Difference between revisions of "Examples of Communication Systems/Speech Coding"

From LNTwww
 
(48 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=GSM – Global System for Mobile Communications
+
|Untermenü=GSM – Global System for Mobile Communications  
|Vorherige Seite=Funkschnittstelle
+
|Vorherige Seite=Radio Interface
|Nächste Seite=Gesamtes GSM–Übertragungssystem
+
|Nächste Seite=Entire GSM Transmission System
 
}}
 
}}
  
 +
==Various speech coding methods== 
 +
<br>
 +
Each GSM subscriber has a maximum net data rate of&nbsp; $\text{22.8 kbit/s}$&nbsp; available,&nbsp; while the ISDN fixed network operates with a data rate of&nbsp; $\text{64 kbit/s}$&nbsp; $($with &nbsp;$8$&nbsp; bit quantization$)$&nbsp; or&nbsp; $\text{104 kbit/s}$&nbsp; $($with&nbsp;$13$&nbsp;bit quantization$)$&nbsp; respectively.&nbsp;
 +
*The task of&nbsp; "speech encoding"&nbsp;  in GSM is to limit the amount of data for speech signal transmission to&nbsp; $\text{22.8 kbit/s}$&nbsp; and to reproduce the speech signal at the receiver side in the best possible way.
  
==Verschiedene Sprachcodierverfahren== 
+
*The functions of the GSM encoder and the GSM decoder are usually combined in a single functional unit called&nbsp;  "codec".
<br>
+
 
Jedem GSM-Teilnehmer steht maximal die Netto–Datenrate&nbsp; $\text{22.8 kbit/s}$&nbsp; zur Verfügung, während im ISDN–Festnetz mit einer Datenrate von&nbsp; $\text{64 kbit/s}$&nbsp; (bei &nbsp;$8$&nbsp; Bit Quantisierung)&nbsp; bzw.&nbsp; $\text{104 kbit/s}$&nbsp; (bei&nbsp;$13$&nbsp;Bit Quantisierung)&nbsp; gearbeitet wird. Aufgabe der Sprachcodierung bei GSM ist die Beschränkung der Datenmenge zur Sprachsignalübertragung auf&nbsp; $\text{22.8 kbit/s}$&nbsp; und eine bestmögliche Reproduktion des Sprachsignals auf der Empfängerseite. Die Funktionen des GSM–Coders und des GSM–Decoders sind meist in einer Funktionseinheit zusammengefasst, die als "Codec" bezeichnet wird.
+
 
 +
Different signal processing methods are used for speech encoding  and decoding:
 +
*The&nbsp; &raquo;'''GSM Full Rate Vocoder'''&laquo;&nbsp; was standardized in 1991 from a combination of three compression methods for the GSM radio channel.&nbsp; It is based on&nbsp; "Linear Predictive Coding"&nbsp; $\rm (LPC)$&nbsp; in conjunction with&nbsp; "Long Term Prediction"&nbsp; $\rm (LTP)$&nbsp; and&nbsp; "Regular Pulse Excitation"&nbsp; $\rm (RPE)$.
 +
 
 +
*The&nbsp; &raquo;'''GSM Half Rate Vocoder'''&laquo;&nbsp;  was introduced in 1994 and provides the ability to transmit speech at nearly the same quality in half a traffic channel&nbsp; $($data rate&nbsp; $\text{11.4 kbit/s})$.
 +
 
 +
*The&nbsp; &raquo;'''Enhanced Full Rate Vocoder'''&laquo;&nbsp; $\rm (EFR\ codec)$&nbsp; was standardized and implemented in 1995,&nbsp; originally for the North American DCS1900 network.&nbsp; The EFR codec provides better voice quality compared to the conventional full rate codec.
 +
 
 +
*The&nbsp; &raquo;'''Adaptive Multi Rate Codec'''&laquo;&nbsp; $\rm (AMR\ codec)$&nbsp; is the latest speech codec for GSM.&nbsp; It was standardized in 1997 and also mandated in 1999 by the&nbsp; "Third Generation Partnership Project"&nbsp;$\rm  (3GPP)$&nbsp; as the standard speech codec for third generation mobile systems such as UMTS.
 +
 
 +
*In contrast to conventional AMR,&nbsp; where the speech signal is bandlimited to the frequency range from&nbsp; $\text{300 Hz}$&nbsp; to &nbsp; $\text{3.4 kHz}$,&nbsp; [https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_audio_codec $\text{Wideband AMR}$],&nbsp; which was developed and standardized for UMTS in 2007,&nbsp; assumes a wideband signal &nbsp; $\text{(50 Hz - 7 kHz)}$.&nbsp; This is therefore also suitable for music signals.
  
