Difference between revisions of "Channel Coding/Extension Field"

From LNTwww
 
(16 intermediate revisions by 2 users not shown)
Line 9: Line 9:
  
 
<br>
 
<br>
In the section&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_group|$\text{"Example 2"}$]]&nbsp; in the chapter "Some Basics of Algebra" it has already been shown that the&nbsp; '''finite set of numbers'''&nbsp; $\{0, 1, 2, 3\}$ &nbsp; &#8658; &nbsp; $q = 4$&nbsp; does not satisfy the properties of a Galois field&nbsp; $\rm GF(4)$&nbsp; . Rather, the following tables result for the ''addition''&nbsp; modulo 4 and the ''multiplication''&nbsp; modulo 4:
+
In&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Examples_and_properties_of_Galois_fields|"Example 2"]]&nbsp; of the chapter&nbsp; "Some Basics of Algebra"&nbsp; it has already been shown that the&nbsp; &raquo;'''finite set of numbers'''&laquo;&nbsp; $\{0,\ 1,\ 2,\ 3\}$ &nbsp; &#8658; &nbsp; $q = 4$&nbsp; does not satisfy the properties of a Galois field&nbsp; $\rm GF(4)$.&nbsp; Rather,&nbsp; the following tables result for the&nbsp; "addition modulo 4"&nbsp; and the&nbsp; "multiplication modulo 4":
  
 
:$$ \begin{array}{c}  
 
:$$ \begin{array}{c}  
Line 29: Line 29:
  
  
For&nbsp; $z_i = 2$&nbsp; there is no multiplicative inverse&nbsp; ${\rm Inv_M}(z_i)$. This can be seen from the fact that no single element&nbsp; $z_i &#8712; \{0, 1, 2, 3\}$&nbsp; satisfies the condition&nbsp; $2 &middot; z_i = 1$&nbsp;.  
+
For&nbsp; $z_i = 2$&nbsp; there is no multiplicative inverse&nbsp; ${\rm Inv_M}(z_i)$.&nbsp; This can be seen from the fact that no single element&nbsp; $z_i &#8712; \{0,\ 1,\ 2,\ 3\}$&nbsp; satisfies the condition&nbsp; $2 &middot; z_i = 1$.  
  
On the other hand, if we start from the binary Galois field&nbsp; ${\rm GF}(2) = \{0, 1\}$&nbsp; and extend it according to the equation
+
On the other hand,&nbsp; if we start from the binary Galois field&nbsp; ${\rm GF}(2) = \{0,\ 1\}$&nbsp; and extend it according to the equation
  
 
::<math>{\rm GF}(2^2)=  \big\{k_0+k_1\cdot \alpha \ \big | \ k_0, k_1\in{\rm GF}(2) = \{ 0, 1\} \big \}\hspace{0.05cm}, </math>
 
::<math>{\rm GF}(2^2)=  \big\{k_0+k_1\cdot \alpha \ \big | \ k_0, k_1\in{\rm GF}(2) = \{ 0, 1\} \big \}\hspace{0.05cm}, </math>
  
then the likewise&nbsp; '''finite <b>set'''&nbsp; $\{0, 1, \alpha, 1 + \alpha\}$</b> &nbsp; &#8658; &nbsp; order is further&nbsp; $q=4$.  
+
then the likewise&nbsp; &raquo;<b>finite set&nbsp; $\{0,\ 1,\ \alpha,\ 1 + \alpha\}$</b>&laquo; &nbsp; &#8658; &nbsp; order is further&nbsp; $q=4$.  
  
  
Line 74: Line 74:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Intermediate result:}$&nbsp;   
 
$\text{Intermediate result:}$&nbsp;   
*The set&nbsp; $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$&nbsp; together with the two operations  <i>addition</i>&nbsp; and <i>multiplication</i>&nbsp; modulo&nbsp; $p(\alpha)= \alpha^2 + \alpha +  1$&nbsp; represents a <i>Galois field</i>. The order is&nbsp; $q = 4$.  
+
*The set&nbsp; $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$&nbsp; together with operations&nbsp; "addition"&nbsp; and&nbsp; "multiplication"&nbsp; modulo&nbsp; $p(\alpha)= \alpha^2 + \alpha +  1$&nbsp; represents a&nbsp; "Galois field"&nbsp; $($order&nbsp; $q = 4)$.
*This Galois field, denoted by&nbsp; $\rm GF(2^2) = GF(4)$&nbsp; satisfies all the requirements mentioned in thr&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field| "previous chapter"]]&nbsp;.<br>
+
 +
*This Galois field, denoted by&nbsp; $\rm GF(2^2) = GF(4)$&nbsp; satisfies all the requirements mentioned in the&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field| "previous chapter"]]&nbsp;.<br>
 +
 
 
*In contrast to the Galois field&nbsp; $\rm GF(3) = \{0, \ 1, \ 2\}$&nbsp; with the property that&nbsp; $q = 3$&nbsp; is a prime number, $\rm GF(2^2)$&nbsp; is called an extension field.}}<br>
 
*In contrast to the Galois field&nbsp; $\rm GF(3) = \{0, \ 1, \ 2\}$&nbsp; with the property that&nbsp; $q = 3$&nbsp; is a prime number, $\rm GF(2^2)$&nbsp; is called an extension field.}}<br>
  
 
== Reducible and irreducible polynomials ==
 
== Reducible and irreducible polynomials ==
 
<br>
 
<br>
The polynomial&nbsp; $p(\alpha)$&nbsp; and thus the equation of determination&nbsp; $p(\alpha) = 0$&nbsp; must not be given arbitrarily. The polynomial used on the last page&nbsp;   
+
The polynomial&nbsp; $p(\alpha)$&nbsp; and thus the equation of determination&nbsp; $p(\alpha) = 0$&nbsp; must not be given arbitrarily. The polynomial used in the last section&nbsp;   
 
:$$p(\alpha)= \alpha^2 + \alpha +  1$$
 
:$$p(\alpha)= \alpha^2 + \alpha +  1$$
 
is suitable. Now we try another polynomial, namely&nbsp; $p(\alpha)= \alpha^2 + 1$.
 
is suitable. Now we try another polynomial, namely&nbsp; $p(\alpha)= \alpha^2 + 1$.
Line 106: Line 108:
 
*In the last row of the multiplication table and also in the last column there is now no "$1$" &nbsp; &#8658; &nbsp; Concerning the condition&nbsp; $p(\alpha)= \alpha^2 + 1= 0$&nbsp; consequently the multiplicative inverse to&nbsp; $1 +\alpha$&nbsp; does not exist.<br>
 
*In the last row of the multiplication table and also in the last column there is now no "$1$" &nbsp; &#8658; &nbsp; Concerning the condition&nbsp; $p(\alpha)= \alpha^2 + 1= 0$&nbsp; consequently the multiplicative inverse to&nbsp; $1 +\alpha$&nbsp; does not exist.<br>
  
*But thus the finite set&nbsp; $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$ together with arithmetic operations modulo&nbsp; $p(\alpha)= \alpha^2 + 1$&nbsp; does not satisfy the conditions of an extension fields either&nbsp; $\rm GF(2^2) $.<br><br>
+
*But thus the finite set&nbsp; $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$ together with arithmetic operations modulo&nbsp; $p(\alpha)= \alpha^2 + 1$&nbsp; does not satisfy the conditions of an extension field either&nbsp; $\rm GF(2^2) $.<br><br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Line 115: Line 117:
 
::<math>p(x) = x^2 + k_1 \cdot x + k_0 \hspace{0.05cm}, \hspace{0.45cm}k_0\hspace{0.05cm},\hspace{0.1cm}k_1 \in \{0, 1\}  
 
::<math>p(x) = x^2 + k_1 \cdot x + k_0 \hspace{0.05cm}, \hspace{0.45cm}k_0\hspace{0.05cm},\hspace{0.1cm}k_1 \in \{0, 1\}  
 
\hspace{0.05cm}.</math>  
 
\hspace{0.05cm}.</math>  
&nbsp; <i>Note:</i> &nbsp; The renaming of the variable&nbsp; $\alpha$&nbsp; to&nbsp; $x$&nbsp; has only formal meaning with regard to later pages.<br>
+
&nbsp; <u>Note:</u> &nbsp; The renaming of the variable&nbsp; $\alpha$&nbsp; to&nbsp; $x$&nbsp; has only formal meaning with regard to later sections.<br>
 
*In the present case there is only one suitable polynomial&nbsp; $p_1(x)= x^2 + x + 1$. All other possible polynomials of degree&nbsp; $m = 2$, namely,
 
*In the present case there is only one suitable polynomial&nbsp; $p_1(x)= x^2 + x + 1$. All other possible polynomials of degree&nbsp; $m = 2$, namely,
  
Line 122: Line 124:
 
::<math>p_4(x) = x^2 + x = (x+1) \cdot x\hspace{0.05cm}, </math>
 
::<math>p_4(x) = x^2 + x = (x+1) \cdot x\hspace{0.05cm}, </math>
 
:can be factorized and do not yield extension fields.  
 
