1\}$ &nbsp;and&nbsp; $y &#8712; \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.<br>
 
 
[[File:KC_T_1_2_S4_version2.png|center|frame|Binary Symmetric Error & Erasure Channel (BSEC) & connection with the AWGN model|class=fit]]
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 2:}$&nbsp;  We consider the BSEC&ndash;model with the two decision lines&nbsp; $G_0 = G = 0.5$&nbsp; and&nbsp; $G_1 = -G = -0.5$, whose parameters&nbsp; $\varepsilon$&nbsp; and&nbsp; $\lambda$&nbsp; are fixed by the SNR&nbsp; $\rho=1/\sigma^2$&nbsp; of the comparable AWGN&ndash;channel. Then
+
$\text{Example 2:}$&nbsp;  We consider the BSEC model with the two decision lines&nbsp;
*for&nbsp; $\sigma = 0.5$  &nbsp; &#8658; &nbsp; $\rho = 4$:
+
[[File:EN_KC_T_1_2_S4_neu.png|right|frame|BSEC and connection with the AWGN model|class=fit]]
::<math>\varepsilon = {\rm Q}\big[\sqrt{\rho} \cdot (1 + G)\big] = {\rm Q}(3) \approx 0.14\%\hspace{0.05cm},\hspace{0.6cm}
+
*$G_0 = G = 0.5$,
{\it \lambda} = {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big] -  \varepsilon = {\rm Q}(1) - {\rm Q}(3) \approx 15.87\% - 0.14\% = 15.73\%\hspace{0.05cm},</math>
+
*$G_1 = -G = -0.5$.
  
*for&nbsp; $\sigma = 0.25$  &nbsp; &#8658; &nbsp; $\rho = 16$:
 
  
::<math>\varepsilon = {\rm Q}(6) \approx 10^{-10}\hspace{0.05cm},\hspace{0.6cm}
+
The parameters&nbsp; $\varepsilon$&nbsp; and&nbsp; $\lambda$&nbsp; are fixed by the&nbsp; $\rm SNR$&nbsp; $\rho=1/\sigma^2$&nbsp; of the comparable AWGN channel.
{\it \lambda} = {\rm Q}(2)  \approx 2.27\%\hspace{0.05cm}.</math>
 
  
For the PDF shown on the right,&nbsp; $\rho = 4$&nbsp; was assumed. For&nbsp; $\rho = 16$&nbsp; the BSEC&ndash;model could be replaced by the simpler BEC&ndash;variant without serious differences.}}<br>
+
*For&nbsp; $\sigma = 0.5$ &nbsp; &#8658; &nbsp; $\rho = 4$&nbsp; (assumed for the sketched PDF):
 +
:$$\varepsilon = {\rm Q}\big[\sqrt{\rho} \cdot (1 + G)\big] = {\rm Q}(3) \approx 0.14\%\hspace{0.05cm},$$
 +
:$${\it \lambda} =  {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big] -  \varepsilon = {\rm Q}(1) - {\rm Q}(3) $$
 +
:$$\Rightarrow \hspace{0.3cm}{\it \lambda}  \approx 15.87\% -  0.14\% = 15.73\%\hspace{0.05cm},$$
  
== Maximum-a-posteriori– and Maximum-Likelihood–criterion==
+
*For&nbsp; $\sigma = 0.25$  &nbsp; &#8658; &nbsp; $\rho = 16$:
<br>
 
We now start from the model sketched below and apply the methods already described in chapter&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver| structure of the optimal receiver]]&nbsp; of the book "Digital Signal Transmission" to the decoding process.<br>
 
  
[[File:P ID2345 KC T 1 2 S5 v2.png|center|frame|Model for the description of MAP and ML decoding|class=fit]]
+
:$$\varepsilon  = {\rm Q}(6) \approx 10^{-10}\hspace{0.05cm},$$
 +
:$${\it \lambda} = {\rm Q}(2)  \approx 2.27\%\hspace{0.05cm}.$$
  
The task of the channel decoder&nbsp; (or channel decoder) is to determine the vector&nbsp; $\underline{v}$&nbsp; so that it matches the information word&nbsp; $\underline{u}$&nbsp; "as well as possible".
+
:Here,&nbsp; the BSEC model could be replaced by the simpler BEC variant without serious differences.}}<br>
  
{{BlaueBox|TEXT=
+
== Criteria&nbsp; &raquo;Maximum-a-posteriori&laquo;&nbsp; and&nbsp; &raquo;Maximum-Likelihood&laquo;==
$\text{Formulated a little more precisely:}$&nbsp;
+
<br>
*It shall minimize the&nbsp; '''block error probability'''&nbsp; ${\rm Pr(block \:error)} = {\rm Pr}(\underline{v} \ne \underline{u}) $&nbsp; related to the vectors&nbsp; $\underline{u}$&nbsp; and&nbsp; $\underline{v}$&nbsp; of length&nbsp; $k$&nbsp;.  
+
We now start from the model sketched below and apply the methods already described in chapter&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver|"Structure of the optimal receiver"]]&nbsp; of the book&nbsp; "Digital Signal Transmission"&nbsp; to the decoding process.<br>
  
*Because of the unique assignment&nbsp; $\underline{x} = {\rm enc}(\underline{u})$&nbsp; by the channel encoder or receiver side&nbsp; $\underline{v} = {\rm enc}^{-1}(\underline{z})$&nbsp; applies in the same way:
+
{{BlaueBox|TEXT=
 +
$\text{The task of the channel decoder}$&nbsp; 
 +
[[File:EN_KC_T_1_2_S5.png|right|frame|Model for the description of MAP and ML decoding|class=fit]]
 +
*is to determine the vector&nbsp; $\underline{v}$&nbsp; so
 +
*that it matches the information word&nbsp; $\underline{u}$&nbsp; "as well as possible".
  
::<math>{\rm Pr(block \:error)} = {\rm Pr}(\underline{z} \ne \underline{x})\hspace{0.05cm}. </math>}}
+
 +
Formulated a little more precisely:
 +
*Minimizing the&nbsp; &raquo;'''block error probability'''&laquo;&nbsp;
 +
:$${\rm Pr(block \:error)} = {\rm Pr}(\underline{v} \ne \underline{u}) $$
 +
:related to the vectors&nbsp; $\underline{u}$&nbsp; and&nbsp; $\underline{v}$&nbsp; of length&nbsp; $k$&nbsp;.  
  
