(24 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Header | {{Header | ||
− | |Untermenü=Reed–Solomon–Codes | + | |Untermenü=Reed–Solomon–Codes and Their Decoding |
− | |Vorherige Seite= | + | |Vorherige Seite=Some Basics of Algebra |
− | |Nächste Seite=Definition | + | |Nächste Seite=Definition and Properties of Reed-Solomon Codes |
}} | }} | ||
− | == GF(2<sup>2</sup>) – | + | == GF(2<sup>2</sup>) – Example of an extension field== |
<br> | <br> | ||
− | + | In [[Channel_Coding/Some_Basics_of_Algebra#Examples_and_properties_of_Galois_fields|"Example 2"]] of the chapter "Some Basics of Algebra" it has already been shown that the »'''finite set of numbers'''« $\{0,\ 1,\ 2,\ 3\}$ ⇒ $q = 4$ does not satisfy the properties of a Galois field $\rm GF(4)$. Rather, the following tables result for the "addition modulo 4" and the "multiplication modulo 4": | |
:$$ \begin{array}{c} | :$$ \begin{array}{c} | ||
Line 19: | Line 19: | ||
2 & 2 & 3 &0 & 1 \\ | 2 & 2 & 3 &0 & 1 \\ | ||
3 & 3 & 0 &1 & 2 | 3 & 3 & 0 &1 & 2 | ||
− | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{ | + | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } |
\left[ \begin{array}{c|cccccc} \cdot & 0 & 1 &2 & 3 \\ \hline | \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 &2 & 3 \\ \hline | ||
0 & 0 & 0 & 0 & 0 \\ | 0 & 0 & 0 & 0 & 0 \\ | ||
Line 29: | Line 29: | ||
− | + | For $z_i = 2$ there is no multiplicative inverse ${\rm Inv_M}(z_i)$. This can be seen from the fact that no single element $z_i ∈ \{0,\ 1,\ 2,\ 3\}$ satisfies the condition $2 · z_i = 1$. | |
− | + | On the other hand, if we start from the binary Galois field ${\rm GF}(2) = \{0,\ 1\}$ and extend it according to the equation | |
::<math>{\rm GF}(2^2)= \big\{k_0+k_1\cdot \alpha \ \big | \ k_0, k_1\in{\rm GF}(2) = \{ 0, 1\} \big \}\hspace{0.05cm}, </math> | ::<math>{\rm GF}(2^2)= \big\{k_0+k_1\cdot \alpha \ \big | \ k_0, k_1\in{\rm GF}(2) = \{ 0, 1\} \big \}\hspace{0.05cm}, </math> | ||
− | + | then the likewise »<b>finite set $\{0,\ 1,\ \alpha,\ 1 + \alpha\}$</b>« ⇒ order is further $q=4$. | |
− | + | ||
+ | Performing the arithmetic operations modulo $p(\alpha) = \alpha^2 + \alpha + 1$ we get the following result: | ||
:$$ \begin{array}{c} | :$$ \begin{array}{c} | ||
Line 56: | Line 57: | ||
\end{array} \right] .$$ | \end{array} \right] .$$ | ||
− | + | In this regard, it should be noted: | |
− | * | + | *The neutral elements of addition or multiplication are still $N_{\rm A} = 0$ and $N_{\rm M} = 1$. |
− | * | + | *Since there is no difference between addition and subtraction in modulo arithmetic $\alpha + \alpha = \alpha - \alpha = 0$. |
− | * | + | *For all $z_i$ thus holds: The additive inverse of $z_i$ is the element $z_i$ itself. |
− | * | + | *The entries in the multiplication table are obtained according to the following calculations: |
::<math>\big [ \alpha \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + \alpha) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1\hspace{0.05cm},</math> | ::<math>\big [ \alpha \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + \alpha) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1\hspace{0.05cm},</math> | ||
::<math>\big [ \alpha \cdot \alpha \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 ) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1+\alpha\hspace{0.05cm},</math> | ::<math>\big [ \alpha \cdot \alpha \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 ) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1+\alpha\hspace{0.05cm},</math> | ||
::<math>\big [ (1+\alpha) \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + 1) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= \alpha\hspace{0.05cm}.</math> | ::<math>\big [ (1+\alpha) \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + 1) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= \alpha\hspace{0.05cm}.</math> | ||
− | * | + | *Thus, the multiplicative inverses exist for all elements except the zero element: |
::<math>{\rm Inv_M}( 1) = 1 \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(\alpha) = 1+\alpha \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(1+\alpha) = \alpha \hspace{0.05cm}.</math> | ::<math>{\rm Inv_M}( 1) = 1 \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(\alpha) = 1+\alpha \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(1+\alpha) = \alpha \hspace{0.05cm}.</math> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Intermediate result:}$ |
− | * | + | *The set $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$ together with operations "addition" and "multiplication" modulo $p(\alpha)= \alpha^2 + \alpha + 1$ represents a "Galois field" $($order $q = 4)$. |
− | * | + | |
− | + | *This Galois field, denoted by $\rm GF(2^2) = GF(4)$ satisfies all the requirements mentioned in the [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field| "previous chapter"]] .<br> | |
− | == | + | *In contrast to the Galois field $\rm GF(3) = \{0, \ 1, \ 2\}$ with the property that $q = 3$ is a prime number, $\rm GF(2^2)$ is called an extension field.}}<br> |
+ | |||
+ | == Reducible and irreducible polynomials == | ||
<br> | <br> | ||
− | + | The polynomial $p(\alpha)$ and thus the equation of determination $p(\alpha) = 0$ must not be given arbitrarily. The polynomial used in the last section | |
:$$p(\alpha)= \alpha^2 + \alpha + 1$$ | :$$p(\alpha)= \alpha^2 + \alpha + 1$$ | ||
− | + | is suitable. Now we try another polynomial, namely $p(\alpha)= \alpha^2 + 1$. | |
:$$ \begin{array}{c} | :$$ \begin{array}{c} | ||
Line 100: | Line 103: | ||
\end{array} \right] .$$ | \end{array} \right] .$$ | ||
− | + | The addition table is identical in both cases and also the multiplication tables differ only by the four entries in the two bottom rows and the two last columns: | |
− | * | + | *From $p(\alpha) = 0$ now follows for the product $\alpha \cdot \alpha = 1$ and the product $(1 +\alpha) \cdot (1 +\alpha) $ gives the zero element. The mixed product is $\alpha \cdot (1 +\alpha) = 1 +\alpha $.<br> |
− | *In | + | *In the last row of the multiplication table and also in the last column there is now no "$1$" ⇒ Concerning the condition $p(\alpha)= \alpha^2 + 1= 0$ consequently the multiplicative inverse to $1 +\alpha$ does not exist.<br> |