Zur Sprachcodierung und –Decodierung werden verschiedene Signalverarbeitungsverfahren angewandt:
 
*Der&nbsp; '''GSM Fullrate Vocoder'''&nbsp; (deutsch:&nbsp; GSM–Vollraten–Sprachcodec)&nbsp; wurde 1991 aus einer Kombination von drei Kompressionsmethoden für den GSM–Funkkanal standardisiert. Er basiert auf&nbsp; ''Linear Predictive Coding''&nbsp; (LPC) in Verbindung mit&nbsp; ''Long Term Prediction''&nbsp; (LTP) und&nbsp; ''Regular Pulse Excitation''&nbsp; (RPE).
 
*Der&nbsp; '''GSM Halfrate Vocoder'''&nbsp; (deutsch:&nbsp; GSM–Halbraten–Sprachcodec)&nbsp; wurde 1994 eingeführt und bietet die Möglichkeit, Sprache bei nahezu gleicher Qualität in einem halben Verkehrskanal $($Datenrate&nbsp; $\text{11.4 kbit/s})$&nbsp; zu übertragen.
 
*Der&nbsp; '''Enhanced Fullrate Vocoder'''&nbsp; (EFR–Codec) wurde 1995 standardisiert und implementiert, ursprünglich für das nordamerikanische DCS1900–Netz. Der EFR–Codec bietet gegenüber dem herkömmlichen Vollraten–Codec eine bessere Sprachqualität.
 
*Der&nbsp; '''Adaptive Multi–Rate Codec'''&nbsp; (AMR–Codec) ist der neueste Sprachcodec für GSM. Er wurde 1997 standardisiert und 1999 vom&nbsp; ''Third Generation Partnership Project''&nbsp; (3GPP) auch als Standard–Sprachcodec für Mobilfunksysteme der dritten Generation wie UMTS vorgeschrieben.
 
  
 +
&rArr; &nbsp; You can visualize the quality of these speech coding schemes for speech and music with the&nbsp; $($German language$)$&nbsp; SWF applet&nbsp; <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Applets:Quality_of_different_voice_codecs_(Applet)|"Qualität verschiedener Sprach&ndash;Codecs"]] &nbsp; &rArr; &nbsp; "Quality of different speech codecs".
  
Sie können sich die Qualität dieser Sprachcodierverfahren bei Sprache und Musik mit dem interaktiven Applet&nbsp; [[Applets:Qualität_verschiedener_Sprach–Codecs_(Applet)|Qualität verschiedener Sprach–Codecs ]]&nbsp; verdeutlichen. Diese Audio–Animation berücksichtigt auch den&nbsp; [https://de.wikipedia.org/wiki/Adaptive_Multi-Rate Wideband–AMR], der 2007 für UMTS entwickelt und standardisiert wurde.
 
  
Im Gegensatz zum herkömmlichen AMR, bei dem das Sprachsignal auf den Frequenzbereich von&nbsp; $\text{300 Hz}$&nbsp;  bis &nbsp; $\text{3.4 kHz}$&nbsp; bandbegrenzt wird, geht man beim WB–AMR von einem Wideband–Signal &nbsp; $\text{(50 Hz – 7 kHz)}$&nbsp; aus. Dieser ist somit auch für Musiksignale geeignet.
 
  
 
   
 
   
==GSM Fullrate Vocoder – Vollraten–Codec==   
+
==GSM Full Rate Vocoder ==   
 
<br>
 
<br>
Beim&nbsp; '''GSM–Vollraten-Codec'''&nbsp; (englisch:&nbsp; ''Full Rate Vocoder'') wird das analoge Sprachsignal im Frequenzbereich zwischen&nbsp; $300 \ \rm Hz$&nbsp; und&nbsp; $3400 \ \rm Hz$&nbsp; zunächst mit&nbsp; $8 \ \rm kHz$&nbsp; abgetastet und danach mit&nbsp; $13$&nbsp; Bit linear quantisiert ('''A/D–Wandlung'''), was eine Datenrate von&nbsp; $104 \ \rm kbit/s$&nbsp; ergibt.
+
[[File:EN_Mob_A_3_4_Z.png|right|frame|LPC, LTP and RPE parameters in the GSM Full Rate Vocoder]]
[[File:EN_Mob_A_3_4_Z.png|right|frame|LPC, LTP and RPE parameters in the GSM Full-Rate Vocoder]]
+
[[File:EN_Bei_T_3_3_S2b_v3.png|right|frame|Table of GSM full rate codec parameters]]
Die Sprachcodierung erfolgt bei diesem Verfahren in vier Schritten:
 