The channel decoder in the above model consists of two parts:
+
*Because of the unique assignment&nbsp; $\underline{x} = {\rm enc}(\underline{u})$&nbsp; by the channel encoder and&nbsp; $\underline{v} = {\rm enc}^{-1}(\underline{z})$&nbsp; by the channel decoder applies in the same way:
*The&nbsp; <i>code word estimator</i>&nbsp; determines from the receive vector&nbsp; $\underline{y}$&nbsp; an estimate&nbsp; $\underline{z} \in \mathcal{C}$&nbsp; according to a given criterion.<br>
 
  
*From the (received) codeword&nbsp; $\underline{z}$&nbsp; the information word&nbsp; $\underline{v}$&nbsp; is determinedby&nbsp; <i>simple mapping</i>&nbsp;. This should match&nbsp; $\underline{u}$&nbsp;.<br><br>
+
::<math>{\rm Pr(block \:error)} = {\rm Pr}(\underline{z} \ne \underline{x})\hspace{0.05cm}. </math>}}
  
There are a total of four different variants for the codeword estimator, viz.
 
*the maximum&ndash;a&ndash;posteriori&ndash;receiver (MAP receiver) for the entire codeword&nbsp; $\underline{x}$,<br>
 
  
*the maximum&ndash;a&ndash;posteriori&ndash;receiver (MAP receiver) for the individual code bits&nbsp; $x_i$,<br>
+
The channel decoder in the above model consists of two parts:
 +
*The&nbsp; "code word estimator"&nbsp; determines from the received vector&nbsp; $\underline{y}$&nbsp; an estimate&nbsp; $\underline{z} \in \mathcal{C}$&nbsp; according to a given criterion.<br>
  
*the maximum&ndash;likelihood&ndash;receiver (ML receiver) for the entire codeword&nbsp; $\underline{x}$,<br>
+
*From the&nbsp; (received)&nbsp; code word&nbsp; $\underline{z}$&nbsp; the information word&nbsp; $\underline{v}$&nbsp; is determined by&nbsp; "simple mapping".&nbsp; This should match&nbsp; $\underline{u}$.<br><br>
  
*the maximum&ndash;likelihood&ndash;receiver (ML receiver) for the individual code bits&nbsp; $x_i$.<br><br>
+
There are a total of four different variants for the code word estimator, viz.
 +
#the maximum&ndash;a&ndash;posteriori&nbsp; $\rm (MAP)$&nbsp;  receiver for the entire code word&nbsp; $\underline{x}$,<br>
 +
#the maximum&ndash;a&ndash;posteriori&nbsp; $\rm (MAP)$&nbsp;  receiver for the individual code bits&nbsp; $x_i$,<br>
 +
#the maximum&ndash;likelihood&nbsp; $\rm (ML)$&nbsp; receiver for the entire code word&nbsp; $\underline{x}$,<br>
 +
#the maximum&ndash;likelihood&nbsp; $\rm (ML)$&nbsp; receiver for the individual code bits&nbsp; $x_i$.<br><br>
  
Their definitions follow on the next page. First of all, however, the essential distinguishing feature between MAP and ML:
+
Their definitions follow in the next section.&nbsp; First of all,&nbsp; however,&nbsp; the essential distinguishing feature between&nbsp; $\rm MAP$&nbsp; and&nbsp; $\rm ML$:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Conclusion:}$&nbsp;   
 
$\text{Conclusion:}$&nbsp;   
*A MAP&ndash;receiver, in contrast to the ML&ndash;receiver, also considers different occurrence probabilities for the entire codeword or for their individual bits.<br>
+
*A MAP receiver,&nbsp; in contrast to the ML receiver,&nbsp; also considers different occurrence probabilities for the entire code word or for their individual bits.<br>
  
*If all codewords&nbsp; $\underline{x}$&nbsp; and thus all bits&nbsp; $x_i$&nbsp; of the codewords are equally probable, the simpler ML&ndash;receiver is equivalent to the corresponding MAP&ndash;receiver.}}<br><br>
+
*If all code words&nbsp; $\underline{x}$&nbsp; and thus all bits&nbsp; $x_i$&nbsp; of the code words are equally probable,&nbsp; the simpler ML receiver is equivalent to the corresponding MAP receiver.}}<br><br>
  
 
== Definitions of the different optimal receivers ==
 
== Definitions of the different optimal receivers ==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''maximum&ndash;a&ndash;posteriori&ndash;block-level receiver''''&nbsp; &ndash; for short: &nbsp;<b>block&ndash;wise MAP</b> &ndash;  decides among the&nbsp; $2^k$&nbsp; codewords&nbsp; $\underline{x}_i \in \mathcal{C}$&nbsp; for the codeword with the highest a posteriori probability.
+
$\text{Definition:}$&nbsp; The&nbsp; "block&ndash;wise maximum&ndash;a&ndash;posteriori receiver"&nbsp; &ndash; for short: &nbsp;&raquo;<b>block&ndash;wise MAP</b>&laquo; &ndash;  decides among the&nbsp; $2^k$&nbsp; code words&nbsp; $\underline{x}_i \in \mathcal{C}$&nbsp; for the code word with the highest a&ndash;posteriori probability:
  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \vert\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.</math>
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \vert\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.</math>
  
${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} )$&nbsp; is the&nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability| conditional probability]], that&nbsp; $\underline{x}_i$&nbsp; was sent, when&nbsp; $\underline{y}$&nbsp; is received.}}<br>
+
*${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} )$&nbsp; is the&nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability|"conditional probability"]]&nbsp; that&nbsp; $\underline{x}_i$&nbsp; was sent,&nbsp; when&nbsp; $\underline{y}$&nbsp; is received.}}<br>
  
We now try to simplify this decision rule step by step. The inference probability can be transformed according to the "Bayes rule" as follows:
+
We now try to simplify this decision rule step by step.&nbsp; The inference probability can be transformed according to&nbsp; "Bayes rule"&nbsp; as follows:
  
 
::<math>{\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} ) =  
 
::<math>{\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} ) =  
 
  \frac{{\rm Pr}( \underline{y} \hspace{0.08cm} |\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \cdot {\rm Pr}( \underline{x}_{\hspace{0.03cm}i}  )}{{\rm Pr}( \underline{y}  )} \hspace{0.05cm}.</math>
 
  \frac{{\rm Pr}( \underline{y} \hspace{0.08cm} |\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \cdot {\rm Pr}( \underline{x}_{\hspace{0.03cm}i}  )}{{\rm Pr}( \underline{y}  )} \hspace{0.05cm}.</math>
  