− | * | + | *But thus the finite set $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$ together with arithmetic operations modulo $p(\alpha)= \alpha^2 + 1$ does not satisfy the conditions of an extension field either $\rm GF(2^2) $.<br><br> |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Let us summarize:}$ |
− | + | From the binary Galois field $\rm GF(2) = \{0, \ 1\}$ an extension field $\rm GF(2^2)$ can be formulated with the aid of a polynomial of degree $m = 2$ with binary coefficients: | |
::<math>p(x) = x^2 + k_1 \cdot x + k_0 \hspace{0.05cm}, \hspace{0.45cm}k_0\hspace{0.05cm},\hspace{0.1cm}k_1 \in \{0, 1\} | ::<math>p(x) = x^2 + k_1 \cdot x + k_0 \hspace{0.05cm}, \hspace{0.45cm}k_0\hspace{0.05cm},\hspace{0.1cm}k_1 \in \{0, 1\} | ||
− | \hspace{0.05cm} | + | \hspace{0.05cm}.</math> |
− | + | <u>Note:</u> The renaming of the variable $\alpha$ to $x$ has only formal meaning with regard to later sections.<br> | |
− | + | *In the present case there is only one suitable polynomial $p_1(x)= x^2 + x + 1$. All other possible polynomials of degree $m = 2$, namely, | |
− | * | ||
::<math>p_2(x) = x^2 + 1 \hspace{0.06cm} = (x+1) \cdot (x+1)\hspace{0.05cm},</math> | ::<math>p_2(x) = x^2 + 1 \hspace{0.06cm} = (x+1) \cdot (x+1)\hspace{0.05cm},</math> | ||
::<math>p_3(x) =x^2 \hspace{0.76cm} = x \cdot x \hspace{0.05cm},</math> | ::<math>p_3(x) =x^2 \hspace{0.76cm} = x \cdot x \hspace{0.05cm},</math> | ||
::<math>p_4(x) = x^2 + x = (x+1) \cdot x\hspace{0.05cm}, </math> | ::<math>p_4(x) = x^2 + x = (x+1) \cdot x\hspace{0.05cm}, </math> | ||
− | : | + | :can be factorized and do not yield extension fields. |
− | * | + | *The polynomials $p_2(x)$, $p_3(x)$ and $p_4(x)$ are called "reducible". |
− | * | + | |
+ | *The conclusion is obvious that only "irreducible polynomials" such as $p_1(x)$ are suitable for an extension fields}}.<br> | ||
− | == Interpretation | + | == Interpretation of the new element "alpha" == |
<br> | <br> | ||
− | + | We further consider the field ${\rm GF}(2^2) = \{0, \ 1,\ \alpha,\ 1 + \alpha\}$ corresponding to the following two operational tables, based on the constraint $p(\alpha)= \alpha^2 + \alpha + 1 = 0$ (irreducible ploynomial): | |
:$$ \begin{array}{c} | :$$ \begin{array}{c} | ||
Line 149: | Line 152: | ||
− | [[File:EN_KC_T_2_2_S1.png|right|frame| | + | [[File:EN_KC_T_2_2_S1.png|right|frame|Transition from ${\rm GF}(2)$ to ${\rm GF}(2^2)$ |class=fit]] |
− | + | But what is the meaning of the new element $\alpha$? | |
− | * | + | *The polynomial $p(\alpha)= \alpha^2 + \alpha + 1 $ has no zero in ${\rm GF}(2) = \{0, \ 1\}$ . This further implies that $\alpha$ can be neither $0$ nor $1$ .<br> |
− | * | + | *If $\alpha= 0$ resp. $\alpha= 1$, then moreover two of the four set elements $\{0,\ 1,\ \alpha,\ 1 + \alpha\}$ would be identical respectively: Either "$0$" and "$\alpha$" as well as "$1$" and "$1+\alpha$" or "$1$" and "$\alpha$" as well as "$0$" and "$1+\alpha$". |
− | * | + | *Much more the one-dimensional field ${\rm GF}(2)$ gets a second dimension by the introduction of the element $\alpha$ . It is thus extended to the Galois field ${\rm GF}(2^2)$ as shown in the accompanying diagram. |
− | * | + | *The element $\alpha$ has similar meaning as the imaginary unit ${\rm j}$, by which one extends the set of real numbers under the constraint ${\rm j}^2 + 1 = 0$ to the set of complex numbers. |
<br clear=all> | <br clear=all> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Common representation of the binary extension field}\ \ {\rm GF}(2^2)\text{:}$ |
− | + | Due to the identity $\alpha^2 = 1 + \alpha$, which follows from the constraint $p(\alpha) = 0$ , one can write in the same way ${\rm GF}(2^2) = \{0,\ 1,\ \alpha,\ \alpha^2\}$ where now the following operation tables hold: | |
:$$ \begin{array}{c} | :$$ \begin{array}{c} | ||
Line 184: | Line 187: | ||
− | == | + | == Polynomials over a finite field == |
<br> | <br> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ A »'''polynomial'''« in a finite field ${\rm GF}(P)$, where $P$ denotes a prime number, has the following form: |
::<math>a(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + a_m \cdot x^{m} | ::<math>a(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + a_m \cdot x^{m} | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | + | To note: | |
− | * | + | *All coefficients $a_i $ are elements of the field: $a_i \in {\rm GF}(P)$.<br> |
− | * | + | *If the leading coefficient $a_m ≠ 0$, then $m$ indicates the »'''degree'''« of the polynomial.}}<br> |
− | + | Let us consider a second polynomial with degree $M$, | |
::<math>b(x) = \sum_{i = 0}^{M} b_i \cdot x^{i} = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + b_M \cdot x^{M} | ::<math>b(x) = \sum_{i = 0}^{M} b_i \cdot x^{i} = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + b_M \cdot x^{M} | ||
\hspace{0.05cm},</math> | \hspace{0.05cm},</math> | ||
− | + | then we get for the sum (resp. difference) and the product respectively in ${\rm GF}(P)$: | |
::<math>a(x) \pm b(x) = \sum_{i = 0}^{{\rm max}\hspace{0.05cm}(m, \hspace{0.05cm}M)} \hspace{0.15cm}(a_i \pm b_i) \cdot x^{i} \hspace{0.05cm},</math> | ::<math>a(x) \pm b(x) = \sum_{i = 0}^{{\rm max}\hspace{0.05cm}(m, \hspace{0.05cm}M)} \hspace{0.15cm}(a_i \pm b_i) \cdot x^{i} \hspace{0.05cm},</math> | ||
Line 209: | Line 212: | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 1:}$ $a(x) = x^3 + x + 1$ and $b(x) = x^2 + x + 1$ are valid. |
− | + | In the binary Galois field ⇒ ${\rm GF}(2)$ results according to the above equations for the sum, difference and product of the two polynomials: | |
::<math>s(x) = a(x) + b(x) = x^3 + x^2 \hspace{0.05cm}, </math> | ::<math>s(x) = a(x) + b(x) = x^3 + x^2 \hspace{0.05cm}, </math> | ||
Line 219: | Line 222: | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | + | With $a_0 = a_1 = a_3 = b_0 = b_1 =b_2 = 1$ and $a_2 = a_4 = a_5 = b_3 = b_4 =b_5 = 0$ we obtain: | |
::<math>c_0 = a_0 \cdot b_0 = 1 \cdot 1 = 1 \hspace{0.05cm},</math> | ::<math>c_0 = a_0 \cdot b_0 = 1 \cdot 1 = 1 \hspace{0.05cm},</math> | ||
Line 233: | Line 236: | ||
::<math>\Rightarrow \hspace{0.3cm} c(x) = x^5 + x^4 +1 \hspace{0.05cm}.</math> | ::<math>\Rightarrow \hspace{0.3cm} c(x) = x^5 + x^4 +1 \hspace{0.05cm}.</math> | ||
− | + | In the Galois field ${\rm GF}(3)$ other results are obtained due to the modulo 3 operations: | |