:can be factorized and do not yield extension fields.  
*The polynomials&nbsp; $p_2(x)$,&nbsp; $p_3(x)$&nbsp; and&nbsp; $p_4(x)$&nbsp; are called ''reducible''.  
+
*The polynomials&nbsp; $p_2(x)$,&nbsp; $p_3(x)$&nbsp; and&nbsp; $p_4(x)$&nbsp; are called&nbsp; "reducible".
*The conclusion is obvious that only&nbsp; ''irreducible polynomials''&nbsp; such as&nbsp; $p_1(x)$&nbsp; are suitable for an extension fields}}.<br>
+
 +
*The conclusion is obvious that only&nbsp; "irreducible polynomials"&nbsp; such as&nbsp; $p_1(x)$&nbsp; are suitable for an extension fields}}.<br>
  
  
  
== Interpretation of the new element "alpha ==
+
== Interpretation of the new element "alpha" ==
 
<br>
 
<br>
 
We further consider the field&nbsp; ${\rm GF}(2^2) = \{0, \ 1,\ \alpha,\ 1 + \alpha\}$&nbsp; corresponding to the following two operational tables, based on the constraint&nbsp; $p(\alpha)= \alpha^2 + \alpha + 1 = 0$&nbsp; (irreducible ploynomial):
 
We further consider the field&nbsp; ${\rm GF}(2^2) = \{0, \ 1,\ \alpha,\ 1 + \alpha\}$&nbsp; corresponding to the following two operational tables, based on the constraint&nbsp; $p(\alpha)= \alpha^2 + \alpha + 1 = 0$&nbsp; (irreducible ploynomial):
Line 149: Line 152:
  
  
[[File:EN_KC_T_2_2_S1.png|right|frame|Übergang von&nbsp; ${\rm GF}(2)$&nbsp; auf&nbsp;  ${\rm GF}(2^2)$ |class=fit]]
+
[[File:EN_KC_T_2_2_S1.png|right|frame|Transition from&nbsp; ${\rm GF}(2)$&nbsp; to&nbsp;  ${\rm GF}(2^2)$ |class=fit]]
 
But what is the meaning of the new element $\alpha$?
 
But what is the meaning of the new element $\alpha$?
 
*The polynomial&nbsp; $p(\alpha)= \alpha^2 + \alpha + 1 $&nbsp; has no zero in&nbsp; ${\rm GF}(2) = \{0, \ 1\}$&nbsp;. This further implies that&nbsp; $\alpha$&nbsp; can be neither&nbsp; $0$&nbsp; nor&nbsp; $1$&nbsp;.<br>
 
*The polynomial&nbsp; $p(\alpha)= \alpha^2 + \alpha + 1 $&nbsp; has no zero in&nbsp; ${\rm GF}(2) = \{0, \ 1\}$&nbsp;. This further implies that&nbsp; $\alpha$&nbsp; can be neither&nbsp; $0$&nbsp; nor&nbsp; $1$&nbsp;.<br>
Line 161: Line 164:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Common representation of the binary extension field}\ {\rm GF}(2^2)\text{:}$
+
$\text{Common representation of the binary extension field}\ \ {\rm GF}(2^2)\text{:}$
 
   
 
   
 
Due to the identity&nbsp; $\alpha^2 = 1 + \alpha$, which follows from the constraint &nbsp;$p(\alpha) = 0$&nbsp;, one can write in the same way&nbsp; ${\rm GF}(2^2) = \{0,\ 1,\ \alpha,\ \alpha^2\}$&nbsp; where now the following operation tables hold:
 
Due to the identity&nbsp; $\alpha^2 = 1 + \alpha$, which follows from the constraint &nbsp;$p(\alpha) = 0$&nbsp;, one can write in the same way&nbsp; ${\rm GF}(2^2) = \{0,\ 1,\ \alpha,\ \alpha^2\}$&nbsp; where now the following operation tables hold:
Line 187: Line 190:
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; A&nbsp; '''polynomial'''&nbsp; in a finite field&nbsp; ${\rm GF}(P)$, where&nbsp; $P$&nbsp; denotes a prime number, has the following form:
+
$\text{Definition:}$&nbsp; A&nbsp; &raquo;'''polynomial'''&laquo;&nbsp; in a finite field&nbsp; ${\rm GF}(P)$,&nbsp; where&nbsp; $P$&nbsp; denotes a prime number,&nbsp; has the following form:
  
 
::<math>a(x) = \sum_{i = 0}^{m} a_i \cdot x^{i}  = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + a_m \cdot x^{m}
 
::<math>a(x) = \sum_{i = 0}^{m} a_i \cdot x^{i}  = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + a_m \cdot x^{m}
Line 194: Line 197:
 
*All coefficients&nbsp; $a_i $&nbsp; are elements of the field: &nbsp; $a_i \in {\rm GF}(P)$.<br>
 
*All coefficients&nbsp; $a_i $&nbsp; are elements of the field: &nbsp; $a_i \in {\rm GF}(P)$.<br>
  
*If the leading coefficient&nbsp; $a_m &ne; 0$, then&nbsp; $m$ indicates the&nbsp; '''degree'''&nbsp; of the polynomial.}}<br>
+
*If the leading coefficient&nbsp; $a_m &ne; 0$, then&nbsp; $m$&nbsp; indicates the&nbsp; &raquo;'''degree'''&laquo;&nbsp; of the polynomial.}}<br>
  
 
Let us consider a second polynomial with degree $M$,
 
Let us consider a second polynomial with degree $M$,
Line 201: Line 204:
 
\hspace{0.05cm},</math>
 
\hspace{0.05cm},</math>
  
then we get for the sum (resp. difference) and the product respectively in&nbsp; ${\rm GF}(P)$:
+
then we get for the sum&nbsp; (resp. difference)&nbsp; and the product respectively in&nbsp; ${\rm GF}(P)$:
  
 
::<math>a(x) \pm b(x)  = \sum_{i = 0}^{{\rm max}\hspace{0.05cm}(m, \hspace{0.05cm}M)} \hspace{0.15cm}(a_i \pm b_i) \cdot x^{i} \hspace{0.05cm},</math>   
 
::<math>a(x) \pm b(x)  = \sum_{i = 0}^{{\rm max}\hspace{0.05cm}(m, \hspace{0.05cm}M)} \hspace{0.15cm}(a_i \pm b_i) \cdot x^{i} \hspace{0.05cm},</math>   
Line 209: Line 212:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp; &nbsp; $a(x) = x^3 + x + 1$&nbsp; &nbsp;and&nbsp; $b(x) = x^2 + x + 1$ are valid.  
+
$\text{Example 1:}$&nbsp; &nbsp; $a(x) = x^3 + x + 1$&nbsp; &nbsp;and&nbsp; $b(x) = x^2 + x + 1$&nbsp; are valid.  
  
In the binary Galois field&nbsp; &nbsp; &#8658; &nbsp; ${\rm GF}(2)$&nbsp; results according to the above equations for the sum, difference and product of the two polynomials:
+
In the binary Galois field&nbsp; &nbsp; &#8658; &nbsp; ${\rm GF}(2)$&nbsp; results according to the above equations for the sum,&nbsp; difference and product of the two polynomials:
  
 
::<math>s(x)  = a(x) + b(x) = x^3 + x^2 \hspace{0.05cm}, </math>  
 
::<math>s(x)  = a(x) + b(x) = x^3 + x^2 \hspace{0.05cm}, </math>  
Line 219: Line 222:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
With&nbsp; $a_0 =  a_1 = a_3 = b_0 =  b_1 =b_2 = 1$ &nbsp; und &nbsp;  $a_2 =  a_4 = a_5 = b_3 =  b_4 =b_5 = 0$  &nbsp;we obtain:
+
With&nbsp; $a_0 =  a_1 = a_3 = b_0 =  b_1 =b_2 = 1$ &nbsp; and &nbsp;  $a_2 =  a_4 = a_5 = b_3 =  b_4 =b_5 = 0$  &nbsp;we obtain:
  
 
::<math>c_0 = a_0 \cdot b_0 = 1 \cdot 1 = 1 \hspace{0.05cm},</math>   
 
::<math>c_0 = a_0 \cdot b_0 = 1 \cdot 1 = 1 \hspace{0.05cm},</math>   
Line 240: Line 243:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; A polynomial&nbsp; $a(x)$&nbsp; is called&nbsp; '''reducible''' if it can be represented as the product of two polynomials&nbsp; $p(x)$&nbsp; and&nbsp; $q(x)$&nbsp; each of lower degree:
+
$\text{Definition:}$&nbsp; A polynomial&nbsp; $a(x)$&nbsp; is called&nbsp; &raquo;'''reducible'''&laquo;&nbsp; if it can be represented as the product of two polynomials&nbsp; $p(x)$&nbsp; and&nbsp; $q(x)$&nbsp; each of lower degree:
  
 
::<math>a(x) = p(x) \cdot q(x)
 
::<math>a(x) = p(x) \cdot q(x)
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
If this factorization is not possible, that is
+
If this factorization is not possible,&nbsp; that is
  
 
::<math>a(x) = p(x) \cdot q(x) + r(x)\hspace{0.05cm},\hspace{0.5cm} r(x) \ne 0</math>
 
::<math>a(x) = p(x) \cdot q(x) + r(x)\hspace{0.05cm},\hspace{0.5cm} r(x) \ne 0</math>
  
holds, then it is called an&nbsp; '''irreducible''' or '''prime''' polynomial}}<br>
+
holds,&nbsp; then the polynomial is called an&nbsp; &raquo;'''irreducible'''&laquo;&nbsp; or&nbsp; &raquo;'''prime'''&laquo;.}}<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 2:}$&nbsp; &nbsp; $b(x) = x^3 + x + 1$,&nbsp; &nbsp; $p_1(x) = x^2 + x + 1$ &nbsp; and &nbsp; $p_2(x) = x^2 + 1$ are valid.
+
$\text{Example 2:}$&nbsp; It holds&nbsp; $b(x) = x^3 + x + 1$,&nbsp; then&nbsp; $p_1(x) = x^2 + x + 1$ &nbsp; and &nbsp; $p_2(x) = x^2 + 1$ &nbsp; are valid.
  