The probability&nbsp; ${\rm Pr}( \underline{y}) $&nbsp; is independent of&nbsp; $\underline{x}_i$&nbsp; and need not be considered in maximization. Moreover, if all&nbsp; $2^k$&nbsp; information words&nbsp; $\underline{u}_i$&nbsp; are equally probable, then the maximization can also dispense with the contribution&nbsp; ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} ) = 2^{-k}$&nbsp; in the numerator.<br>
+
*The probability&nbsp; ${\rm Pr}( \underline{y}) $&nbsp; is independent of&nbsp; $\underline{x}_i$&nbsp; and need not be considered in maximization.
 +
* Moreover,&nbsp; if all&nbsp; $2^k$&nbsp; information words&nbsp; $\underline{u}_i$&nbsp; are equally probable,&nbsp; then the maximization can also dispense with the contribution&nbsp; ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} ) = 2^{-k}$&nbsp; in the numerator.<br>
 +
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  The probability&nbsp; ${\rm Pr}( \underline{y}) $&nbsp; is independent of&nbsp; $\underline{x}_i$&nbsp; and need not be considered in maximization. Moreover, if all&nbsp; $2^k$&nbsp; information words&nbsp; $\underline{u}_i$&nbsp; are equally probable, then the maximization can also dispense with the contribution&nbsp; ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} ) = 2^{-k}$&nbsp; in the numerator.
+
$\text{Definition:}$&nbsp;  The&nbsp; "block&ndash;wise maximum&ndash;likelihood receiver"&nbsp; &ndash; for short: &nbsp;&raquo;'''block&ndash;wise ML'''&laquo;&nbsp; &ndash; decides among the&nbsp; $2^k$&nbsp; allowed code words&nbsp; $\underline{x}_i \in \mathcal{C}$&nbsp; for the code word with the highest transition probability:
  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.</math>
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.</math>
  
The conditional probability&nbsp; ${\rm Pr}( \underline{y}  \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$&nbsp; is now to be understood in the forward direction, namely as the probability that the vector&nbsp; $\underline{y}$&nbsp; is received when the codeword&nbsp; $\underline{x}_i$&nbsp; has been sent.<br>
+
*The conditional probability&nbsp; ${\rm Pr}( \underline{y}  \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$&nbsp; is now to be understood in the forward direction,&nbsp; namely as the probability that the vector&nbsp; $\underline{y}$&nbsp; is received when the code word&nbsp; $\underline{x}_i$&nbsp; has been sent.<br>
  
In the following, we always use the maximum&ndash;likelihood&ndash;receiver at the block level. Due to the assumed equally likely information words, this also always provides the best possible decision}}.<br>
+
*In the following, we always use the maximum&ndash;likelihood receiver at the block level.&nbsp; Due to the assumed equally likely information words,&nbsp; this also always provides the best possible decision.}}<br>
  
However, the situation is different on the bit level. The goal of an iterative decoding is just to estimate probabilities for all code bits&nbsp; $x_i \in \{0, 1\}$&nbsp; and to pass these on to the next stage. For this one needs a MAP&ndash;receiver.<br>
+
However,&nbsp; the situation is different on the bit level.&nbsp; The goal of an iterative decoding is just to estimate probabilities for all code bits&nbsp; $x_i \in \{0, 1\}$&nbsp; and to pass these on to the next stage.&nbsp; For this one needs a MAP receiver.<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  The&nbsp; '''maximum&ndash;a&ndash;posteriori&ndash;bit-level receiver'''&nbsp; (short:&nbsp; '''bit&ndash;wise MAP''') selects for each individual code bit&nbsp; $x_i$&nbsp; the value &nbsp;$(0$ or $1)$&nbsp; with the highest inference probability&nbsp; ${\rm Pr}( {x}_{\hspace{0. 03cm}i}\vert \hspace{0.05cm} \underline{y} )$&nbsp; from:
+
$\text{Definition:}$&nbsp;  The&nbsp; "bit&ndash;wise maximum&ndash;a&ndash;posteriori receiver" &ndash; for short:&nbsp; &raquo;'''bit&ndash;wise MAP'''&laquo;&nbsp; &ndash; selects for each individual code bit&nbsp; $x_i$&nbsp; the value &nbsp;$(0$ or $1)$&nbsp; with the highest inference probability&nbsp; ${\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} )$:
  
 
::<math>\underline{z} = {\rm arg}\hspace{-0.1cm}{ \max_{ {x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \{0, 1\} } \hspace{0.03cm} {\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} ) \hspace{0.05cm} }.</math>}}<br>
 
::<math>\underline{z} = {\rm arg}\hspace{-0.1cm}{ \max_{ {x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \{0, 1\} } \hspace{0.03cm} {\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} ) \hspace{0.05cm} }.</math>}}<br>
  
== Maximum likelihood decision at the BSC channel ==
+
== Maximum-likelihood decision at the BSC channel ==
 
<br>
 
<br>
Wir wenden nun das Maximum&ndash;Likelihood&ndash;Kriterium auf den gedächtnislosen&nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|BSC&ndash;Kanal]]&nbsp; an. Dann gilt:
+
We now apply the maximum&ndash;likelihood criterion to the memoryless&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|$\text{BSC channel}$]].&nbsp; Then holds:
 
::<math>{\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) =
 
::<math>{\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) =
\prod\limits_{l=1}^{n} {\rm Pr}( y_l  \hspace{0.05cm}|\hspace{0.05cm} x_l ) \hspace{0.2cm}{\rm mit}\hspace{0.2cm}
+
\prod\limits_{l=1}^{n} {\rm Pr}( y_l  \hspace{0.05cm}|\hspace{0.05cm} x_l ) \hspace{0.5cm}{\rm with}\hspace{0.5cm}
 
{\rm Pr}( y_l  \hspace{0.05cm}|\hspace{0.05cm} x_l ) =  
 
{\rm Pr}( y_l  \hspace{0.05cm}|\hspace{0.05cm} x_l ) =  
 
  \left\{ \begin{array}{c} 1 - \varepsilon\\
 
  \left\{ \begin{array}{c} 1 - \varepsilon\\
 
   \varepsilon  \end{array} \right.\quad
 
   \varepsilon  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm falls} \hspace{0.15cm} y_l = x_l \hspace{0.05cm},\\
+
\begin{array}{*{1}c} {\rm if} \hspace{0.15cm} y_l = x_l \hspace{0.05cm},\\
{\rm falls} \hspace{0.15cm}y_l \ne x_l\hspace{0.05cm}.\\ \end{array}
+
{\rm if} \hspace{0.15cm}y_l \ne x_l\hspace{0.05cm}.\\ \end{array}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
 
::<math>\Rightarrow \hspace{0.3cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) =
 