::<math>s(x) = (x^3 + x + 1) + (x^2 + x + 1) = x^3 + x^2 + 2x + 2\hspace{0.05cm},</math> | ::<math>s(x) = (x^3 + x + 1) + (x^2 + x + 1) = x^3 + x^2 + 2x + 2\hspace{0.05cm},</math> | ||
Line 240: | Line 243: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ A polynomial $a(x)$ is called »'''reducible'''« if it can be represented as the product of two polynomials $p(x)$ and $q(x)$ each of lower degree: |
::<math>a(x) = p(x) \cdot q(x) | ::<math>a(x) = p(x) \cdot q(x) | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | + | If this factorization is not possible, that is | |
::<math>a(x) = p(x) \cdot q(x) + r(x)\hspace{0.05cm},\hspace{0.5cm} r(x) \ne 0</math> | ::<math>a(x) = p(x) \cdot q(x) + r(x)\hspace{0.05cm},\hspace{0.5cm} r(x) \ne 0</math> | ||
− | + | holds, then the polynomial is called an »'''irreducible'''« or »'''prime'''«.}}<br> | |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 2:}$ It holds $b(x) = x^3 + x + 1$, then $p_1(x) = x^2 + x + 1$ and $p_2(x) = x^2 + 1$ are valid. |
+ | |||
+ | The graph on the left illustrates the modulo 2 multiplication $a(x)= b(x) \cdot p_1(x)$. The result is $a(x) = x^5 + x^4 + 1$.<br> | ||
− | + | [[File:EN_KC_T_2_2_S2.png|center|frame|Example of polynomial multiplication and division|class=fit]] | |
− | + | In the right part of the above graph, the modulo 2 division $q(x)= a(x)/ p_2(x)$ is shown with the result $q(x) = x^3 + x^2 + x + 1$. | |
+ | * This leaves the remainder $r(x) = x$. | ||
− | + | *According to this calculation alone $a(x) = x^5 + x^4 + 1$ could well be an irreducible polynomial.<br> | |
− | + | *However, the proof that the polynomial $a(x) = x^5 + x^4 + 1$ is indeed irreducible would only be given if $a(x)/p(x)$ yields a remainder for all | |
− | ::<math>p(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}</math> | + | ::<math>p(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}.</math> |
− | + | :This proof would require (almost) $2^5 = 32$ divisions in the present example.<br> | |
− | + | *Based on our left-hand calculation, we can immediately see here that $a(x)$ is certainly not an irreducible polynomial, <br>since e.g. $a(x) = x^5 + x^4 + 1$ divided by $p_1(x) = x^2 + x + 1$ yields the polynomial $b(x) = x^3 + x + 1$ with no remainder.}}<br> | |
− | == | + | == Generalized definition of an extension field == |
<br> | <br> | ||
− | + | We assume the following: | |
− | * | + | *A Galois field ${\rm GF}(P)$, where $P$ denotes a prime number,<br> |
− | * | + | *an irreducible polynomial $p(x)$ over ${\rm GF}(P)$ of degree $m$: |
::<math>p(x) = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}, \hspace{0.3cm} | ::<math>p(x) = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}, \hspace{0.3cm} | ||
a_i \in {\rm G}(P)\hspace{0.05cm}, \hspace{0.15cm}a_m \ne 0\hspace{0.05cm}. </math> | a_i \in {\rm G}(P)\hspace{0.05cm}, \hspace{0.15cm}a_m \ne 0\hspace{0.05cm}. </math> | ||
− | + | With the above conditions generally applies: | |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ Let |
+ | #$P$ be a prime number, | ||
+ | #$m$ be an integer, | ||
+ | #$p(x)$ be an irreducible polynomial of degree $m$ and | ||
+ | #$p(\alpha) = 0$ hold. | ||
+ | |||
− | + | An <b>extension field</b> can then be described as follows: | |
::<math>{\rm GF}(P^m)= \Big\{ k_{m-1} \hspace{0.01cm}\cdot \hspace{0.02cm}\alpha^{m-1} \hspace{0.05cm}+ \hspace{0.05cm}\text{...} \hspace{0.05cm}+ \hspace{0.05cm}k_1 \hspace{0.01cm}\cdot \hspace{0.02cm} \alpha \hspace{0.05cm}+ \hspace{0.05cm} k_0\hspace{0.05cm} \Big{\vert}\hspace{0.02cm} \ k_i\in{\rm GF}(P) = \{ 0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, P-1\}\Big \}.</math> | ::<math>{\rm GF}(P^m)= \Big\{ k_{m-1} \hspace{0.01cm}\cdot \hspace{0.02cm}\alpha^{m-1} \hspace{0.05cm}+ \hspace{0.05cm}\text{...} \hspace{0.05cm}+ \hspace{0.05cm}k_1 \hspace{0.01cm}\cdot \hspace{0.02cm} \alpha \hspace{0.05cm}+ \hspace{0.05cm} k_0\hspace{0.05cm} \Big{\vert}\hspace{0.02cm} \ k_i\in{\rm GF}(P) = \{ 0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, P-1\}\Big \}.</math> | ||
− | * | + | *The addition and multiplication in this extension field then corresponds to polynomial addition and polynomial multiplication modulo $p(\alpha)$.<br> |
− | |||
− | |||
− | |||
− | |||
− | + | *So: A Galois field ${\rm GF}(q)$ with $q$ elements can be specified whenever the element number can be written in the form $q = P^m$ <br>$(P$ denotes a prime number, $m$ be integer$)$.}}<br> | |
− | + | [[File:EN_KC_T_2_2_S3.png|right|frame|Possible Galois fields ${\rm GF}(q)$ for $q ≤ 64$ |class=fit]] | |
− | + | <br><br> | |
+ | The diagram shows for which $q$–values a Galois field can be constructed. For the shaded values no finite field can be given. | ||
− | + | Further it is to be noted: | |
− | + | #The yellow highlighted positions $q=P$ ⇒ $m = 1$ mark sets of numbers $\{0,\ 1,\hspace{0.05cm}\text{ ...} \hspace{0.05cm},\ q- 1\}$ with Galois properties, see section [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field|"Definition of a Galois Field"]].<br> | |
− | + | #Other background colors mark extension fields with $q=P^m$, $m ≥ 2$. For $q ≤ 64$ these are based on the primes $2$, $3$, $5$, $7$.<br> | |
+ | #Highlighted in red are binary fields ⇒ $q=2^m$, $m ≥ 1$, which will be considered in more detail in the next section. | ||
+ | # All other extension fields are labeled in blue.<br> | ||
<br clear=all> | <br clear=all> | ||
− | == | + | == Binary extension fields – Primitive polynomials== |
<br> | <br> | ||
− | [[File:EN_KC_T_2_2_S4.png|right|frame| | + | [[File:EN_KC_T_2_2_S4.png|right|frame|Irreducible and primitive polynomials|class=fit]] |
− | + | In the following we consider binary extension fields with $q$ elements: | |
::<math>q = 2^m \hspace{0.15cm}(m \ge 2) \hspace{0.3cm} \Rightarrow\hspace{0.3cm} q = 4,\ 8,\ 16, 32,\ 64,\ \text{...}</math> | ::<math>q = 2^m \hspace{0.15cm}(m \ge 2) \hspace{0.3cm} \Rightarrow\hspace{0.3cm} q = 4,\ 8,\ 16, 32,\ 64,\ \text{...}</math> | ||
− | + | *In the table all irreducible polynomials of the Galois field ${\rm GF}(2)$ are given for $2 ≤ m ≤ 6$. | |
− | *In | + | |
− | * | + | *The polynomials in columns 2 and 3 are not only irreducible, but additionally also primitive.<br> |
− | |||
+ | *Primitive polynomials also provide the basis for the [[Theory_of_Stochastic_Signals/Generation_of_Discrete_Random_Variables#Realization_of_PN_generators|"Realization of pseudo–noise generators"]].<br> | ||
− | |||