 
The graph on the left illustrates the modulo 2 multiplication&nbsp; $a(x)= b(x) \cdot p_1(x)$. The result is &nbsp;$a(x) = x^5 + x^4 + 1$.<br>
 
The graph on the left illustrates the modulo 2 multiplication&nbsp; $a(x)= b(x) \cdot p_1(x)$. The result is &nbsp;$a(x) = x^5 + x^4 + 1$.<br>
Line 258: Line 261:
 
[[File:EN_KC_T_2_2_S2.png|center|frame|Example of polynomial multiplication and division|class=fit]]
 
[[File:EN_KC_T_2_2_S2.png|center|frame|Example of polynomial multiplication and division|class=fit]]
  
In the right part of the above graph, the modulo 2 division &nbsp;$q(x)= a(x)/ p_2(x)$&nbsp; is shown with the result &nbsp;$q(x) = x^3 + x^2 + x + 1$&nbsp;. This leaves the remainder &nbsp;$r(x) = x$. According to this calculation alone &nbsp;$a(x) = x^5 + x^4 + 1$&nbsp; could well be an irreducible polynomial.<br>
+
In the right part of the above graph, the modulo 2 division &nbsp;$q(x)= a(x)/ p_2(x)$&nbsp; is shown with the result &nbsp;$q(x) = x^3 + x^2 + x + 1$.
 +
* This leaves the remainder &nbsp;$r(x) = x$.  
 +
 
 +
*According to this calculation alone &nbsp;$a(x) = x^5 + x^4 + 1$&nbsp; could well be an irreducible polynomial.<br>
  
However, the proof that the polynomial &nbsp;$a(x) = x^5 + x^4 + 1$&nbsp; is indeed irreducible would only be given if &nbsp;$a(x)/p(x)$&nbsp; yields a remainder for all
+
*However,&nbsp; the proof that the polynomial &nbsp; $a(x) = x^5 + x^4 + 1$ &nbsp; is indeed irreducible would only be given if &nbsp;$a(x)/p(x)$&nbsp; yields a remainder for all
  
 
::<math>p(x) = \sum_{i = 0}^{m} a_i \cdot x^{i}  = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2  + a_1 \cdot x +  a_0 \hspace{0.05cm}.</math>
 
::<math>p(x) = \sum_{i = 0}^{m} a_i \cdot x^{i}  = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2  + a_1 \cdot x +  a_0 \hspace{0.05cm}.</math>
  
This would require (almost)&nbsp; $2^5 = 32$&nbsp; divisions in the present example.<br>
+
:This proof would require (almost) &nbsp; $2^5 = 32$ &nbsp; divisions in the present example.<br>
  
Based on our left-hand calculation, we can immediately see here that &nbsp;$a(x)$&nbsp; is certainly not an irreducible polynomial, since, for example, &nbsp;$a(x) = x^5 + x^4 + 1$&nbsp; divided by &nbsp;$p_1(x) = x^2 + x + 1$&nbsp; yields the polynomial &nbsp;$b(x) = x^3 + x + 1$&nbsp; with no remainder.}}<br>
+
*Based on our left-hand calculation,&nbsp; we can immediately see here that &nbsp;$a(x)$&nbsp; is certainly not an irreducible polynomial,&nbsp; <br>since e.g. &nbsp; $a(x) = x^5 + x^4 + 1$ &nbsp; divided by &nbsp; $p_1(x) = x^2 + x + 1$ &nbsp; yields the polynomial &nbsp; $b(x) = x^3 + x + 1$ &nbsp; with no remainder.}}<br>
  
 
== Generalized definition of an extension field ==
 
== Generalized definition of an extension field ==
 
<br>
 
<br>
 
We assume the following:
 
We assume the following:
*a Galois field&nbsp; ${\rm GF}(P)$, where&nbsp; $P$&nbsp; denotes a prime number,<br>
+
*A Galois field&nbsp; ${\rm GF}(P)$, where&nbsp; $P$&nbsp; denotes a prime number,<br>
  
 
*an irreducible polynomial&nbsp; $p(x)$&nbsp; over&nbsp; ${\rm GF}(P)$&nbsp; of degree&nbsp; $m$:
 
*an irreducible polynomial&nbsp; $p(x)$&nbsp; over&nbsp; ${\rm GF}(P)$&nbsp; of degree&nbsp; $m$:
Line 281: Line 287:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  Let&nbsp; $P$&nbsp; be a prime number, $m$&nbsp; be an integer,&nbsp; $p(x)$&nbsp; be an irreducible polynomial of degree&nbsp; $m$&nbsp; and let&nbsp; $p(\alpha) = 0$ hold.  
+
$\text{Definition:}$&nbsp;  Let&nbsp;  
 +
#$P$&nbsp; be a prime number,  
 +
#$m$&nbsp; be an integer,&nbsp;  
 +
#$p(x)$&nbsp; be an irreducible polynomial of degree&nbsp; $m$&nbsp; and  
 +
#$p(\alpha) = 0$&nbsp; hold.  
 +
 
  
An&nbsp; <b>extension field</b>&nbsp; can then be described as follows.
+
An&nbsp; <b>extension field</b>&nbsp; can then be described as follows:
  
 
::<math>{\rm GF}(P^m)=  \Big\{ k_{m-1} \hspace{0.01cm}\cdot \hspace{0.02cm}\alpha^{m-1} \hspace{0.05cm}+ \hspace{0.05cm}\text{...} \hspace{0.05cm}+ \hspace{0.05cm}k_1 \hspace{0.01cm}\cdot \hspace{0.02cm} \alpha \hspace{0.05cm}+ \hspace{0.05cm} k_0\hspace{0.05cm} \Big{\vert}\hspace{0.02cm} \ k_i\in{\rm GF}(P) = \{ 0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, P-1\}\Big \}.</math>
 
::<math>{\rm GF}(P^m)=  \Big\{ k_{m-1} \hspace{0.01cm}\cdot \hspace{0.02cm}\alpha^{m-1} \hspace{0.05cm}+ \hspace{0.05cm}\text{...} \hspace{0.05cm}+ \hspace{0.05cm}k_1 \hspace{0.01cm}\cdot \hspace{0.02cm} \alpha \hspace{0.05cm}+ \hspace{0.05cm} k_0\hspace{0.05cm} \Big{\vert}\hspace{0.02cm} \ k_i\in{\rm GF}(P) = \{ 0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, P-1\}\Big \}.</math>
Line 289: Line 300:
 
*The addition and multiplication in this extension field then corresponds to polynomial addition and polynomial multiplication modulo&nbsp; $p(\alpha)$.<br>
 
*The addition and multiplication in this extension field then corresponds to polynomial addition and polynomial multiplication modulo&nbsp; $p(\alpha)$.<br>
  
*So a Galois field&nbsp; ${\rm GF}(q)$&nbsp; with&nbsp; $q$&nbsp; elements can be specified whenever the element number can be written in the form&nbsp; $q = P^m$&nbsp; <br>$(P$&nbsp; denotes a prime number, $m$&nbsp; be integer$)$.}}<br>
+
*So:&nbsp; A Galois field&nbsp; ${\rm GF}(q)$&nbsp; with&nbsp; $q$&nbsp; elements can be specified whenever the element number can be written in the form&nbsp; $q = P^m$&nbsp; <br>$(P$&nbsp; denotes a prime number,&nbsp; $m$&nbsp; be integer$)$.}}<br>
  
 
[[File:EN_KC_T_2_2_S3.png|right|frame|Possible Galois fields&nbsp; ${\rm GF}(q)$&nbsp; for&nbsp; $q ≤ 64$ |class=fit]]
 
[[File:EN_KC_T_2_2_S3.png|right|frame|Possible Galois fields&nbsp; ${\rm GF}(q)$&nbsp; for&nbsp; $q ≤ 64$ |class=fit]]
 
+
<br><br>
 
The diagram shows for which $q$&ndash;values a Galois field can be constructed. For the shaded values no finite field can be given.  
 
The diagram shows for which $q$&ndash;values a Galois field can be constructed. For the shaded values no finite field can be given.  
  