::<math>\Rightarrow \hspace{0.3cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) =
Line 213: Line 242:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Beweis:}$&nbsp;  Dieses Ergebnis lässt sich wie folgt begründen:
+
$\text{Proof:}$&nbsp;  This result can be justified as follows:
*Die&nbsp; [[Channel_Coding/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming&ndash;Distanz]]&nbsp; $d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; gibt die Anzahl der Bitpositionen an, in denen sich die Worte&nbsp; $\underline{y}$&nbsp; und&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; mit jeweils&nbsp; $n$&nbsp; binären Elementen unterscheiden. Beispiel: &nbsp; Die Hamming&ndash;Distanz zwischen&nbsp; $\underline{y}= (0, 1, 0, 1, 0, 1, 1)$&nbsp; und&nbsp; $\underline{x}_{\hspace{0.03cm}i} = (0, 1, 0, 0, 1, 1, 1)$&nbsp; ist&nbsp; $2$.<br>
+
*The&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|$\text{Hamming distance}$]]&nbsp; $d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; specifies the number of bit positions where the words&nbsp; $\underline{y}$&nbsp; and&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; with each&nbsp; $n$&nbsp; binary element differ. Example: &nbsp; The Hamming distance between&nbsp; $\underline{y}= (0, 1, 0, 1, 0, 1, 1)$&nbsp; and&nbsp; $\underline{x}_{\hspace{0.03cm}i} = (0, 1, 0, 0, 1, 1, 1)$&nbsp; is&nbsp; $2$.<br>
 +
 
 +
*In&nbsp; $n - d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; positions thus the two vectors&nbsp; $\underline{y}$&nbsp; and&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; do not differ.&nbsp;  In the above example,&nbsp; five of the&nbsp; $n = 7$&nbsp; bits are identical.
  
*In&nbsp; $n - d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; Positionen unterscheiden sich demnach die beiden Vektoren&nbsp;  $\underline{y}$&nbsp; und&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; nicht. Im obigen Beispiel sind fünf der&nbsp; $n = 7$&nbsp; Bit identisch.
+
*Finally,&nbsp; one arrives at the above equation by substituting the falsification probability&nbsp; $\varepsilon$&nbsp; or its complement&nbsp; $1-\varepsilon$.}}<br>
*Zu obiger Gleichung kommt man schließlich durch Einsetzen der Verfälschungswahrscheinlichkeit&nbsp; $\varepsilon$&nbsp; bzw. deren Ergänzung&nbsp; $1-\varepsilon$.}}<br>
 
  
Die Vorgehensweise bei der Maximum&ndash;Likelihood&ndash;Detektion ist, dasjenige Codewort&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; zu finden, das die Übergangswahrscheinlichkeit&nbsp; ${\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$&nbsp; maximiert:
+
The approach to maximum&ndash;likelihood decoding is to find the code word&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; that has the transition probability&nbsp; ${\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$&nbsp; maximized:
  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}  
Line 227: Line 257:
 
\right ] \hspace{0.05cm}.</math>
 
\right ] \hspace{0.05cm}.</math>
  
Da der Logarithmus eine monoton steigende Funktion ist, erhält man das gleiche Ergebnis nach folgender Maximierung:
+
Since the logarithm is a monotonically increasing function,&nbsp; the same result is obtained after the following maximization:
  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
L(\underline{x}_{\hspace{0.03cm}i})\hspace{0.5cm} {\rm mit}\hspace{0.5cm} L(\underline{x}_{\hspace{0.03cm}i}) = \ln \left [  
+
L(\underline{x}_{\hspace{0.03cm}i})\hspace{0.5cm} {\rm with}\hspace{0.5cm} L(\underline{x}_{\hspace{0.03cm}i}) = \ln \left [  
 
\varepsilon^{d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot
 
\varepsilon^{d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot
 
(1-\varepsilon)^{n-d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})}
 
(1-\varepsilon)^{n-d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})}
Line 240: Line 270:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Hierbei ist zu berücksichtigen:
+
Here we have to take into account:
*Der zweite Term dieser Gleichung ist unabhängig von&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; und muss für die Maximierung nicht weiter betrachtet werden.  
+
*The second term of this equation is independent of&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; and need not be considered further for maximization.
*Auch der Faktor vor der Hamming&ndash;Distanz ist für alle&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; gleich.  
+
*Da&nbsp; $\ln \, {\varepsilon}/(1-\varepsilon)$&nbsp; negativ ist (zumindest für&nbsp; $\varepsilon <0.5$, was ohne große Einschränkung vorausgestzt werden kann), wird aus der Maximierung eine Minimierung, und man erhält folgendes Endergebnis:<br>
+
*Also,&nbsp; the factor before Hamming distance is the same for all&nbsp; $\underline{x}_{\hspace{0.03cm}i}$.
 +
 +
*Since&nbsp; $\ln \, {\varepsilon}/(1-\varepsilon)$&nbsp; is negative&nbsp; (at least for&nbsp; $\varepsilon <0.5$,&nbsp; which can be assumed without much restriction),&nbsp; maximization becomes minimization,&nbsp; and the following final result is obtained:<br>
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Maximum&ndash;Likelihood-Entscheidung beim BSC-Kanal:}$&nbsp;  
+
$\text{Maximum&ndash;likelihood decision at the BSC channel:}$&nbsp;  
  
Wähle von den&nbsp; $2^k$&nbsp; zulässigen Codeworten&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; dasjenige mit der <i>geringsten Hamming&ndash;Distanz</i>&nbsp; $d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; zum Empfangsvektor&nbsp; $\underline{y}$&nbsp; aus:
+
Choose from the&nbsp; $2^k$&nbsp; allowed code words&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; the one with the&nbsp; &raquo;'''least Hamming distance'''&laquo;&nbsp; $d_{\rm H}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; to the received vector&nbsp; $\underline{y}$:
  
 
::<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm}
 
::<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm}
Line 256: Line 288:
  
  
Anwendungen der ML/BSC&ndash;Entscheidung finden Sie auf den folgenden Seiten:
+
Applications of ML/BSC decision can be found in the following sections:
*[[Channel_Coding/Beispiele_bin%C3%A4rer_Blockcodes#Single_Parity.E2.80.93check_Codes|Single Parity&ndash;check Code]]&nbsp; (SPC)<br>
+
*[[Channel_Coding/Examples_of_Binary_Block_Codes#Single_Parity-check_Codes|$\text{SPC}$]]&nbsp; $($"single parity&ndash;check code"$)$.<br>
  
*[[Channel_Coding/Beispiele_binärer_Blockcodes#Wiederholungscodes|Wiederholungscode]]&nbsp; (englisch: &nbsp; <i>Repetition Code</i>, RC).<br>
+
*[[Channel_Coding/Examples_of_Binary_Block_Codes#Repetition_Codes|$\text{RC}$]]&nbsp; $($"repetition code"$)$.<br>
  
== Maximum likelihood decision at the AWGN channel ==
+
== Maximum-likelihood decision at the AWGN channel ==
 
<br>
 
<br>
Das AWGN&ndash;Modell für einen&nbsp; $(n, k)$&ndash;Blockcode unterscheidet sich vom&nbsp; [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang| Modell]]&nbsp; auf der ersten Kapitelseite dadurch, dass für&nbsp; $x$, &nbsp;$\tilde{x}$&nbsp; und &nbsp;$y$&nbsp; nun die entsprechenden Vektoren&nbsp; $\underline{x}$, &nbsp;$\underline{\tilde{x}}$&nbsp; und &nbsp;$\underline{y}$&nbsp; verwendet werden müssen, jeweils bestehend aus&nbsp; $n$&nbsp; Elementen.  
+
The AWGN model for a&nbsp; $(n, k)$&nbsp; block code differs from the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_binary_input| $\text{model}$]]&nbsp; in the first chapter section in that for&nbsp; $x$, &nbsp;$\tilde{x}$&nbsp; and &nbsp;$y$&nbsp; now the corresponding vectors&nbsp; $\underline{x}$, &nbsp;$\underline{\tilde{x}}$&nbsp; and &nbsp;$\underline{y}$&nbsp; must be used,&nbsp; each consisting of&nbsp; $n$&nbsp; elements.  
  