− | + | Before we turn to the definition of a primitive polynomial, we shall first mention the peculiarities of "primitive elements" using the example of | |
− | + | ::<math>{\rm GF}(q) = \{\hspace{0.05cm}z_0 = 0,\hspace{0.1cm} z_1 = 1,\hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.05cm}z_{q-1}\}.</math> | |
− | |||
− | *$\beta^{\hspace{0.05cm}i}$ | + | The element $z_i = \beta$ is then called »'''primitive'''« , |
+ | *if the power $\beta^{\hspace{0.05cm}i}$ modulo $q$ for the first time for $i = q-1$ leads to the result "$1$" so that <br> | ||
+ | |||
+ | *$\beta^{\hspace{0.05cm}i}$ for $1 ≤ i ≤ q- 1$ yields exactly the elements $z_1$, ... , $z_{q-1}$ i.e. all elements of ${\rm GF}(q)$ except the zero element $z_0 = 0$.<br> | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 3:}$ From the number set $Z_5 = \{0,\ 1,\ 2,\ 3,\ 4\}$, the numbers "$2$" and "$3$" are primitive elements because of |
::<math>2^1 \hspace{-0.1cm} = \hspace{-0.1cm} 2\hspace{0.05cm},\hspace{0.2cm} 2^2 = 4\hspace{0.05cm},\hspace{0.2cm} 2^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} 2^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},</math> | ::<math>2^1 \hspace{-0.1cm} = \hspace{-0.1cm} 2\hspace{0.05cm},\hspace{0.2cm} 2^2 = 4\hspace{0.05cm},\hspace{0.2cm} 2^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} 2^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},</math> | ||
::<math>3^1 \hspace{-0.1cm} = \hspace{-0.1cm} 3\hspace{0.05cm},\hspace{0.2cm} 3^2 = 9\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 3^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} 3^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1</math> | ::<math>3^1 \hspace{-0.1cm} = \hspace{-0.1cm} 3\hspace{0.05cm},\hspace{0.2cm} 3^2 = 9\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 3^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} 3^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1</math> | ||
− | * | + | *On the other hand, "$4$" is not a primitive element, because already $4^2 = 1$: |
::<math>4^1 = 4\hspace{0.05cm},\hspace{0.2cm} 4^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\hspace{0.2cm} 4^3 = 64 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 4^4 = 256 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm}.</math>}}<br> | ::<math>4^1 = 4\hspace{0.05cm},\hspace{0.2cm} 4^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\hspace{0.2cm} 4^3 = 64 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 4^4 = 256 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm}.</math>}}<br> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ An irreducible polynomial is called at the same time a »'''primitive polynomial'''« <br> if the root $\alpha$ with respect to the polynomial $p(x)$ is a primitive element of ${\rm GF}(q)$. Then holds |
::<math>{\rm GF}(q) = \{\hspace{0.1cm}\alpha^{-\infty} = 0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0} = 1,\hspace{0.05cm}\hspace{0.2cm} | ::<math>{\rm GF}(q) = \{\hspace{0.1cm}\alpha^{-\infty} = 0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0} = 1,\hspace{0.05cm}\hspace{0.2cm} | ||
\alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^{2},\hspace{0.2cm} \text{...} \hspace{0.1cm} , \hspace{0.2cm}\alpha^{q-2}\hspace{0.1cm}\}\hspace{0.05cm}. </math>}}<br> | \alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^{2},\hspace{0.2cm} \text{...} \hspace{0.1cm} , \hspace{0.2cm}\alpha^{q-2}\hspace{0.1cm}\}\hspace{0.05cm}. </math>}}<br> | ||
− | * | + | *All polynomials given in the second column of the above table are both irreducible and primitive. |
− | * | + | |
− | * | + | *If $p_1(x)$ is a primitive polynomial, then the polynomial reciprocal $p_2 (x) = x^m \cdot p_1(x^{-1})$ to it is also primitive. |
+ | |||
+ | *All polynomials in the third column are reciprocal to the polynomial in the second column. For example, for $m = 3$: | ||
::<math>p_1(x) = x^3 + x + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}p_2(x) = x^3 \cdot \big[x^{-3} + x^{-1} + 1 \big]= x^3 + x^2 + 1 \hspace{0.05cm}.</math> | ::<math>p_1(x) = x^3 + x + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}p_2(x) = x^3 \cdot \big[x^{-3} + x^{-1} + 1 \big]= x^3 + x^2 + 1 \hspace{0.05cm}.</math> | ||
− | * | + | *The irreducible polynomials of column 4, on the other hand, are not primitive; they play only a minor role in describing error correction procedures.<br> |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 4:}$ For clarification of these statements we consider exemplarily |
− | * | + | *the Galois field $\rm GF(2^3) = GF(8)$, as well as <br> |
− | * | + | |
+ | *the polynomial $p(x) = x^3 + x + 1$.<br><br> | ||
− | + | From the condition $p(\alpha) = 0$ we obtain in $\rm GF(2^3)$ further: | |
::<math>\alpha^3 + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^3 = \alpha + 1 \hspace{0.05cm},</math> | ::<math>\alpha^3 + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^3 = \alpha + 1 \hspace{0.05cm},</math> | ||
− | + | and thus for the powers $\alpha^{i}$ of the root for $i ≥ 4$: | |
::<math>\alpha^4 = \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},</math> | ::<math>\alpha^4 = \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},</math> | ||
Line 369: | Line 383: | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 5:}$ The elements $z_0$, $z_1$, ... , $z_7$ of the Galois field $\rm GF(2^3)$ can be represented according to the adjacent table as follows: |
− | [[File:EN_KC_T_2_2_S4b_neu.png|right|frame| | + | [[File:EN_KC_T_2_2_S4b_neu.png|right|frame|Elements of $\rm GF(2^3)$ in three different representations]] |
− | * | + | *as powers of $\alpha$ ⇒ »'''exponent representation'''«,<br> |
− | * | + | *as polynomials of the form $k_2 \cdot \alpha^2 + k_1 \cdot \alpha + k_0$ with binary coefficients $k_2$, $k_1$, $k_0$ ⇒ »'''polynomial representation'''«,<br> |
− | * | + | *as vectors of coefficients $(k_2, \ k_1, \ k_0)$ ⇒ »'''coefficient representation'''«.<br><br> |
− | + | ⇒ For addition (or subtraction) of two elements polynomial and vector representation are equally suitable, <br>where the components are to be added $\text{modulo 2}$, for example: | |
::<math>z_5 + z_7 =(\alpha^2 + \alpha) + (\alpha^2 + 1) = \alpha + 1 = \alpha^3 = z_4 \hspace{0.05cm},</math> | ::<math>z_5 + z_7 =(\alpha^2 + \alpha) + (\alpha^2 + 1) = \alpha + 1 = \alpha^3 = z_4 \hspace{0.05cm},</math> | ||