 
Further it is to be noted:
 
Further it is to be noted:
*The yellow highlighted positions&nbsp; $q=P$ &nbsp; &#8658; &nbsp; $m = 1$&nbsp; mark sets of numbers&nbsp; $\{0,\ 1,\hspace{0.05cm}\text{ ...} \hspace{0.05cm},\ q- 1\}$&nbsp; with Galois properties, see page&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field| "Definition of a Galois Field"]].<br>
+
#The yellow highlighted positions&nbsp; $q=P$ &nbsp; &#8658; &nbsp; $m = 1$&nbsp; mark sets of numbers&nbsp; $\{0,\ 1,\hspace{0.05cm}\text{ ...} \hspace{0.05cm},\ q- 1\}$&nbsp; with Galois properties, see section&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field|"Definition of a Galois Field"]].<br>
 
+
#Other background colors mark extension fields with&nbsp; $q=P^m$, &nbsp; $m &#8805; 2$.&nbsp; For&nbsp; $q &#8804; 64$&nbsp; these are based on the primes&nbsp; $2$,&nbsp; $3$,&nbsp; $5$,&nbsp; $7$.<br>
*The other background colors mark extension fields with&nbsp; $q=P^m$, &nbsp; $m &#8805; 2$. For&nbsp; $q &#8804; 64$&nbsp; these are based on the primes&nbsp; $2$,&nbsp; $3$,&nbsp; $5$&nbsp; and&nbsp; $7$.<br>
+
#Highlighted in red are binary fields &nbsp; &#8658; &nbsp; $q=2^m$, &nbsp; $m &#8805; 1$, which will be considered in more detail in the next section.
 
+
# All other extension fields are labeled in blue.<br>
*Highlighted in red are binary fields &nbsp; &#8658; &nbsp; $q=2^m$, &nbsp; $m &#8805; 1$, which will be considered in more detail on the next page. All other extension fields are labeled in blue.<br>
 
 
<br clear=all>
 
<br clear=all>
 
== Binary extension fields &ndash; Primitive polynomials==
 
== Binary extension fields &ndash; Primitive polynomials==
 
<br>
 
<br>
 
[[File:EN_KC_T_2_2_S4.png|right|frame|Irreducible and primitive polynomials|class=fit]]
 
[[File:EN_KC_T_2_2_S4.png|right|frame|Irreducible and primitive polynomials|class=fit]]
In the following we consider binary extension fields with
+
In the following we consider binary extension fields with&nbsp; $q$&nbsp; elements:
  
 
::<math>q = 2^m \hspace{0.15cm}(m \ge 2)  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} q = 4,\ 8,\ 16, 32,\ 64,\ \text{...}</math>
 
::<math>q = 2^m \hspace{0.15cm}(m \ge 2)  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} q = 4,\ 8,\ 16, 32,\ 64,\ \text{...}</math>
  
elements.
+
*In the table all irreducible polynomials of the Galois field&nbsp; ${\rm GF}(2)$&nbsp; are given for&nbsp; $2 &#8804; m &#8804; 6$.
*In der Tabelle sind für&nbsp; $2 &#8804; m &#8804; 6$&nbsp; alle irreduziblen Polynome des Galoisfeldes&nbsp; ${\rm GF}(2)$&nbsp; angegeben.  
+
*The polynomials in columns 2 and 3 are not only irreducible, but additionally also primitive.<br>
+
*The polynomials in columns 2 and 3 are not only irreducible,&nbsp; but additionally also primitive.<br>
*Primitive polynomials also provide the basis for the&nbsp; [[Theory_of_Stochastic_Signals/Generation_of_Discrete_Random_Variables#Realization_of_PN_generators| "Realization of pseudo&ndash;noise generators"]].<br>
+
 
 +
*Primitive polynomials also provide the basis for the&nbsp; [[Theory_of_Stochastic_Signals/Generation_of_Discrete_Random_Variables#Realization_of_PN_generators|"Realization of pseudo&ndash;noise generators"]].<br>
  
  
Before we turn to the definition of a primitive polynomial, we shall first mention the peculiarities of "primitive elements" using the example of
+
Before we turn to the definition of a primitive polynomial,&nbsp; we shall first mention the peculiarities of&nbsp; "primitive elements"&nbsp; using the example of
  
 
::<math>{\rm GF}(q) = \{\hspace{0.05cm}z_0 = 0,\hspace{0.1cm} z_1 = 1,\hspace{0.05cm}  \text{...}\hspace{0.05cm} , \hspace{0.05cm}z_{q-1}\}.</math>
 
::<math>{\rm GF}(q) = \{\hspace{0.05cm}z_0 = 0,\hspace{0.1cm} z_1 = 1,\hspace{0.05cm}  \text{...}\hspace{0.05cm} , \hspace{0.05cm}z_{q-1}\}.</math>
  
The element&nbsp; $z_i = \beta$&nbsp; is then called&nbsp; '''primitive'''&nbsp;,
+
The element&nbsp; $z_i = \beta$&nbsp; is then called&nbsp; &raquo;'''primitive'''&laquo;&nbsp;,
*if the power&nbsp; $\beta^{\hspace{0.05cm}i}$&nbsp; modulo&nbsp; $q$&nbsp; for the first time for&nbsp; $i = q-1$&nbsp; leads to the result "$1$" so that  <br>
+
*if the power&nbsp; $\beta^{\hspace{0.05cm}i}$&nbsp; modulo&nbsp; $q$&nbsp; for the first time for&nbsp; $i = q-1$&nbsp; leads to the result&nbsp; "$1$"&nbsp; so that  <br>
  
 
*$\beta^{\hspace{0.05cm}i}$&nbsp;  for&nbsp; $1 &#8804; i &#8804; q- 1$&nbsp; yields exactly the elements&nbsp; $z_1$, ... , $z_{q-1}$&nbsp; i.e. all elements of&nbsp; ${\rm GF}(q)$&nbsp; except the zero element&nbsp; $z_0 = 0$.<br>
 
*$\beta^{\hspace{0.05cm}i}$&nbsp;  for&nbsp; $1 &#8804; i &#8804; q- 1$&nbsp; yields exactly the elements&nbsp; $z_1$, ... , $z_{q-1}$&nbsp; i.e. all elements of&nbsp; ${\rm GF}(q)$&nbsp; except the zero element&nbsp; $z_0 = 0$.<br>
Line 326: Line 337:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 3:}$&nbsp; From the number set $Z_5 = \{0,\ 1,\ 2,\ 3,\ 4\}$, "$2$" and "$3$" are primitive elements because of
+
$\text{Example 3:}$&nbsp; From the number set&nbsp; $Z_5 = \{0,\ 1,\ 2,\ 3,\ 4\}$,&nbsp; the numbers&nbsp; "$2$"&nbsp; and&nbsp; "$3$"&nbsp; are primitive elements because of
  
 
::<math>2^1 \hspace{-0.1cm}  =  \hspace{-0.1cm} 2\hspace{0.05cm},\hspace{0.2cm} 2^2 = 4\hspace{0.05cm},\hspace{0.2cm} 2^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} 2^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},</math>  
 
::<math>2^1 \hspace{-0.1cm}  =  \hspace{-0.1cm} 2\hspace{0.05cm},\hspace{0.2cm} 2^2 = 4\hspace{0.05cm},\hspace{0.2cm} 2^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} 2^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},</math>  
 
::<math>3^1 \hspace{-0.1cm}  =  \hspace{-0.1cm} 3\hspace{0.05cm},\hspace{0.2cm} 3^2 = 9\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 3^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} 3^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1</math>
 
::<math>3^1 \hspace{-0.1cm}  =  \hspace{-0.1cm} 3\hspace{0.05cm},\hspace{0.2cm} 3^2 = 9\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 3^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} 3^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1</math>
  
*On the other hand "$4$" is not a primitive element, because already" $4^2 = 1$" is:
+
*On the other hand,&nbsp; "$4$"&nbsp; is not a primitive element,&nbsp; because already&nbsp; $4^2 = 1$:
  
 
::<math>4^1 = 4\hspace{0.05cm},\hspace{0.2cm} 4^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\hspace{0.2cm} 4^3 = 64 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 4^4 = 256 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm}.</math>}}<br>
 
::<math>4^1 = 4\hspace{0.05cm},\hspace{0.2cm} 4^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\hspace{0.2cm} 4^3 = 64 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 4^4 = 256 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm}.</math>}}<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  An irreducible polynomial is called at the same time a&nbsp; '''primitive polynomial''' if the root&nbsp; $\alpha$&nbsp; with respect to the polynomial&nbsp; $p(x)$&nbsp; is a primitive element of&nbsp; ${\rm GF}(q)$&nbsp; . Then holds
+
$\text{Definition:}$&nbsp;  An irreducible polynomial is called at the same time a&nbsp; &raquo;'''primitive polynomial'''&laquo;&nbsp; <br> &nbsp; &nbsp; if the root&nbsp; $\alpha$&nbsp; with respect to the polynomial&nbsp; $p(x)$&nbsp; is a primitive element of&nbsp; ${\rm GF}(q)$.&nbsp; Then holds
  
 
::<math>{\rm GF}(q) = \{\hspace{0.1cm}\alpha^{-\infty} = 0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.2cm}
 
::<math>{\rm GF}(q) = \{\hspace{0.1cm}\alpha^{-\infty} = 0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.2cm}
 
\alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^{2},\hspace{0.2cm}  \text{...} \hspace{0.1cm}  , \hspace{0.2cm}\alpha^{q-2}\hspace{0.1cm}\}\hspace{0.05cm}.  </math>}}<br>
 
\alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^{2},\hspace{0.2cm}  \text{...} \hspace{0.1cm}  , \hspace{0.2cm}\alpha^{q-2}\hspace{0.1cm}\}\hspace{0.05cm}.  </math>}}<br>
  