Die Schritte zur Herleitung des Maximum&ndash;Likelihood&ndash;Entscheiders bei AWGN werden nachfolgend nur stichpunktartig angegeben:
+
The steps to derive the maximum&ndash;likelihood decision for AWGN are given below only in bullet form:
*Der AWGN&ndash;Kanal ist per se gedächtnislos (hierfür steht das "White" im Namen). Für die bedingte Wahrscheinlichkeitsdichtefunktion kann somit geschrieben werden:
+
*The AWGN channel is memoryless per se&nbsp; (the&nbsp; "White"&nbsp; in the name stands for this).&nbsp; Thus,&nbsp; for the conditional probability density function&nbsp; $\rm (PDF)$,&nbsp; it can be written:
  
 
::<math>f( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) =
 
::<math>f( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) =
Line 272: Line 304:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*Die bedingte WDF ist für jedes einzelne Codeelement&nbsp; $(l = 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, n)$&nbsp; ''gaußisch''. Damit genügt auch die gesamte WDF einer (eindimensionalen) Gaußverteilung:
+
*The conditional PDF is&nbsp; "Gaussian"&nbsp; for each individual code element&nbsp; $(l = 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, n)$.&nbsp; Thus,&nbsp; the entire PDF also satisfies a&nbsp; (one-dimensional)&nbsp; Gaussian distribution:
  
 
::<math>f({y_l \hspace{0.03cm}| \hspace{0.03cm}\tilde{x}_l }) =  
 
::<math>f({y_l \hspace{0.03cm}| \hspace{0.03cm}\tilde{x}_l }) =  
Line 281: Line 313:
 
  \right ] \hspace{0.05cm}.</math>
 
  \right ] \hspace{0.05cm}.</math>
  
*Da&nbsp; $\underline{y}$&nbsp; nun nicht mehr wie beim BSC&ndash;Modell wertdiskret ist, sondern wertkontinuierlich, müssen jetzt nach der ML&ndash;Entscheidungsregel&nbsp; <i>Wahrscheinlichkeitsdichten</i>&nbsp; untersucht werden und nicht mehr Wahrscheinlichkeiten. Das optimale Ergebnis lautet:
+
*Since&nbsp; $\underline{y}$&nbsp; is now value-continuous rather than value-discrete as in the BSC model,&nbsp; probability densities&nbsp; must now be examined according to the maximum-likelihood decision rule&nbsp; rather than probabilities. The optimal result is:
  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
Line 287: Line 319:
 
\underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>
 
\underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>
  
*In der Algebra bezeichnet man den Abstand zweier Punkte&nbsp; $\underline{y}$&nbsp; und&nbsp; $\underline{\tilde{x}}$&nbsp; im&nbsp; $n$&ndash;dimensionalen Raum als die&nbsp; [https://de.wikipedia.org/wiki/Euklidischer_Abstand Euklidische Distanz], benannt nach dem griechischen Mathematiker&nbsp; [https://de.wikipedia.org/wiki/Euklid Euklid], der im dritten Jahrhundert vor Christus lebte:
+
*In algebra,&nbsp; the distance between two points&nbsp; $\underline{y}$&nbsp; and&nbsp; $\underline{\tilde{x}}$&nbsp; in&nbsp; $n$&ndash;dimensional space is called the&nbsp; [https://en.wikipedia.org/wiki/Euclidean_distance $\text{Euclidean distance}$],&nbsp; named after the Greek mathematician&nbsp; [https://en.wikipedia.org/wiki/Euclid $\text{Euclid}$]&nbsp; who lived in the third century BC:
  
 
::<math>d_{\rm E}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}) =
 
::<math>d_{\rm E}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}) =
Line 294: Line 326:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*Damit lautet die ML&ndash;Entscheidungsregel beim AWGN&ndash;Kanal für einen jeden Blockcode unter Berücksichtigung der Tatsache, dass der erste Faktor der WDF&nbsp; $f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}_i} )$&nbsp; konstant ist:
+
*Thus, the maximum-likelihood decision rule at the AWGN channel for any block code considering that the first factor of the PDF&nbsp; $f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}_i} )$&nbsp; is constant:
  
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
Line 301: Line 333:
 
\underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>
 
\underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>
  
Nach einigen weiteren Zwischenschritten kommt man zum Ergebnis:<br>
+
*After a few more intermediate steps, you arrive at the result:<br>
 +
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Maximum&ndash;Likelihood-Entscheidung beim AWGN-Kanal:}$&nbsp;
+
$\text{Maximum&ndash;likelihood decision at the AWGN channel:}$&nbsp;
 
   
 
   
Wähle von den&nbsp; $2^k$&nbsp; zulässigen Codeworten&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; dasjenige mit der <i>kleinsten Euklidischen Distanz</i>&nbsp; $d_{\rm E}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; zum Empfangsvektor  &nbsp;$\underline{y}$&nbsp; aus:
+
Choose from the&nbsp; $2^k$&nbsp; allowed code words&nbsp; $\underline{x}_{\hspace{0.03cm}i}$&nbsp; the one with the&nbsp; &raquo;'''smallest Euclidean distance'''&laquo;&nbsp; $d_{\rm E}(\underline{y}  \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$&nbsp; to the received vector &nbsp;$\underline{y}$:
  
 
::<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm}
 
::<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm}
Line 312: Line 345:
 
\underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>}}
 
\underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>}}
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_1.3:_Kanalmodelle_BSC–BEC–BSEC–AWGN|Aufgabe 1.3: Kanalmodelle BSC–BEC–BSEC–AWGN]]
+
[[Aufgaben:Exercise_1.3:_Channel_Models_BSC_-_BEC_-_BSEC_-_AWGN|Exercise 1.3: Channel Models&nbsp; "BSC - BEC - BSEC - AWGN"]]
  