Line 383: | Line 397: | ||
::<math>\hspace{0.15cm} z_1 + z_2 + z_3 =(001) + (010) + (100)= (111) = z_6 \hspace{0.05cm}.</math> | ::<math>\hspace{0.15cm} z_1 + z_2 + z_3 =(001) + (010) + (100)= (111) = z_6 \hspace{0.05cm}.</math> | ||
− | + | ⇒ For multiplications, the exponent representation is well suited, as the following examples show: | |
− | [[File:P ID2577 KC T 2 2 S4c.png|right|frame|$\rm GF(2^3)$ in | + | [[File:P ID2577 KC T 2 2 S4c.png|right|frame|$\rm GF(2^3)$ in 3D representation]] |
::<math>z_3 \cdot z_4 =\alpha^2 \cdot \alpha^3 = \alpha^{2+3}= \alpha^{5} = z_6 \hspace{0.05cm},</math> | ::<math>z_3 \cdot z_4 =\alpha^2 \cdot \alpha^3 = \alpha^{2+3}= \alpha^{5} = z_6 \hspace{0.05cm},</math> | ||
::<math>z_0 \cdot z_5 =\alpha^{-\infty} \cdot \alpha^4 = \alpha^{-\infty} = z_0 \hspace{0.05cm},</math> | ::<math>z_0 \cdot z_5 =\alpha^{-\infty} \cdot \alpha^4 = \alpha^{-\infty} = z_0 \hspace{0.05cm},</math> | ||
Line 390: | Line 404: | ||
= 1 \cdot \alpha^{3}= z_4 \hspace{0.05cm}.</math> | = 1 \cdot \alpha^{3}= z_4 \hspace{0.05cm}.</math> | ||
− | + | It can be seen that the exponents result modulo $q-1$ $($in this example modulo $7)$.<br> | |
+ | |||
+ | ⇒ The bottom graph shows the finite extension field $\rm GF(2^3)$ in a three-dimensional representation: | ||
+ | *The axes are labeled $\alpha^0 =1$, $\alpha^1$ and $\alpha^2$. | ||
+ | |||
+ | *The $2^3 = 8$ points in the three-dimensional space are labeled with the coefficient vectors. | ||
− | + | *The assignment of the coefficients $k_2$, $k_1$, $k_0$ to the axes is made clear by color. }} | |
− | |||
− | |||
− | * | ||
− | == | + | == Exercises for the chapter== |
<br> | <br> | ||
− | [[Aufgaben: | + | [[Aufgaben:Exercise_2.3:_Reducible_and_Irreducible_Polynomials|Exercise 2.3: Reducible and Irreducible Polynomials]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_2.3Z:_Polynomial_Division|Exercise 2.3Z: Polynomial Division]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_2.4:_GF(2_to_the_Power_of_2)_Representation_Forms|Exercise 2.4: GF(2 to the Power of 2) Representation Forms]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_2.4Z:_Finite_and_Infinite_Fields|Exercise 2.4Z: Finite and Infinite Fields]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_2.5:_Three_Variants_of_GF(2_power_4)|Exercise 2.5: Three Variants of GF(2 power 4)]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_2.5Z:_Some_Calculations_about_GF(2_power_3)|Exercise 2.5Z: Some Calculations about GF(2 power 3)]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_2.6:_GF(P_power_m)._Which_P,_which_m%3F|Exercise 2.6: GF(P power m). Which P, which m?]] |
{{Display}} | {{Display}} |
Latest revision as of 17:10, 23 November 2022
Contents
GF(22) – Example of an extension field
In "Example 2" of the chapter "Some Basics of Algebra" it has already been shown that the »finite set of numbers« $\{0,\ 1,\ 2,\ 3\}$ ⇒ $q = 4$ does not satisfy the properties of a Galois field $\rm GF(4)$. Rather, the following tables result for the "addition modulo 4" and the "multiplication modulo 4":
- $$ \begin{array}{c} {\rm modulo}\hspace{0.15cm}{\it q} = 4\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c|cccccc} + & 0 & 1 &2 & 3 \\ \hline 0 & 0 & 1 &2 & 3 \\ 1 & 1 & 2 &3 & 0 \\ 2 & 2 & 3 &0 & 1 \\ 3 & 3 & 0 &1 & 2 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 &2 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 0 & 2 & 0 & 2 \\ 3 & 0 & 3 & 2 & 1 \\ \end{array} \right] . $$
For $z_i = 2$ there is no multiplicative inverse ${\rm Inv_M}(z_i)$. This can be seen from the fact that no single element $z_i ∈ \{0,\ 1,\ 2,\ 3\}$ satisfies the condition $2 · z_i = 1$.
On the other hand, if we start from the binary Galois field ${\rm GF}(2) = \{0,\ 1\}$ and extend it according to the equation
- \[{\rm GF}(2^2)= \big\{k_0+k_1\cdot \alpha \ \big | \ k_0, k_1\in{\rm GF}(2) = \{ 0, 1\} \big \}\hspace{0.05cm}, \]
then the likewise »finite set $\{0,\ 1,\ \alpha,\ 1 + \alpha\}$« ⇒ order is further $q=4$.
Performing the arithmetic operations modulo $p(\alpha) = \alpha^2 + \alpha + 1$ we get the following result:
- $$ \begin{array}{c} {\rm modulo}\hspace{0.15cm}{\it p}(\alpha)= \alpha^2 + \alpha + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c|cccccc} + & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 1 & \alpha & 1\!+\!\alpha \\ 1 & 1 & 0 & 1\!+\!\alpha & \alpha \\ \alpha & \alpha & 1\!+\!\alpha & 0 & 1 \\ 1\!+\!\alpha & 1\!+\!\alpha & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & 1\!+\!\alpha \\ \alpha & 0 & \alpha & 1\!+\!\alpha & 1 \\ 1\!+\!\alpha & 0 & 1\!+\!\alpha & 1 & \alpha \end{array} \right] .$$
In this regard, it should be noted:
- The neutral elements of addition or multiplication are still $N_{\rm A} = 0$ and $N_{\rm M} = 1$.
- Since there is no difference between addition and subtraction in modulo arithmetic $\alpha + \alpha = \alpha - \alpha = 0$.
- For all $z_i$ thus holds: The additive inverse of $z_i$ is the element $z_i$ itself.
- The entries in the multiplication table are obtained according to the following calculations:
- \[\big [ \alpha \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + \alpha) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1\hspace{0.05cm},\]
- \[\big [ \alpha \cdot \alpha \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 ) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1+\alpha\hspace{0.05cm},\]
- \[\big [ (1+\alpha) \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + 1) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= \alpha\hspace{0.05cm}.\]
- Thus, the multiplicative inverses exist for all elements except the zero element:
- \[{\rm Inv_M}( 1) = 1 \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(\alpha) = 1+\alpha \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(1+\alpha) = \alpha \hspace{0.05cm}.\]
$\text{Intermediate result:}$
- The set $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$ together with operations "addition" and "multiplication" modulo $p(\alpha)= \alpha^2 + \alpha + 1$ represents a "Galois field" $($order $q = 4)$.
- This Galois field, denoted by $\rm GF(2^2) = GF(4)$ satisfies all the requirements mentioned in the "previous chapter" .
- In contrast to the Galois field $\rm GF(3) = \{0, \ 1, \ 2\}$ with the property that $q = 3$ is a prime number, $\rm GF(2^2)$ is called an extension field.