*All polynomials given in column 2 of the above table are both irreducible and primitive.  
+
*All polynomials given in the second column of the above table are both irreducible and primitive.
*If&nbsp; $p_1(x)$&nbsp; is a primitive polynomial, then the polynomial reciprocal to it&nbsp; $p_2 (x) = x^m \cdot p_1(x^{-1})$&nbsp; is also primitive.  
+
*All polynomials in column 3 are reciprocal to the polynomial in column 2. For example, for&nbsp; $m = 3$:
+
*If&nbsp; $p_1(x)$&nbsp; is a primitive polynomial,&nbsp; then the polynomial reciprocal &nbsp; $p_2 (x) = x^m \cdot p_1(x^{-1})$ &nbsp; to it is also primitive.
 +
 +
*All polynomials in the third column are reciprocal to the polynomial in the second column.&nbsp; For example,&nbsp; for&nbsp; $m = 3$:
  
 
::<math>p_1(x) = x^3 + x + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}p_2(x) = x^3 \cdot \big[x^{-3} + x^{-1} + 1 \big]= x^3 + x^2 + 1 \hspace{0.05cm}.</math>
 
::<math>p_1(x) = x^3 + x + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}p_2(x) = x^3 \cdot \big[x^{-3} + x^{-1} + 1 \big]= x^3 + x^2 + 1 \hspace{0.05cm}.</math>
  
*The irreducible polynomials of column 4, on the other hand, are not primitive; they play only a minor role in describing error correction procedures.<br>
+
*The irreducible polynomials of column 4,&nbsp; on the other hand,&nbsp; are not primitive;&nbsp; they play only a minor role in describing error correction procedures.<br>
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 4:}$&nbsp; For clarification of these statements we consider exemplarily
 
$\text{Example 4:}$&nbsp; For clarification of these statements we consider exemplarily
*the Galois field&nbsp; $\rm GF(2^3) = GF(8)$, as well as <br>
+
*the Galois field&nbsp; $\rm GF(2^3) = GF(8)$,&nbsp; as well as <br>
 +
 
 
*the polynomial&nbsp; $p(x) = x^3 +  x + 1$.<br><br>
 
*the polynomial&nbsp; $p(x) = x^3 +  x + 1$.<br><br>
  
From the condition&nbsp; $p(\alpha) = 0$&nbsp; we obtain in&nbsp; $\rm GF(2^3)$&nbsp; further:
+
From the condition &nbsp; $p(\alpha) = 0$ &nbsp; we obtain in&nbsp; $\rm GF(2^3)$&nbsp; further:
  
 
::<math>\alpha^3 + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^3 = \alpha + 1 \hspace{0.05cm},</math>
 
::<math>\alpha^3 + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^3 = \alpha + 1 \hspace{0.05cm},</math>
Line 371: Line 385:
 
$\text{Example 5:}$&nbsp; The elements&nbsp; $z_0$,&nbsp; $z_1$, ... ,&nbsp; $z_7$&nbsp; of the Galois field&nbsp; $\rm GF(2^3)$&nbsp; can be represented according to the adjacent table as follows:
 
$\text{Example 5:}$&nbsp; The elements&nbsp; $z_0$,&nbsp; $z_1$, ... ,&nbsp; $z_7$&nbsp; of the Galois field&nbsp; $\rm GF(2^3)$&nbsp; can be represented according to the adjacent table as follows:
 
[[File:EN_KC_T_2_2_S4b_neu.png|right|frame|Elements of&nbsp; $\rm GF(2^3)$&nbsp; in three different representations]]
 
[[File:EN_KC_T_2_2_S4b_neu.png|right|frame|Elements of&nbsp; $\rm GF(2^3)$&nbsp; in three different representations]]
*as powers of&nbsp; $\alpha$ &nbsp; &rArr; &nbsp; '''exponent representation''',<br>
+
*as powers of&nbsp; $\alpha$ &nbsp; &rArr; &nbsp; &raquo;'''exponent representation'''&laquo;,<br>
  
*as polynomials of the form&nbsp; $k_2 \cdot \alpha^2 + k_1 \cdot \alpha + k_0$&nbsp; with binary coefficients&nbsp; $k_2$,&nbsp; $k_1$,&nbsp; $k_0$ &nbsp; &rArr; &nbsp; '''polynomial representation''',<br>
+
*as polynomials of the form&nbsp; $k_2 \cdot \alpha^2 + k_1 \cdot \alpha + k_0$&nbsp; with binary coefficients&nbsp; $k_2$,&nbsp; $k_1$,&nbsp; $k_0$ &nbsp; &rArr; &nbsp; &raquo;'''polynomial representation'''&laquo;,<br>
  
*as vectors of coefficients&nbsp; $(k_2, \ k_1, \ k_0)$ &nbsp; &rArr; &nbsp; '''coefficient representation'''.<br><br>
+
*as vectors of coefficients&nbsp; $(k_2, \ k_1, \ k_0)$ &nbsp; &rArr; &nbsp; &raquo;'''coefficient representation'''&laquo;.<br><br>
  
For addition (or subtraction) of two elements polynomial and vector representation are equally suitable, where the components&nbsp; $\text{modulo 2}$&nbsp; are to be added, for example:
+
&rArr; &nbsp; For addition&nbsp; (or subtraction)&nbsp; of two elements polynomial and vector representation are equally suitable, <br>where the components are to be added&nbsp; $\text{modulo 2}$,&nbsp; for example:
  
 
::<math>z_5 + z_7  =(\alpha^2 + \alpha) + (\alpha^2 + 1)  = \alpha + 1 = \alpha^3 = z_4 \hspace{0.05cm},</math>
 
::<math>z_5 + z_7  =(\alpha^2 + \alpha) + (\alpha^2 + 1)  = \alpha + 1 = \alpha^3 = z_4 \hspace{0.05cm},</math>
Line 383: Line 397:
 
::<math>\hspace{0.15cm} z_1 + z_2 + z_3 =(001) + (010) + (100)= (111) = z_6 \hspace{0.05cm}.</math>
 
::<math>\hspace{0.15cm} z_1 + z_2 + z_3 =(001) + (010) + (100)= (111) = z_6 \hspace{0.05cm}.</math>
  
For multiplications, the exponent representation is well suited, as the following examples show:
+
&rArr; &nbsp; For multiplications,&nbsp; the exponent representation is well suited,&nbsp; as the following examples show:
 
[[File:P ID2577 KC T 2 2 S4c.png|right|frame|$\rm GF(2^3)$&nbsp;  in 3D representation]]
 
[[File:P ID2577 KC T 2 2 S4c.png|right|frame|$\rm GF(2^3)$&nbsp;  in 3D representation]]
 
::<math>z_3 \cdot z_4  =\alpha^2 \cdot \alpha^3 =  \alpha^{2+3}=  \alpha^{5} = z_6 \hspace{0.05cm},</math>
 
::<math>z_3 \cdot z_4  =\alpha^2 \cdot \alpha^3 =  \alpha^{2+3}=  \alpha^{5} = z_6 \hspace{0.05cm},</math>
Line 390: Line 404:
 
=  1 \cdot \alpha^{3}= z_4 \hspace{0.05cm}.</math>
 
=  1 \cdot \alpha^{3}= z_4 \hspace{0.05cm}.</math>
  
It can be seen that the exponents modulo&nbsp; $q-1$&nbsp; result &nbsp; $($in the example modulo&nbsp; $7)$.<br>
+
It can be seen that the exponents result modulo&nbsp; $q-1$&nbsp; $($in this example modulo&nbsp; $7)$.<br>
 +
 
 +
&rArr; &nbsp; The bottom graph shows the finite extension field&nbsp; $\rm GF(2^3)$&nbsp; in a three-dimensional representation:
 +
*The axes are labeled&nbsp; $\alpha^0 =1$,&nbsp; $\alpha^1$&nbsp; and&nbsp; $\alpha^2$.
 +
 +
*The&nbsp; $2^3 = 8$&nbsp; points in the three-dimensional space are labeled with the coefficient vectors.
  
The bottom graph shows the finite extension field&nbsp; $\rm GF(2^3)$&nbsp; in a 3D representation:
 
*The axes are labeled&nbsp; $\alpha^0 =1$,&nbsp; $\alpha^1$&nbsp; and&nbsp; $\alpha^2$&nbsp;.
 
*The&nbsp; $2^3 = 8$&nbsp; points in 3D space are labeled with the coefficient vectors.
 