[[Aufgaben:1.4 Maximum–Likelihood–Entscheidung|Aufgabe 1.4: Maximum–Likelihood–Entscheidung]]
+
[[Aufgaben:Exercise_1.4:_Maximum_Likelihood_Decision|Exercise 1.4: Maximum Likelihood Decision]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:57, 21 November 2022


AWGN channel at binary input


We consider the well-known discrete-time  $\text{AWGN}$  channel model according to the left graph:

  • The binary and discrete-time message signal  $x$  takes the values  $0$  and  $1$  with equal probability:
$${\rm Pr}(x = 0) ={\rm Pr}(x = 1) = 1/2.$$
  • We now transform the unipolar variable  $x \in \{0,\ 1 \}$  into the bipolar variable  $\tilde{x} \in \{+1, -1 \}$  more suitable for signal transmission.  Then holds:
Probability density function  $\rm (PDF)$  of the AWGN channel
$${\rm Pr}(\tilde{x} =+1) ={\rm Pr}(\tilde{x} =-1) = 1/2.$$
  • The transmission is affected by  "additive white Gaussian noise"  $\rm (AWGN)$  $n$  with  (normalized)  noise power  $\sigma^2 = N_0/E_{\rm B}$.  The root mean square  (rms value)  of the Gaussian PDF is  $\sigma$.
  • Because of the Gaussian PDF,  the output signal  $y = \tilde{x} +n$  can take on any real value in the range  $-\infty$  to  $+\infty$.  That means:
  • The AWGN output value  $y$  is therefore discrete in time like  $x$   $($resp. $\tilde{x})$  but in contrast to the latter it is continuous in value.


The graph on the right shows  $($in blue resp. red color$)$  the conditional probability density functions:

\[f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 )\hspace{-0.1cm} = \hspace{-0.1cm} \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ - (y-1)^2/(2\sigma^2) }\hspace{0.05cm},\]
\[f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\hspace{-0.1cm} = \hspace{-0.1cm} \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ - (y+1)^2/(2\sigma^2) }\hspace{0.05cm}.\]

Not shown is the total  $($unconditional$)$  PDF,  for which applies in the case of equally probable symbols:

\[f_y(y) = {1}/{2} \cdot \big [ f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 ) + f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\big ]\hspace{0.05cm}.\]

The two shaded areas  $($each  $\varepsilon)$  mark decision errors under the condition 

  • $x=0$   ⇒   $\tilde{x} = +1$  (blue),
  • $x=1$   ⇒   $\tilde{x} = -1$  (red),


when hard decisions are made:

\[z = \left\{ \begin{array}{c} 0\\ 1 \end{array} \right.\quad \begin{array}{*{1}c} {\rm if} \hspace{0.15cm} y > 0\hspace{0.05cm},\\ {\rm if} \hspace{0.15cm}y < 0\hspace{0.05cm}.\\ \end{array}\]

For equally probable input symbols, the bit error probability  ${\rm Pr}(z \ne x)$  is then also  $\varepsilon$. With the  "complementary Gaussian error function"  ${\rm Q}(x)$  the following holds:

\[\varepsilon = {\rm Q}(1/\sigma) = {\rm Q}(\sqrt{\rho}) = \frac {1}{\sqrt{2\pi} } \cdot \int_{\sqrt{\rho}}^{\infty}{\rm e}^{- \alpha^2/2} \hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.\]

where  $\rho = 1/\sigma^2 = 2 \cdot E_{\rm S}/N_0$  denotes the signal–to–noise ratio  $\rm (SNR)$  before the decision,  using the following system quantities:

  • $E_{\rm S}$  is the signal energy per symbol  (without coding:  $E_{\rm S}=E_{\rm B}$,  thus equal to the signal energy per bit),
  • $N_0$  denotes the constant  (one-sided)  noise power density of the AWGN channel.

Notes:   The presented facts are clarified with the  $($German language$)$  SWF applet  "Symbolfehlerwahrscheinlichkeit von Digitalsystemen"  
                 ⇒ "Symbol error probability of digital systems"

Binary Symmetric Channel – BSC


The AWGN channel model is not a digital channel model as we have presupposed in the paragraph  "Block diagram and prerequisities"  for the introductory description of channel coding methods.  However,  if we take into account a hard decision,  we arrive at the digital model  "Binary Symmetric Channel"  $\rm (BSC)$:

BSC model and relation with the AWGN model. Note:  In the AWGN model,  we have denoted the binary output as  $z \in \{0, \hspace{0.05cm}1\}$.  For the digital channel models  (BSC, BEC, BSEC),  we now denote the discrete value output again by  $y$.  To avoid confusion, we now call the output signal of the AWGN model  $y_{\rm A}$  and for the analog received signal then  $y_{\rm A} = \tilde{x} +n$
  • We choose the falsification probabilities  ${\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)$  resp.  ${\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$  to be
\[\varepsilon = {\rm Q}(\sqrt{\rho})\hspace{0.05cm}.\]
  • Then the connection to the  $\text{AWGN}$  channel model  is established. 
  • The decision line is at  $G = 0$,  which also gives rise to the property  "symmetrical".


The BSC model provides a statistically independent error sequence and is thus suitable for modeling memoryless feedback-free channels,  which are considered without exception in this book.

For the description of memory-affected channels,  other models must be used,  which are discussed in the fifth main chapter of the book "Digital Signal Transmission",  e.g.  "bundle error channels"  according to the

Statistically independent errors  (left)  and bundle errors  (right)

$\text{Example 1:}$  The figure shows

  • the original image in the middle,
  • statistically independent errors according to the BSC model  (left),
  • so-called  "bundle errors"  according to Gilbert–Elliott  (right).


The bit error rate is $10\%$ in both cases.

From the right graph,  it can be seen from the bundle error structure that the image was transmitted line by line.


Binary Erasure Channel – BEC


The BSC model only provides the statements  "correct"  and  "incorrect".  However,  some receivers  – such as the so-called  $\text{soft–in soft–out decoder}$  – can also provide some information about the certainty of the decision,  although they must of course be informed about which of their input values are certain and which are rather uncertain.

The  "Binary Erasure Channel"  $\rm (BEC)$  provides such information.  On the basis of the graph you can see:

BEC and connection with the AWGN model
  • The input alphabet of the BEC model is binary   ⇒   $x ∈ \{0, \hspace{0.05cm}1\}$ and the output alphabet is ternary   ⇒   $y ∈ \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.
  • An  "$\rm E$"  denotes an uncertain decision.  This new  "symbol"  stands for  "Erasure".
  • Bit errors are excluded by the BEC model per se.  An unsafe decision  $\rm (E)$  is made with probability  $\lambda$,  while the probability for a correct  (and at the same time safe)  decision  is  $1-\lambda$ .
  • In the upper right,  the relationship between BEC and AWGN model is shown,  with the erasure area  $\rm (E)$  highlighted in gray.
  • In contrast to the BSC model,  there are now two decision lines  $G_0 = G$  and  $G_1 = -G$.  It holds:
\[\lambda = {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big]\hspace{0.05cm}.\]

We refer here again to the following applets:


Binary Symmetric Error & Erasure Channel – BSEC


The BEC model is rather unrealistic  $($error probability:  $0)$  and only an approximation for an extremely large signal–to–noise–power ratio  $\rho$.