Reducible and irreducible polynomials
The polynomial $p(\alpha)$ and thus the equation of determination $p(\alpha) = 0$ must not be given arbitrarily. The polynomial used in the last section
- $$p(\alpha)= \alpha^2 + \alpha + 1$$
is suitable. Now we try another polynomial, namely $p(\alpha)= \alpha^2 + 1$.
- $$ \begin{array}{c} {\rm modulo}\hspace{0.15cm}{\it p}(\alpha)= \alpha^2 + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c|cccccc} + & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 1 & \alpha & 1\!+\!\alpha \\ 1 & 1 & 0 & 1\!+\!\alpha & \alpha \\ \alpha & \alpha & 1\!+\!\alpha & 0 & 1 \\ 1\!+\!\alpha & 1\!+\!\alpha & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & 1\!+\!\alpha \\ \alpha & 0 & \alpha & 1 &1\!+\!\alpha \\ 1\!+\!\alpha & 0 & 1\!+\!\alpha & 1\!+\!\alpha & 0 \end{array} \right] .$$
The addition table is identical in both cases and also the multiplication tables differ only by the four entries in the two bottom rows and the two last columns:
- From $p(\alpha) = 0$ now follows for the product $\alpha \cdot \alpha = 1$ and the product $(1 +\alpha) \cdot (1 +\alpha) $ gives the zero element. The mixed product is $\alpha \cdot (1 +\alpha) = 1 +\alpha $.
- In the last row of the multiplication table and also in the last column there is now no "$1$" ⇒ Concerning the condition $p(\alpha)= \alpha^2 + 1= 0$ consequently the multiplicative inverse to $1 +\alpha$ does not exist.
- But thus the finite set $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$ together with arithmetic operations modulo $p(\alpha)= \alpha^2 + 1$ does not satisfy the conditions of an extension field either $\rm GF(2^2) $.
$\text{Let us summarize:}$
From the binary Galois field $\rm GF(2) = \{0, \ 1\}$ an extension field $\rm GF(2^2)$ can be formulated with the aid of a polynomial of degree $m = 2$ with binary coefficients:
- \[p(x) = x^2 + k_1 \cdot x + k_0 \hspace{0.05cm}, \hspace{0.45cm}k_0\hspace{0.05cm},\hspace{0.1cm}k_1 \in \{0, 1\} \hspace{0.05cm}.\]
Note: The renaming of the variable $\alpha$ to $x$ has only formal meaning with regard to later sections.
- In the present case there is only one suitable polynomial $p_1(x)= x^2 + x + 1$. All other possible polynomials of degree $m = 2$, namely,
- \[p_2(x) = x^2 + 1 \hspace{0.06cm} = (x+1) \cdot (x+1)\hspace{0.05cm},\]
- \[p_3(x) =x^2 \hspace{0.76cm} = x \cdot x \hspace{0.05cm},\]
- \[p_4(x) = x^2 + x = (x+1) \cdot x\hspace{0.05cm}, \]
- can be factorized and do not yield extension fields.
- The polynomials $p_2(x)$, $p_3(x)$ and $p_4(x)$ are called "reducible".
- The conclusion is obvious that only "irreducible polynomials" such as $p_1(x)$ are suitable for an extension fields
.
Interpretation of the new element "alpha"
We further consider the field ${\rm GF}(2^2) = \{0, \ 1,\ \alpha,\ 1 + \alpha\}$ corresponding to the following two operational tables, based on the constraint $p(\alpha)= \alpha^2 + \alpha + 1 = 0$ (irreducible ploynomial):
- $$ \begin{array}{c} {\rm modulo}\hspace{0.15cm} p(\alpha)= \alpha^2 + \alpha + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c|cccccc} + & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 1 & \alpha & 1\!+\!\alpha \\ 1 & 1 & 0 & 1\!+\!\alpha & \alpha \\ \alpha & \alpha & 1\!+\!\alpha & 0 & 1 \\ 1\!+\!\alpha & 1\!+\!\alpha & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & 1\!+\!\alpha \\ \alpha & 0 & \alpha & 1\!+\!\alpha & 1 \\ 1\!+\!\alpha & 0 & 1\!+\!\alpha & 1 & \alpha \end{array} \right] .$$
But what is the meaning of the new element $\alpha$?
- The polynomial $p(\alpha)= \alpha^2 + \alpha + 1 $ has no zero in ${\rm GF}(2) = \{0, \ 1\}$ . This further implies that $\alpha$ can be neither $0$ nor $1$ .
- If $\alpha= 0$ resp. $\alpha= 1$, then moreover two of the four set elements $\{0,\ 1,\ \alpha,\ 1 + \alpha\}$ would be identical respectively: Either "$0$" and "$\alpha$" as well as "$1$" and "$1+\alpha$" or "$1$" and "$\alpha$" as well as "$0$" and "$1+\alpha$".
- Much more the one-dimensional field ${\rm GF}(2)$ gets a second dimension by the introduction of the element $\alpha$ . It is thus extended to the Galois field ${\rm GF}(2^2)$ as shown in the accompanying diagram.
- The element $\alpha$ has similar meaning as the imaginary unit ${\rm j}$, by which one extends the set of real numbers under the constraint ${\rm j}^2 + 1 = 0$ to the set of complex numbers.
$\text{Common representation of the binary extension field}\ \ {\rm GF}(2^2)\text{:}$
Due to the identity $\alpha^2 = 1 + \alpha$, which follows from the constraint $p(\alpha) = 0$ , one can write in the same way ${\rm GF}(2^2) = \{0,\ 1,\ \alpha,\ \alpha^2\}$ where now the following operation tables hold:
- $$ \begin{array}{c} {\rm modulo}\hspace{0.15cm} p(\alpha)= \alpha^2 + \alpha + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c | cccccc} + & 0 & 1 & \alpha & \alpha^2 \\ \hline 0 & 0 & 1 & \alpha & \alpha^2 \\ 1 & 1 & 0 & \alpha^2 & \alpha \\ \alpha & \alpha & \alpha^2 & 0 & 1 \\ \alpha^2 & \alpha^2 & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c | cccccc} \cdot & 0 & 1 & \alpha & \alpha^2 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & \alpha^2 \\ \alpha & 0 & \alpha &\alpha^2 & 1 \\ \alpha^2 & 0 & \alpha^2 & 1 & \alpha \end{array} \right] .$$
Polynomials over a finite field
$\text{Definition:}$ A »polynomial« in a finite field ${\rm GF}(P)$, where $P$ denotes a prime number, has the following form:
- \[a(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + a_m \cdot x^{m} \hspace{0.05cm}.\]
To note:
- All coefficients $a_i $ are elements of the field: $a_i \in {\rm GF}(P)$.
- If the leading coefficient $a_m ≠ 0$, then $m$ indicates the »degree« of the polynomial.
Let us consider a second polynomial with degree $M$,
- \[b(x) = \sum_{i = 0}^{M} b_i \cdot x^{i} = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + b_M \cdot x^{M} \hspace{0.05cm},\]
then we get for the sum (resp. difference) and the product respectively in ${\rm GF}(P)$:
- \[a(x) \pm b(x) = \sum_{i = 0}^{{\rm max}\hspace{0.05cm}(m, \hspace{0.05cm}M)} \hspace{0.15cm}(a_i \pm b_i) \cdot x^{i} \hspace{0.05cm},\]
- \[a(x) \cdot b(x) = \sum_{i = 0}^{m + M} \hspace{0.15cm}c_i \cdot x^{i}\hspace{0.05cm},\hspace{0.5cm} c_i = \sum_{j = 0}^{i}\hspace{0.15cm}a_j \cdot b_{i-j} \hspace{0.05cm}.\]
$\text{Example 1:}$ $a(x) = x^3 + x + 1$ and $b(x) = x^2 + x + 1$ are valid.