 
*The assignment of the coefficients&nbsp; $k_2$,&nbsp; $k_1$,&nbsp; $k_0$&nbsp; to the axes is made clear by color. }}
 
*The assignment of the coefficients&nbsp; $k_2$,&nbsp; $k_1$,&nbsp; $k_0$&nbsp; to the axes is made clear by color. }}
  

Latest revision as of 17:10, 23 November 2022

GF(22) – Example of an extension field


In  "Example 2"  of the chapter  "Some Basics of Algebra"  it has already been shown that the  »finite set of numbers«  $\{0,\ 1,\ 2,\ 3\}$   ⇒   $q = 4$  does not satisfy the properties of a Galois field  $\rm GF(4)$.  Rather,  the following tables result for the  "addition modulo 4"  and the  "multiplication modulo 4":

$$ \begin{array}{c} {\rm modulo}\hspace{0.15cm}{\it q} = 4\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c|cccccc} + & 0 & 1 &2 & 3 \\ \hline 0 & 0 & 1 &2 & 3 \\ 1 & 1 & 2 &3 & 0 \\ 2 & 2 & 3 &0 & 1 \\ 3 & 3 & 0 &1 & 2 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 &2 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 0 & 2 & 0 & 2 \\ 3 & 0 & 3 & 2 & 1 \\ \end{array} \right] . $$


For  $z_i = 2$  there is no multiplicative inverse  ${\rm Inv_M}(z_i)$.  This can be seen from the fact that no single element  $z_i ∈ \{0,\ 1,\ 2,\ 3\}$  satisfies the condition  $2 · z_i = 1$.

On the other hand,  if we start from the binary Galois field  ${\rm GF}(2) = \{0,\ 1\}$  and extend it according to the equation

\[{\rm GF}(2^2)= \big\{k_0+k_1\cdot \alpha \ \big | \ k_0, k_1\in{\rm GF}(2) = \{ 0, 1\} \big \}\hspace{0.05cm}, \]

then the likewise  »finite set  $\{0,\ 1,\ \alpha,\ 1 + \alpha\}$«   ⇒   order is further  $q=4$.


Performing the arithmetic operations modulo  $p(\alpha) = \alpha^2 + \alpha + 1$  we get the following result:

$$ \begin{array}{c} {\rm modulo}\hspace{0.15cm}{\it p}(\alpha)= \alpha^2 + \alpha + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c|cccccc} + & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 1 & \alpha & 1\!+\!\alpha \\ 1 & 1 & 0 & 1\!+\!\alpha & \alpha \\ \alpha & \alpha & 1\!+\!\alpha & 0 & 1 \\ 1\!+\!\alpha & 1\!+\!\alpha & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & 1\!+\!\alpha \\ \alpha & 0 & \alpha & 1\!+\!\alpha & 1 \\ 1\!+\!\alpha & 0 & 1\!+\!\alpha & 1 & \alpha \end{array} \right] .$$

In this regard, it should be noted:

  • The neutral elements of addition or multiplication are still  $N_{\rm A} = 0$  and  $N_{\rm M} = 1$.
  • Since there is no difference between addition and subtraction in modulo arithmetic  $\alpha + \alpha = \alpha - \alpha = 0$.
  • For all  $z_i$  thus holds:   The additive inverse of  $z_i$  is the element  $z_i$  itself.
  • The entries in the multiplication table are obtained according to the following calculations:
\[\big [ \alpha \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + \alpha) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1\hspace{0.05cm},\]
\[\big [ \alpha \cdot \alpha \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 ) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= 1+\alpha\hspace{0.05cm},\]
\[\big [ (1+\alpha) \cdot (1+\alpha) \big ] \hspace{0.15cm}{\rm mod} \hspace{0.15cm} p(\alpha) = (\alpha^2 + 1) \hspace{0.15cm}{\rm mod} \hspace{0.15cm} (\alpha^2 + \alpha + 1)= \alpha\hspace{0.05cm}.\]
  • Thus, the multiplicative inverses exist for all elements except the zero element:
\[{\rm Inv_M}( 1) = 1 \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(\alpha) = 1+\alpha \hspace{0.05cm},\hspace{0.2cm}{\rm Inv_M}(1+\alpha) = \alpha \hspace{0.05cm}.\]

$\text{Intermediate result:}$ 

  • The set  $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$  together with operations  "addition"  and  "multiplication"  modulo  $p(\alpha)= \alpha^2 + \alpha + 1$  represents a  "Galois field"  $($order  $q = 4)$.
  • This Galois field, denoted by  $\rm GF(2^2) = GF(4)$  satisfies all the requirements mentioned in the  "previous chapter" .
  • In contrast to the Galois field  $\rm GF(3) = \{0, \ 1, \ 2\}$  with the property that  $q = 3$  is a prime number, $\rm GF(2^2)$  is called an extension field.


Reducible and irreducible polynomials


The polynomial  $p(\alpha)$  and thus the equation of determination  $p(\alpha) = 0$  must not be given arbitrarily. The polynomial used in the last section 

$$p(\alpha)= \alpha^2 + \alpha + 1$$

is suitable. Now we try another polynomial, namely  $p(\alpha)= \alpha^2 + 1$.

$$ \begin{array}{c} {\rm modulo}\hspace{0.15cm}{\it p}(\alpha)= \alpha^2 + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c|cccccc} + & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 1 & \alpha & 1\!+\!\alpha \\ 1 & 1 & 0 & 1\!+\!\alpha & \alpha \\ \alpha & \alpha & 1\!+\!\alpha & 0 & 1 \\ 1\!+\!\alpha & 1\!+\!\alpha & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & 1\!+\!\alpha \\ \alpha & 0 & \alpha & 1 &1\!+\!\alpha \\ 1\!+\!\alpha & 0 & 1\!+\!\alpha & 1\!+\!\alpha & 0 \end{array} \right] .$$

The addition table is identical in both cases and also the multiplication tables differ only by the four entries in the two bottom rows and the two last columns:

  • From  $p(\alpha) = 0$  now follows for the product  $\alpha \cdot \alpha = 1$  and the product  $(1 +\alpha) \cdot (1 +\alpha) $  gives the zero element. The mixed product is  $\alpha \cdot (1 +\alpha) = 1 +\alpha $.
  • In the last row of the multiplication table and also in the last column there is now no "$1$"   ⇒   Concerning the condition  $p(\alpha)= \alpha^2 + 1= 0$  consequently the multiplicative inverse to  $1 +\alpha$  does not exist.
  • But thus the finite set  $\{0, \ 1, \ \alpha, \ 1 + \alpha\}$ together with arithmetic operations modulo  $p(\alpha)= \alpha^2 + 1$  does not satisfy the conditions of an extension field either  $\rm GF(2^2) $.

$\text{Let us summarize:}$ 

From the binary Galois field  $\rm GF(2) = \{0, \ 1\}$  an extension field  $\rm GF(2^2)$  can be formulated with the aid of a polynomial of degree  $m = 2$  with binary coefficients:

\[p(x) = x^2 + k_1 \cdot x + k_0 \hspace{0.05cm}, \hspace{0.45cm}k_0\hspace{0.05cm},\hspace{0.1cm}k_1 \in \{0, 1\} \hspace{0.05cm}.\]

  Note:   The renaming of the variable  $\alpha$  to  $x$  has only formal meaning with regard to later sections.

  • In the present case there is only one suitable polynomial  $p_1(x)= x^2 + x + 1$. All other possible polynomials of degree  $m = 2$, namely,
\[p_2(x) = x^2 + 1 \hspace{0.06cm} = (x+1) \cdot (x+1)\hspace{0.05cm},\]
\[p_3(x) =x^2 \hspace{0.76cm} = x \cdot x \hspace{0.05cm},\]
\[p_4(x) = x^2 + x = (x+1) \cdot x\hspace{0.05cm}, \]
can be factorized and do not yield extension fields.
  • The polynomials  $p_2(x)$,  $p_3(x)$  and  $p_4(x)$  are called  "reducible".
  • The conclusion is obvious that only  "irreducible polynomials"  such as  $p_1(x)$  are suitable for an extension fields

.


Interpretation of the new element "alpha"


We further consider the field  ${\rm GF}(2^2) = \{0, \ 1,\ \alpha,\ 1 + \alpha\}$  corresponding to the following two operational tables, based on the constraint  $p(\alpha)= \alpha^2 + \alpha + 1 = 0$  (irreducible ploynomial):

$$ \begin{array}{c} {\rm modulo}\hspace{0.15cm} p(\alpha)= \alpha^2 + \alpha + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c|cccccc} + & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 1 & \alpha & 1\!+\!\alpha \\ 1 & 1 & 0 & 1\!+\!\alpha & \alpha \\ \alpha & \alpha & 1\!+\!\alpha & 0 & 1 \\ 1\!+\!\alpha & 1\!+\!\alpha & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 & \alpha & 1\!+\!\alpha \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & 1\!+\!\alpha \\ \alpha & 0 & \alpha & 1\!+\!\alpha & 1 \\ 1\!+\!\alpha & 0 & 1\!+\!\alpha & 1 & \alpha \end{array} \right] .$$


Transition from  ${\rm GF}(2)$  to  ${\rm GF}(2^2)$

But what is the meaning of the new element $\alpha$?

  • The polynomial  $p(\alpha)= \alpha^2 + \alpha + 1 $  has no zero in  ${\rm GF}(2) = \{0, \ 1\}$ . This further implies that  $\alpha$  can be neither  $0$  nor  $1$ .
  • If  $\alpha= 0$  resp.   $\alpha= 1$, then moreover two of the four set elements  $\{0,\ 1,\ \alpha,\ 1 + \alpha\}$  would be identical respectively:   Either "$0$" and "$\alpha$" as well as "$1$" and "$1+\alpha$" or "$1$" and "$\alpha$" as well as "$0$" and "$1+\alpha$".
  • Much more the one-dimensional field  ${\rm GF}(2)$  gets a second dimension by the introduction of the element  $\alpha$ . It is thus extended to the Galois field  ${\rm GF}(2^2)$  as shown in the accompanying diagram.
  • The element  $\alpha$  has similar meaning as the imaginary unit  ${\rm j}$, by which one extends the set of real numbers under the constraint  ${\rm j}^2 + 1 = 0$  to the set of complex numbers.