Stronger noise  $($a smaller  $\rho)$  would be better served by the  "Binary Symmetric Error & Erasure Channel"  $\rm (BSEC)$  with the two parameters

  • Falsification probability   $\varepsilon = {\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$,
  • Erasure probability   $\lambda = {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=1).$


As with the BEC model,  $x ∈ \{0, \hspace{0.05cm}1\}$  and  $y ∈ \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.

$\text{Example 2:}$  We consider the BSEC model with the two decision lines 

BSEC and connection with the AWGN model
  • $G_0 = G = 0.5$,
  • $G_1 = -G = -0.5$.


The parameters  $\varepsilon$  and  $\lambda$  are fixed by the  $\rm SNR$  $\rho=1/\sigma^2$  of the comparable AWGN channel.

  • For  $\sigma = 0.5$   ⇒   $\rho = 4$  (assumed for the sketched PDF):
$$\varepsilon = {\rm Q}\big[\sqrt{\rho} \cdot (1 + G)\big] = {\rm Q}(3) \approx 0.14\%\hspace{0.05cm},$$
$${\it \lambda} = {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big] - \varepsilon = {\rm Q}(1) - {\rm Q}(3) $$
$$\Rightarrow \hspace{0.3cm}{\it \lambda} \approx 15.87\% - 0.14\% = 15.73\%\hspace{0.05cm},$$
  • For  $\sigma = 0.25$   ⇒   $\rho = 16$:
$$\varepsilon = {\rm Q}(6) \approx 10^{-10}\hspace{0.05cm},$$
$${\it \lambda} = {\rm Q}(2) \approx 2.27\%\hspace{0.05cm}.$$
Here,  the BSEC model could be replaced by the simpler BEC variant without serious differences.


Criteria  »Maximum-a-posteriori«  and  »Maximum-Likelihood«


We now start from the model sketched below and apply the methods already described in chapter  "Structure of the optimal receiver"  of the book  "Digital Signal Transmission"  to the decoding process.

$\text{The task of the channel decoder}$ 

Model for the description of MAP and ML decoding
  • is to determine the vector  $\underline{v}$  so
  • that it matches the information word  $\underline{u}$  "as well as possible".


Formulated a little more precisely:

  • Minimizing the  »block error probability« 
$${\rm Pr(block \:error)} = {\rm Pr}(\underline{v} \ne \underline{u}) $$
related to the vectors  $\underline{u}$  and  $\underline{v}$  of length  $k$ .
  • Because of the unique assignment  $\underline{x} = {\rm enc}(\underline{u})$  by the channel encoder and  $\underline{v} = {\rm enc}^{-1}(\underline{z})$  by the channel decoder applies in the same way:
\[{\rm Pr(block \:error)} = {\rm Pr}(\underline{z} \ne \underline{x})\hspace{0.05cm}. \]


The channel decoder in the above model consists of two parts:

  • The  "code word estimator"  determines from the received vector  $\underline{y}$  an estimate  $\underline{z} \in \mathcal{C}$  according to a given criterion.
  • From the  (received)  code word  $\underline{z}$  the information word  $\underline{v}$  is determined by  "simple mapping".  This should match  $\underline{u}$.

There are a total of four different variants for the code word estimator, viz.

  1. the maximum–a–posteriori  $\rm (MAP)$  receiver for the entire code word  $\underline{x}$,
  2. the maximum–a–posteriori  $\rm (MAP)$  receiver for the individual code bits  $x_i$,
  3. the maximum–likelihood  $\rm (ML)$  receiver for the entire code word  $\underline{x}$,
  4. the maximum–likelihood  $\rm (ML)$  receiver for the individual code bits  $x_i$.

Their definitions follow in the next section.  First of all,  however,  the essential distinguishing feature between  $\rm MAP$  and  $\rm ML$:

$\text{Conclusion:}$ 

  • A MAP receiver,  in contrast to the ML receiver,  also considers different occurrence probabilities for the entire code word or for their individual bits.
  • If all code words  $\underline{x}$  and thus all bits  $x_i$  of the code words are equally probable,  the simpler ML receiver is equivalent to the corresponding MAP receiver.



Definitions of the different optimal receivers


$\text{Definition:}$  The  "block–wise maximum–a–posteriori receiver"  – for short:  »block–wise MAP« – decides among the  $2^k$  code words  $\underline{x}_i \in \mathcal{C}$  for the code word with the highest a–posteriori probability:

\[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \vert\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.\]
  • ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} )$  is the  "conditional probability"  that  $\underline{x}_i$  was sent,  when  $\underline{y}$  is received.


We now try to simplify this decision rule step by step.  The inference probability can be transformed according to  "Bayes rule"  as follows:

\[{\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} ) = \frac{{\rm Pr}( \underline{y} \hspace{0.08cm} |\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \cdot {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} )}{{\rm Pr}( \underline{y} )} \hspace{0.05cm}.\]
  • The probability  ${\rm Pr}( \underline{y}) $  is independent of  $\underline{x}_i$  and need not be considered in maximization.
  • Moreover,  if all  $2^k$  information words  $\underline{u}_i$  are equally probable,  then the maximization can also dispense with the contribution  ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} ) = 2^{-k}$  in the numerator.


$\text{Definition:}$  The  "block–wise maximum–likelihood receiver"  – for short:  »block–wise ML«  – decides among the  $2^k$  allowed code words  $\underline{x}_i \in \mathcal{C}$  for the code word with the highest transition probability:

\[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.\]
  • The conditional probability  ${\rm Pr}( \underline{y} \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$  is now to be understood in the forward direction,  namely as the probability that the vector  $\underline{y}$  is received when the code word  $\underline{x}_i$  has been sent.
  • In the following, we always use the maximum–likelihood receiver at the block level.  Due to the assumed equally likely information words,  this also always provides the best possible decision.


However,  the situation is different on the bit level.  The goal of an iterative decoding is just to estimate probabilities for all code bits  $x_i \in \{0, 1\}$  and to pass these on to the next stage.  For this one needs a MAP receiver.