In the binary Galois field ⇒ ${\rm GF}(2)$ results according to the above equations for the sum, difference and product of the two polynomials:
- \[s(x) = a(x) + b(x) = x^3 + x^2 \hspace{0.05cm}, \]
- \[d(x) = a(x) - b(x) = x^3 + x^2 = s(x)\hspace{0.05cm},\]
- \[c(x) = a(x) \cdot b(x) =\sum_{i = 0}^{3 + 2} \hspace{0.15cm}c_i \cdot x^{i}\hspace{0.05cm},\hspace{0.5cm} c_i = \sum_{j = 0}^{i}\hspace{0.15cm}a_j \cdot b_{i-j} \hspace{0.05cm}.\]
With $a_0 = a_1 = a_3 = b_0 = b_1 =b_2 = 1$ and $a_2 = a_4 = a_5 = b_3 = b_4 =b_5 = 0$ we obtain:
- \[c_0 = a_0 \cdot b_0 = 1 \cdot 1 = 1 \hspace{0.05cm},\]
- \[c_1 = a_0 \cdot b_1 + a_1 \cdot b_0 = 1 \cdot 1 + 1 \cdot 1 = 0 \hspace{0.05cm},\]
- \[c_2 =a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0 = 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 0 \hspace{0.05cm},\]
- \[c_3 = a_0 \cdot b_3 + a_1 \cdot b_2 + a_2 \cdot b_1 + a_3 \cdot b_0 = 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 = 0 \hspace{0.05cm},\]
- \[c_4=a_0 \cdot b_4 + a_1 \cdot b_3 + \hspace{0.05cm}\text{...}\hspace{0.05cm}+ \hspace{0.05cm}a_4 \cdot b_0 =1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 1 \hspace{0.05cm},\]
- \[c_5 = a_0 \cdot b_5 + a_1 \cdot b_4 + \hspace{0.05cm}\text{...}\hspace{0.05cm}+ \hspace{0.05cm} a_5 \cdot b_0 =1 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1= 1 \]
- \[\Rightarrow \hspace{0.3cm} c(x) = x^5 + x^4 +1 \hspace{0.05cm}.\]
In the Galois field ${\rm GF}(3)$ other results are obtained due to the modulo 3 operations:
- \[s(x) = (x^3 + x + 1) + (x^2 + x + 1) = x^3 + x^2 + 2x + 2\hspace{0.05cm},\]
- \[d(x) = (x^3 + x + 1) - (x^2 + x + 1) = x^3 + 2x^2 \hspace{0.05cm},\]
- \[c(x) = (x^3 + x + 1) \cdot (x^2 + x + 1) = x^5 + x^4 + 2x^3 + 2x^2 + 2x +1\hspace{0.05cm}.\]
$\text{Definition:}$ A polynomial $a(x)$ is called »reducible« if it can be represented as the product of two polynomials $p(x)$ and $q(x)$ each of lower degree:
- \[a(x) = p(x) \cdot q(x) \hspace{0.05cm}.\]
If this factorization is not possible, that is
- \[a(x) = p(x) \cdot q(x) + r(x)\hspace{0.05cm},\hspace{0.5cm} r(x) \ne 0\]
holds, then the polynomial is called an »irreducible« or »prime«.
$\text{Example 2:}$ It holds $b(x) = x^3 + x + 1$, then $p_1(x) = x^2 + x + 1$ and $p_2(x) = x^2 + 1$ are valid.
The graph on the left illustrates the modulo 2 multiplication $a(x)= b(x) \cdot p_1(x)$. The result is $a(x) = x^5 + x^4 + 1$.
In the right part of the above graph, the modulo 2 division $q(x)= a(x)/ p_2(x)$ is shown with the result $q(x) = x^3 + x^2 + x + 1$.
- This leaves the remainder $r(x) = x$.
- According to this calculation alone $a(x) = x^5 + x^4 + 1$ could well be an irreducible polynomial.
- However, the proof that the polynomial $a(x) = x^5 + x^4 + 1$ is indeed irreducible would only be given if $a(x)/p(x)$ yields a remainder for all
- \[p(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}.\]
- This proof would require (almost) $2^5 = 32$ divisions in the present example.
- Based on our left-hand calculation, we can immediately see here that $a(x)$ is certainly not an irreducible polynomial,
since e.g. $a(x) = x^5 + x^4 + 1$ divided by $p_1(x) = x^2 + x + 1$ yields the polynomial $b(x) = x^3 + x + 1$ with no remainder.
Generalized definition of an extension field
We assume the following:
- A Galois field ${\rm GF}(P)$, where $P$ denotes a prime number,
- an irreducible polynomial $p(x)$ over ${\rm GF}(P)$ of degree $m$:
- \[p(x) = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}, \hspace{0.3cm} a_i \in {\rm G}(P)\hspace{0.05cm}, \hspace{0.15cm}a_m \ne 0\hspace{0.05cm}. \]
With the above conditions generally applies:
$\text{Definition:}$ Let
- $P$ be a prime number,
- $m$ be an integer,
- $p(x)$ be an irreducible polynomial of degree $m$ and
- $p(\alpha) = 0$ hold.
An extension field can then be described as follows:
- \[{\rm GF}(P^m)= \Big\{ k_{m-1} \hspace{0.01cm}\cdot \hspace{0.02cm}\alpha^{m-1} \hspace{0.05cm}+ \hspace{0.05cm}\text{...} \hspace{0.05cm}+ \hspace{0.05cm}k_1 \hspace{0.01cm}\cdot \hspace{0.02cm} \alpha \hspace{0.05cm}+ \hspace{0.05cm} k_0\hspace{0.05cm} \Big{\vert}\hspace{0.02cm} \ k_i\in{\rm GF}(P) = \{ 0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, P-1\}\Big \}.\]
- The addition and multiplication in this extension field then corresponds to polynomial addition and polynomial multiplication modulo $p(\alpha)$.
- So: A Galois field ${\rm GF}(q)$ with $q$ elements can be specified whenever the element number can be written in the form $q = P^m$
$(P$ denotes a prime number, $m$ be integer$)$.
The diagram shows for which $q$–values a Galois field can be constructed. For the shaded values no finite field can be given.
Further it is to be noted:
- The yellow highlighted positions $q=P$ ⇒ $m = 1$ mark sets of numbers $\{0,\ 1,\hspace{0.05cm}\text{ ...} \hspace{0.05cm},\ q- 1\}$ with Galois properties, see section "Definition of a Galois Field".
- Other background colors mark extension fields with $q=P^m$, $m ≥ 2$. For $q ≤ 64$ these are based on the primes $2$, $3$, $5$, $7$.
- Highlighted in red are binary fields ⇒ $q=2^m$, $m ≥ 1$, which will be considered in more detail in the next section.
- All other extension fields are labeled in blue.