$\text{Common representation of the binary extension field}\ \ {\rm GF}(2^2)\text{:}$

Due to the identity  $\alpha^2 = 1 + \alpha$, which follows from the constraint  $p(\alpha) = 0$ , one can write in the same way  ${\rm GF}(2^2) = \{0,\ 1,\ \alpha,\ \alpha^2\}$  where now the following operation tables hold:

$$ \begin{array}{c} {\rm modulo}\hspace{0.15cm} p(\alpha)= \alpha^2 + \alpha + 1\\ \end{array}\hspace{0.25cm} \Rightarrow\hspace{0.25cm} \left[ \begin{array}{c | cccccc} + & 0 & 1 & \alpha & \alpha^2 \\ \hline 0 & 0 & 1 & \alpha & \alpha^2 \\ 1 & 1 & 0 & \alpha^2 & \alpha \\ \alpha & \alpha & \alpha^2 & 0 & 1 \\ \alpha^2 & \alpha^2 & \alpha & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.5cm} \left[ \begin{array}{c | cccccc} \cdot & 0 & 1 & \alpha & \alpha^2 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & \alpha & \alpha^2 \\ \alpha & 0 & \alpha &\alpha^2 & 1 \\ \alpha^2 & 0 & \alpha^2 & 1 & \alpha \end{array} \right] .$$


Polynomials over a finite field


$\text{Definition:}$  A  »polynomial«  in a finite field  ${\rm GF}(P)$,  where  $P$  denotes a prime number,  has the following form:

\[a(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + a_m \cdot x^{m} \hspace{0.05cm}.\]

To note:

  • All coefficients  $a_i $  are elements of the field:   $a_i \in {\rm GF}(P)$.
  • If the leading coefficient  $a_m ≠ 0$, then  $m$  indicates the  »degree«  of the polynomial.


Let us consider a second polynomial with degree $M$,

\[b(x) = \sum_{i = 0}^{M} b_i \cdot x^{i} = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \hspace{0.1cm}\text{...} \hspace{0.1cm} + b_M \cdot x^{M} \hspace{0.05cm},\]

then we get for the sum  (resp. difference)  and the product respectively in  ${\rm GF}(P)$:

\[a(x) \pm b(x) = \sum_{i = 0}^{{\rm max}\hspace{0.05cm}(m, \hspace{0.05cm}M)} \hspace{0.15cm}(a_i \pm b_i) \cdot x^{i} \hspace{0.05cm},\]
\[a(x) \cdot b(x) = \sum_{i = 0}^{m + M} \hspace{0.15cm}c_i \cdot x^{i}\hspace{0.05cm},\hspace{0.5cm} c_i = \sum_{j = 0}^{i}\hspace{0.15cm}a_j \cdot b_{i-j} \hspace{0.05cm}.\]

$\text{Example 1:}$    $a(x) = x^3 + x + 1$   and  $b(x) = x^2 + x + 1$  are valid.

In the binary Galois field    ⇒   ${\rm GF}(2)$  results according to the above equations for the sum,  difference and product of the two polynomials:

\[s(x) = a(x) + b(x) = x^3 + x^2 \hspace{0.05cm}, \]
\[d(x) = a(x) - b(x) = x^3 + x^2 = s(x)\hspace{0.05cm},\]
\[c(x) = a(x) \cdot b(x) =\sum_{i = 0}^{3 + 2} \hspace{0.15cm}c_i \cdot x^{i}\hspace{0.05cm},\hspace{0.5cm} c_i = \sum_{j = 0}^{i}\hspace{0.15cm}a_j \cdot b_{i-j} \hspace{0.05cm}.\]

With  $a_0 = a_1 = a_3 = b_0 = b_1 =b_2 = 1$   and   $a_2 = a_4 = a_5 = b_3 = b_4 =b_5 = 0$  we obtain:

\[c_0 = a_0 \cdot b_0 = 1 \cdot 1 = 1 \hspace{0.05cm},\]
\[c_1 = a_0 \cdot b_1 + a_1 \cdot b_0 = 1 \cdot 1 + 1 \cdot 1 = 0 \hspace{0.05cm},\]
\[c_2 =a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0 = 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 0 \hspace{0.05cm},\]
\[c_3 = a_0 \cdot b_3 + a_1 \cdot b_2 + a_2 \cdot b_1 + a_3 \cdot b_0 = 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 = 0 \hspace{0.05cm},\]
\[c_4=a_0 \cdot b_4 + a_1 \cdot b_3 + \hspace{0.05cm}\text{...}\hspace{0.05cm}+ \hspace{0.05cm}a_4 \cdot b_0 =1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 1 \hspace{0.05cm},\]
\[c_5 = a_0 \cdot b_5 + a_1 \cdot b_4 + \hspace{0.05cm}\text{...}\hspace{0.05cm}+ \hspace{0.05cm} a_5 \cdot b_0 =1 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1= 1 \]
\[\Rightarrow \hspace{0.3cm} c(x) = x^5 + x^4 +1 \hspace{0.05cm}.\]

In the Galois field  ${\rm GF}(3)$  other results are obtained due to the modulo 3 operations:

\[s(x) = (x^3 + x + 1) + (x^2 + x + 1) = x^3 + x^2 + 2x + 2\hspace{0.05cm},\]
\[d(x) = (x^3 + x + 1) - (x^2 + x + 1) = x^3 + 2x^2 \hspace{0.05cm},\]
\[c(x) = (x^3 + x + 1) \cdot (x^2 + x + 1) = x^5 + x^4 + 2x^3 + 2x^2 + 2x +1\hspace{0.05cm}.\]


$\text{Definition:}$  A polynomial  $a(x)$  is called  »reducible«  if it can be represented as the product of two polynomials  $p(x)$  and  $q(x)$  each of lower degree:

\[a(x) = p(x) \cdot q(x) \hspace{0.05cm}.\]

If this factorization is not possible,  that is

\[a(x) = p(x) \cdot q(x) + r(x)\hspace{0.05cm},\hspace{0.5cm} r(x) \ne 0\]

holds,  then the polynomial is called an  »irreducible«  or  »prime«.


$\text{Example 2:}$  It holds  $b(x) = x^3 + x + 1$,  then  $p_1(x) = x^2 + x + 1$   and   $p_2(x) = x^2 + 1$   are valid.

The graph on the left illustrates the modulo 2 multiplication  $a(x)= b(x) \cdot p_1(x)$. The result is  $a(x) = x^5 + x^4 + 1$.

Example of polynomial multiplication and division

In the right part of the above graph, the modulo 2 division  $q(x)= a(x)/ p_2(x)$  is shown with the result  $q(x) = x^3 + x^2 + x + 1$.

  • This leaves the remainder  $r(x) = x$.
  • According to this calculation alone  $a(x) = x^5 + x^4 + 1$  could well be an irreducible polynomial.
  • However,  the proof that the polynomial   $a(x) = x^5 + x^4 + 1$   is indeed irreducible would only be given if  $a(x)/p(x)$  yields a remainder for all
\[p(x) = \sum_{i = 0}^{m} a_i \cdot x^{i} = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}.\]
This proof would require (almost)   $2^5 = 32$   divisions in the present example.
  • Based on our left-hand calculation,  we can immediately see here that  $a(x)$  is certainly not an irreducible polynomial, 
    since e.g.   $a(x) = x^5 + x^4 + 1$   divided by   $p_1(x) = x^2 + x + 1$   yields the polynomial   $b(x) = x^3 + x + 1$   with no remainder.


Generalized definition of an extension field


We assume the following:

  • A Galois field  ${\rm GF}(P)$, where  $P$  denotes a prime number,
  • an irreducible polynomial  $p(x)$  over  ${\rm GF}(P)$  of degree  $m$:
\[p(x) = a_m \cdot x^{m} + a_{m-1} \cdot x^{m-1} + \hspace{0.1cm}\text{...} \hspace{0.1cm}+ a_2 \cdot x^2 + a_1 \cdot x + a_0 \hspace{0.05cm}, \hspace{0.3cm} a_i \in {\rm G}(P)\hspace{0.05cm}, \hspace{0.15cm}a_m \ne 0\hspace{0.05cm}. \]

With the above conditions generally applies:

$\text{Definition:}$  Let 

  1. $P$  be a prime number,
  2. $m$  be an integer, 
  3. $p(x)$  be an irreducible polynomial of degree  $m$  and
  4. $p(\alpha) = 0$  hold.


An  extension field  can then be described as follows:

\[{\rm GF}(P^m)= \Big\{ k_{m-1} \hspace{0.01cm}\cdot \hspace{0.02cm}\alpha^{m-1} \hspace{0.05cm}+ \hspace{0.05cm}\text{...} \hspace{0.05cm}+ \hspace{0.05cm}k_1 \hspace{0.01cm}\cdot \hspace{0.02cm} \alpha \hspace{0.05cm}+ \hspace{0.05cm} k_0\hspace{0.05cm} \Big{\vert}\hspace{0.02cm} \ k_i\in{\rm GF}(P) = \{ 0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, P-1\}\Big \}.\]
  • The addition and multiplication in this extension field then corresponds to polynomial addition and polynomial multiplication modulo  $p(\alpha)$.
  • So:  A Galois field  ${\rm GF}(q)$  with  $q$  elements can be specified whenever the element number can be written in the form  $q = P^m$ 
    $(P$  denotes a prime number,  $m$  be integer$)$.