$\text{Definition:}$  The  "bit–wise maximum–a–posteriori receiver" – for short:  »bit–wise MAP«  – selects for each individual code bit  $x_i$  the value  $(0$ or $1)$  with the highest inference probability  ${\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} )$:

\[\underline{z} = {\rm arg}\hspace{-0.1cm}{ \max_{ {x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \{0, 1\} } \hspace{0.03cm} {\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} ) \hspace{0.05cm} }.\]


Maximum-likelihood decision at the BSC channel


We now apply the maximum–likelihood criterion to the memoryless  $\text{BSC channel}$.  Then holds:

\[{\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = \prod\limits_{l=1}^{n} {\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) \hspace{0.5cm}{\rm with}\hspace{0.5cm} {\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) = \left\{ \begin{array}{c} 1 - \varepsilon\\ \varepsilon \end{array} \right.\quad \begin{array}{*{1}c} {\rm if} \hspace{0.15cm} y_l = x_l \hspace{0.05cm},\\ {\rm if} \hspace{0.15cm}y_l \ne x_l\hspace{0.05cm}.\\ \end{array} \hspace{0.05cm}.\]
\[\Rightarrow \hspace{0.3cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \hspace{0.05cm}.\]

$\text{Proof:}$  This result can be justified as follows:

  • The  $\text{Hamming distance}$  $d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$  specifies the number of bit positions where the words  $\underline{y}$  and  $\underline{x}_{\hspace{0.03cm}i}$  with each  $n$  binary element differ. Example:   The Hamming distance between  $\underline{y}= (0, 1, 0, 1, 0, 1, 1)$  and  $\underline{x}_{\hspace{0.03cm}i} = (0, 1, 0, 0, 1, 1, 1)$  is  $2$.
  • In  $n - d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$  positions thus the two vectors  $\underline{y}$  and  $\underline{x}_{\hspace{0.03cm}i}$  do not differ.  In the above example,  five of the  $n = 7$  bits are identical.
  • Finally,  one arrives at the above equation by substituting the falsification probability  $\varepsilon$  or its complement  $1-\varepsilon$.


The approach to maximum–likelihood decoding is to find the code word  $\underline{x}_{\hspace{0.03cm}i}$  that has the transition probability  ${\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$  maximized:

\[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} \left [ \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \right ] \hspace{0.05cm}.\]

Since the logarithm is a monotonically increasing function,  the same result is obtained after the following maximization:

\[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} L(\underline{x}_{\hspace{0.03cm}i})\hspace{0.5cm} {\rm with}\hspace{0.5cm} L(\underline{x}_{\hspace{0.03cm}i}) = \ln \left [ \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \right ] \]
\[ \Rightarrow \hspace{0.3cm} L(\underline{x}_{\hspace{0.03cm}i}) = d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}) \cdot \ln \hspace{0.05cm} \varepsilon + \big [n -d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\big ] \cdot \ln \hspace{0.05cm} (1- \varepsilon) = \ln \frac{\varepsilon}{1-\varepsilon} \cdot d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}) + n \cdot \ln \hspace{0.05cm} (1- \varepsilon) \hspace{0.05cm}.\]

Here we have to take into account:

  • The second term of this equation is independent of  $\underline{x}_{\hspace{0.03cm}i}$  and need not be considered further for maximization.
  • Also,  the factor before Hamming distance is the same for all  $\underline{x}_{\hspace{0.03cm}i}$.
  • Since  $\ln \, {\varepsilon}/(1-\varepsilon)$  is negative  (at least for  $\varepsilon <0.5$,  which can be assumed without much restriction),  maximization becomes minimization,  and the following final result is obtained:


$\text{Maximum–likelihood decision at the BSC channel:}$ 

Choose from the  $2^k$  allowed code words  $\underline{x}_{\hspace{0.03cm}i}$  the one with the  »least Hamming distance«  $d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$  to the received vector  $\underline{y}$:

\[\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.2cm} \underline{y} \in {\rm GF}(2^n) \hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]


Applications of ML/BSC decision can be found in the following sections:

Maximum-likelihood decision at the AWGN channel


The AWGN model for a  $(n, k)$  block code differs from the  $\text{model}$  in the first chapter section in that for  $x$,  $\tilde{x}$  and  $y$  now the corresponding vectors  $\underline{x}$,  $\underline{\tilde{x}}$  and  $\underline{y}$  must be used,  each consisting of  $n$  elements.

The steps to derive the maximum–likelihood decision for AWGN are given below only in bullet form:

  • The AWGN channel is memoryless per se  (the  "White"  in the name stands for this).  Thus,  for the conditional probability density function  $\rm (PDF)$,  it can be written:
\[f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) = \prod\limits_{l=1}^{n} f( y_l \hspace{0.05cm}|\hspace{0.05cm} \tilde{x}_l ) \hspace{0.05cm}.\]
  • The conditional PDF is  "Gaussian"  for each individual code element  $(l = 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, n)$.  Thus,  the entire PDF also satisfies a  (one-dimensional)  Gaussian distribution:
\[f({y_l \hspace{0.03cm}| \hspace{0.03cm}\tilde{x}_l }) = \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot \exp \left [ - \frac {(y_l - \tilde{x}_l)^2}{2\sigma^2} \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm} f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) = \frac {1}{(2\pi)^{n/2} \cdot \sigma^n } \cdot \exp \left [ - \frac {1}{2\sigma^2} \cdot \sum_{l=1}^{n} \hspace{0.2cm}(y_l - \tilde{x}_l)^2 \right ] \hspace{0.05cm}.\]
  • Since  $\underline{y}$  is now value-continuous rather than value-discrete as in the BSC model,  probability densities  must now be examined according to the maximum-likelihood decision rule  rather than probabilities. The optimal result is:
\[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}}_i )\hspace{0.05cm}, \hspace{0.5cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]
  • In algebra,  the distance between two points  $\underline{y}$  and  $\underline{\tilde{x}}$  in  $n$–dimensional space is called the  $\text{Euclidean distance}$,  named after the Greek mathematician  $\text{Euclid}$  who lived in the third century BC:
\[d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}) = \sqrt{\sum_{l=1}^{n} \hspace{0.2cm}(y_l - \tilde{x}_l)^2}\hspace{0.05cm},\hspace{0.8cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in \mathcal{C} \hspace{0.05cm}.\]
  • Thus, the maximum-likelihood decision rule at the AWGN channel for any block code considering that the first factor of the PDF  $f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}_i} )$  is constant:
\[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} \exp \left [ - \frac {d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}_i)}{2\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.8cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]
  • After a few more intermediate steps, you arrive at the result:


$\text{Maximum–likelihood decision at the AWGN channel:}$ 

Choose from the  $2^k$  allowed code words  $\underline{x}_{\hspace{0.03cm}i}$  the one with the  »smallest Euclidean distance«  $d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$  to the received vector  $\underline{y}$:

\[\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.8cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]

Exercises for the chapter


Exercise 1.3: Channel Models  "BSC - BEC - BSEC - AWGN"

Exercise 1.4: Maximum Likelihood Decision