Binary extension fields – Primitive polynomials
In the following we consider binary extension fields with $q$ elements:
- \[q = 2^m \hspace{0.15cm}(m \ge 2) \hspace{0.3cm} \Rightarrow\hspace{0.3cm} q = 4,\ 8,\ 16, 32,\ 64,\ \text{...}\]
- In the table all irreducible polynomials of the Galois field ${\rm GF}(2)$ are given for $2 ≤ m ≤ 6$.
- The polynomials in columns 2 and 3 are not only irreducible, but additionally also primitive.
- Primitive polynomials also provide the basis for the "Realization of pseudo–noise generators".
Before we turn to the definition of a primitive polynomial, we shall first mention the peculiarities of "primitive elements" using the example of
- \[{\rm GF}(q) = \{\hspace{0.05cm}z_0 = 0,\hspace{0.1cm} z_1 = 1,\hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.05cm}z_{q-1}\}.\]
The element $z_i = \beta$ is then called »primitive« ,
- if the power $\beta^{\hspace{0.05cm}i}$ modulo $q$ for the first time for $i = q-1$ leads to the result "$1$" so that
- $\beta^{\hspace{0.05cm}i}$ for $1 ≤ i ≤ q- 1$ yields exactly the elements $z_1$, ... , $z_{q-1}$ i.e. all elements of ${\rm GF}(q)$ except the zero element $z_0 = 0$.
$\text{Example 3:}$ From the number set $Z_5 = \{0,\ 1,\ 2,\ 3,\ 4\}$, the numbers "$2$" and "$3$" are primitive elements because of
- \[2^1 \hspace{-0.1cm} = \hspace{-0.1cm} 2\hspace{0.05cm},\hspace{0.2cm} 2^2 = 4\hspace{0.05cm},\hspace{0.2cm} 2^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} 2^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\]
- \[3^1 \hspace{-0.1cm} = \hspace{-0.1cm} 3\hspace{0.05cm},\hspace{0.2cm} 3^2 = 9\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 3^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} 3^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\]
- On the other hand, "$4$" is not a primitive element, because already $4^2 = 1$:
- \[4^1 = 4\hspace{0.05cm},\hspace{0.2cm} 4^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\hspace{0.2cm} 4^3 = 64 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 4^4 = 256 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm}.\]
$\text{Definition:}$ An irreducible polynomial is called at the same time a »primitive polynomial«
if the root $\alpha$ with respect to the polynomial $p(x)$ is a primitive element of ${\rm GF}(q)$. Then holds
- \[{\rm GF}(q) = \{\hspace{0.1cm}\alpha^{-\infty} = 0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0} = 1,\hspace{0.05cm}\hspace{0.2cm} \alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^{2},\hspace{0.2cm} \text{...} \hspace{0.1cm} , \hspace{0.2cm}\alpha^{q-2}\hspace{0.1cm}\}\hspace{0.05cm}. \]
- All polynomials given in the second column of the above table are both irreducible and primitive.
- If $p_1(x)$ is a primitive polynomial, then the polynomial reciprocal $p_2 (x) = x^m \cdot p_1(x^{-1})$ to it is also primitive.
- All polynomials in the third column are reciprocal to the polynomial in the second column. For example, for $m = 3$:
- \[p_1(x) = x^3 + x + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}p_2(x) = x^3 \cdot \big[x^{-3} + x^{-1} + 1 \big]= x^3 + x^2 + 1 \hspace{0.05cm}.\]
- The irreducible polynomials of column 4, on the other hand, are not primitive; they play only a minor role in describing error correction procedures.
$\text{Example 4:}$ For clarification of these statements we consider exemplarily
- the Galois field $\rm GF(2^3) = GF(8)$, as well as
- the polynomial $p(x) = x^3 + x + 1$.
From the condition $p(\alpha) = 0$ we obtain in $\rm GF(2^3)$ further:
- \[\alpha^3 + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^3 = \alpha + 1 \hspace{0.05cm},\]
and thus for the powers $\alpha^{i}$ of the root for $i ≥ 4$:
- \[\alpha^4 = \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},\]
- \[\alpha^5 = \alpha^2 \cdot \alpha^3 = \alpha^2 \cdot (\alpha + 1) = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1 \hspace{0.05cm},\]
- \[\alpha^6 = \alpha^3 \cdot \alpha^3 = (\alpha + 1) \cdot (\alpha + 1) = \alpha^2 + \alpha + \alpha + 1= \alpha^2 + 1 \hspace{0.05cm},\]
- \[\alpha^7 = \alpha^4 \cdot \alpha^3 = (\alpha^2 + \alpha) \cdot (\alpha + 1) = \alpha^3 + \alpha^2 + \alpha^2 + \alpha = \alpha + 1 + \alpha = 1 = \alpha^0 \hspace{0.05cm}.\]
$\text{Example 5:}$ The elements $z_0$, $z_1$, ... , $z_7$ of the Galois field $\rm GF(2^3)$ can be represented according to the adjacent table as follows:
- as powers of $\alpha$ ⇒ »exponent representation«,
- as polynomials of the form $k_2 \cdot \alpha^2 + k_1 \cdot \alpha + k_0$ with binary coefficients $k_2$, $k_1$, $k_0$ ⇒ »polynomial representation«,
- as vectors of coefficients $(k_2, \ k_1, \ k_0)$ ⇒ »coefficient representation«.
⇒ For addition (or subtraction) of two elements polynomial and vector representation are equally suitable,
where the components are to be added $\text{modulo 2}$, for example:
- \[z_5 + z_7 =(\alpha^2 + \alpha) + (\alpha^2 + 1) = \alpha + 1 = \alpha^3 = z_4 \hspace{0.05cm},\]
- \[{\rm oder}\hspace{0.15cm} z_5 + z_7 =(110) + (101) = (011) = z_4 \hspace{0.05cm},\]
- \[\hspace{0.15cm} z_1 + z_2 + z_3 =(001) + (010) + (100)= (111) = z_6 \hspace{0.05cm}.\]
⇒ For multiplications, the exponent representation is well suited, as the following examples show:
- \[z_3 \cdot z_4 =\alpha^2 \cdot \alpha^3 = \alpha^{2+3}= \alpha^{5} = z_6 \hspace{0.05cm},\]
- \[z_0 \cdot z_5 =\alpha^{-\infty} \cdot \alpha^4 = \alpha^{-\infty} = z_0 \hspace{0.05cm},\]
- \[z_5 \cdot z_7 = \alpha^4 \cdot \alpha^6 = \alpha^{10}= \alpha^{7} \cdot \alpha^{3} = 1 \cdot \alpha^{3}= z_4 \hspace{0.05cm}.\]
It can be seen that the exponents result modulo $q-1$ $($in this example modulo $7)$.
⇒ The bottom graph shows the finite extension field $\rm GF(2^3)$ in a three-dimensional representation:
- The axes are labeled $\alpha^0 =1$, $\alpha^1$ and $\alpha^2$.
- The $2^3 = 8$ points in the three-dimensional space are labeled with the coefficient vectors.
- The assignment of the coefficients $k_2$, $k_1$, $k_0$ to the axes is made clear by color.
Exercises for the chapter
Exercise 2.3: Reducible and Irreducible Polynomials
Exercise 2.3Z: Polynomial Division
Exercise 2.4: GF(2 to the Power of 2) Representation Forms
Exercise 2.4Z: Finite and Infinite Fields
Exercise 2.5: Three Variants of GF(2 power 4)
Exercise 2.5Z: Some Calculations about GF(2 power 3)
Exercise 2.6: GF(P power m). Which P, which m?