Possible Galois fields  ${\rm GF}(q)$  for  $q ≤ 64$



The diagram shows for which $q$–values a Galois field can be constructed. For the shaded values no finite field can be given.

Further it is to be noted:

  1. The yellow highlighted positions  $q=P$   ⇒   $m = 1$  mark sets of numbers  $\{0,\ 1,\hspace{0.05cm}\text{ ...} \hspace{0.05cm},\ q- 1\}$  with Galois properties, see section  "Definition of a Galois Field".
  2. Other background colors mark extension fields with  $q=P^m$,   $m ≥ 2$.  For  $q ≤ 64$  these are based on the primes  $2$,  $3$,  $5$,  $7$.
  3. Highlighted in red are binary fields   ⇒   $q=2^m$,   $m ≥ 1$, which will be considered in more detail in the next section.
  4. All other extension fields are labeled in blue.


Binary extension fields – Primitive polynomials


Irreducible and primitive polynomials

In the following we consider binary extension fields with  $q$  elements:

\[q = 2^m \hspace{0.15cm}(m \ge 2) \hspace{0.3cm} \Rightarrow\hspace{0.3cm} q = 4,\ 8,\ 16, 32,\ 64,\ \text{...}\]
  • In the table all irreducible polynomials of the Galois field  ${\rm GF}(2)$  are given for  $2 ≤ m ≤ 6$.
  • The polynomials in columns 2 and 3 are not only irreducible,  but additionally also primitive.


Before we turn to the definition of a primitive polynomial,  we shall first mention the peculiarities of  "primitive elements"  using the example of

\[{\rm GF}(q) = \{\hspace{0.05cm}z_0 = 0,\hspace{0.1cm} z_1 = 1,\hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.05cm}z_{q-1}\}.\]

The element  $z_i = \beta$  is then called  »primitive« ,

  • if the power  $\beta^{\hspace{0.05cm}i}$  modulo  $q$  for the first time for  $i = q-1$  leads to the result  "$1$"  so that
  • $\beta^{\hspace{0.05cm}i}$  for  $1 ≤ i ≤ q- 1$  yields exactly the elements  $z_1$, ... , $z_{q-1}$  i.e. all elements of  ${\rm GF}(q)$  except the zero element  $z_0 = 0$.


$\text{Example 3:}$  From the number set  $Z_5 = \{0,\ 1,\ 2,\ 3,\ 4\}$,  the numbers  "$2$"  and  "$3$"  are primitive elements because of

\[2^1 \hspace{-0.1cm} = \hspace{-0.1cm} 2\hspace{0.05cm},\hspace{0.2cm} 2^2 = 4\hspace{0.05cm},\hspace{0.2cm} 2^3 = 8 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},\hspace{0.2cm} 2^4 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\]
\[3^1 \hspace{-0.1cm} = \hspace{-0.1cm} 3\hspace{0.05cm},\hspace{0.2cm} 3^2 = 9\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 3^3 = 27 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm} 3^4 = 81 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\]
  • On the other hand,  "$4$"  is not a primitive element,  because already  $4^2 = 1$:
\[4^1 = 4\hspace{0.05cm},\hspace{0.2cm} 4^2 = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},\hspace{0.2cm} 4^3 = 64 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4\hspace{0.05cm},\hspace{0.2cm} 4^4 = 256 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm}.\]


$\text{Definition:}$  An irreducible polynomial is called at the same time a  »primitive polynomial« 
    if the root  $\alpha$  with respect to the polynomial  $p(x)$  is a primitive element of  ${\rm GF}(q)$.  Then holds

\[{\rm GF}(q) = \{\hspace{0.1cm}\alpha^{-\infty} = 0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0} = 1,\hspace{0.05cm}\hspace{0.2cm} \alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^{2},\hspace{0.2cm} \text{...} \hspace{0.1cm} , \hspace{0.2cm}\alpha^{q-2}\hspace{0.1cm}\}\hspace{0.05cm}. \]


  • All polynomials given in the second column of the above table are both irreducible and primitive.
  • If  $p_1(x)$  is a primitive polynomial,  then the polynomial reciprocal   $p_2 (x) = x^m \cdot p_1(x^{-1})$   to it is also primitive.
  • All polynomials in the third column are reciprocal to the polynomial in the second column.  For example,  for  $m = 3$:
\[p_1(x) = x^3 + x + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}p_2(x) = x^3 \cdot \big[x^{-3} + x^{-1} + 1 \big]= x^3 + x^2 + 1 \hspace{0.05cm}.\]
  • The irreducible polynomials of column 4,  on the other hand,  are not primitive;  they play only a minor role in describing error correction procedures.


$\text{Example 4:}$  For clarification of these statements we consider exemplarily

  • the Galois field  $\rm GF(2^3) = GF(8)$,  as well as
  • the polynomial  $p(x) = x^3 + x + 1$.

From the condition   $p(\alpha) = 0$   we obtain in  $\rm GF(2^3)$  further:

\[\alpha^3 + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^3 = \alpha + 1 \hspace{0.05cm},\]

and thus for the powers  $\alpha^{i}$  of the root for  $i ≥ 4$:

\[\alpha^4 = \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},\]
\[\alpha^5 = \alpha^2 \cdot \alpha^3 = \alpha^2 \cdot (\alpha + 1) = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1 \hspace{0.05cm},\]
\[\alpha^6 = \alpha^3 \cdot \alpha^3 = (\alpha + 1) \cdot (\alpha + 1) = \alpha^2 + \alpha + \alpha + 1= \alpha^2 + 1 \hspace{0.05cm},\]
\[\alpha^7 = \alpha^4 \cdot \alpha^3 = (\alpha^2 + \alpha) \cdot (\alpha + 1) = \alpha^3 + \alpha^2 + \alpha^2 + \alpha = \alpha + 1 + \alpha = 1 = \alpha^0 \hspace{0.05cm}.\]


$\text{Example 5:}$  The elements  $z_0$,  $z_1$, ... ,  $z_7$  of the Galois field  $\rm GF(2^3)$  can be represented according to the adjacent table as follows:

Elements of  $\rm GF(2^3)$  in three different representations
  • as powers of  $\alpha$   ⇒   »exponent representation«,
  • as polynomials of the form  $k_2 \cdot \alpha^2 + k_1 \cdot \alpha + k_0$  with binary coefficients  $k_2$,  $k_1$,  $k_0$   ⇒   »polynomial representation«,
  • as vectors of coefficients  $(k_2, \ k_1, \ k_0)$   ⇒   »coefficient representation«.

⇒   For addition  (or subtraction)  of two elements polynomial and vector representation are equally suitable,
where the components are to be added  $\text{modulo 2}$,  for example:

\[z_5 + z_7 =(\alpha^2 + \alpha) + (\alpha^2 + 1) = \alpha + 1 = \alpha^3 = z_4 \hspace{0.05cm},\]
\[{\rm oder}\hspace{0.15cm} z_5 + z_7 =(110) + (101) = (011) = z_4 \hspace{0.05cm},\]
\[\hspace{0.15cm} z_1 + z_2 + z_3 =(001) + (010) + (100)= (111) = z_6 \hspace{0.05cm}.\]

⇒   For multiplications,  the exponent representation is well suited,  as the following examples show:

$\rm GF(2^3)$  in 3D representation
\[z_3 \cdot z_4 =\alpha^2 \cdot \alpha^3 = \alpha^{2+3}= \alpha^{5} = z_6 \hspace{0.05cm},\]
\[z_0 \cdot z_5 =\alpha^{-\infty} \cdot \alpha^4 = \alpha^{-\infty} = z_0 \hspace{0.05cm},\]
\[z_5 \cdot z_7 = \alpha^4 \cdot \alpha^6 = \alpha^{10}= \alpha^{7} \cdot \alpha^{3} = 1 \cdot \alpha^{3}= z_4 \hspace{0.05cm}.\]

It can be seen that the exponents result modulo  $q-1$  $($in this example modulo  $7)$.

⇒   The bottom graph shows the finite extension field  $\rm GF(2^3)$  in a three-dimensional representation:

  • The axes are labeled  $\alpha^0 =1$,  $\alpha^1$  and  $\alpha^2$.
  • The  $2^3 = 8$  points in the three-dimensional space are labeled with the coefficient vectors.
  • The assignment of the coefficients  $k_2$,  $k_1$,  $k_0$  to the axes is made clear by color.


Exercises for the chapter


Exercise 2.3: Reducible and Irreducible Polynomials

Exercise 2.3Z: Polynomial Division

Exercise 2.4: GF(2 to the Power of 2) Representation Forms

Exercise 2.4Z: Finite and Infinite Fields

Exercise 2.5: Three Variants of GF(2 power 4)

Exercise 2.5Z: Some Calculations about GF(2 power 3)

Exercise 2.6: GF(P power m). Which P, which m?