*die Vorverarbeitung,
 
*die Einstellung des Kurzzeitanalyze–Filters&nbsp; (''Linear Predictive Coding'', LPC),
 
*die Steuerung des Langzeitanalyze–Filters&nbsp; (''Long Term Prediction'', LTP) und
 
*die Codierung des Restsignals durch eine Folge von Pulsen&nbsp; (''Regular Pulse Excitation'', RPE).
 
  
 +
In the&nbsp; &raquo;'''Full Rate Vocoder'''&laquo;,&nbsp; the analog speech signal in the frequency range between&nbsp; $300 \ \rm Hz$&nbsp; and&nbsp; $3400 \ \rm Hz$&nbsp;
 +
*is first sampled with&nbsp; $8 \ \rm kHz$&nbsp; and
  
In der Grafik bezeichnet&nbsp; $s(n)$&nbsp; das im Abstand&nbsp; $T_{\rm A} = 125\ \rm &micro; s$&nbsp; abgetastete und quantisierte Sprachsignal nach der kontinuierlich durchgeführten Vorverarbeitung, wobei
+
*then linearly quantized with&nbsp; $13$&nbsp; bits  &nbsp; &rArr; &nbsp;  &raquo;'''A/D conversion'''&laquo;,  
*das digitalisierte Mikrofonsignal von einem eventuell vorhandenen Gleichsignalanteil (Offset) befreit wird, um bei der Decodierung einen störenden Pfeifton von ca.&nbsp; $2.6 \ \rm kHz$&nbsp; bei der Wiedergewinnung der höheren Frequenzanteile zu vermeiden, und
 
*zusätzlich höhere Spektralanteile von&nbsp; $s(n)$&nbsp; angehoben werden, um die Rechengenauigkeit und Effektivität der nachfolgenden LPC–Analyse zu verbessern.
 
  
  
Die Tabelle zeigt die&nbsp; $76$&nbsp; Parameter&nbsp; $(260$ Bit$)$&nbsp; der Funktionseinheiten LPC, LTP und RPE. Die Bedeutung der einzelnen Größen wird auf den folgenden Seiten im Detail beschrieben.
+
resulting in a data rate of&nbsp; $104 \ \rm kbit/s$.
 +
 +
In this method,&nbsp; speech coding is performed in four steps:
 +
#The preprocessing,
 +
#the setting of the short-term analyze filter&nbsp; $($Linear Predictive Coding,&nbsp; $\rm LPC)$,
 +
#the control of the Long Term Prediction&nbsp; $\rm (LTP)$&nbsp; filter,&nbsp; and
 +
#the encoding of the residual signal by a sequence of pulses&nbsp; $($Regular Pulse Excitation,&nbsp; $\rm RPE)$.
  
[[File:EN_Bei_T_3_3_S3.png|center|frame|Tabelle der Vollraten&ndash;Codec&ndash;Parameter]]
 
  
Alle Verarbeitungsschritte (LPC, LTP, RPE) erfolgen jeweils in Blöcken von&nbsp; $20 \ \rm ms$&nbsp; Dauer über&nbsp; $160$&nbsp; Abtastwerte des vorverarbeiteten Sprachsignals, die man als&nbsp; '''GSM–Sprachrahmen'''&nbsp; bezeichnet.  
+
In the upper graph,&nbsp; $s(n)$&nbsp; denotes the speech signal sampled and quantized at distance&nbsp; $T_{\rm A} = 125\ \rm &micro; s$&nbsp; after the continuously performed preprocessing,&nbsp; where
*Beim Vollraten–Codec werden pro Sprachrahmen insgesamt&nbsp; $260$ Bit&nbsp; erzeugt, woraus sich eine Datenrate von&nbsp; $13 \ \rm kbit/s$&nbsp; ergibt.  
+
*the digitized microphone signal is freed from a possibly existing DC signal component&nbsp; $($"offset"$)$&nbsp; in order to avoid a disturbing whistling tone of approx.&nbsp; $2.6 \ \rm kHz$&nbsp; during decoding when recovering the higher frequency components,&nbsp; and
*Dies entspricht einer Kompression des Sprachsignals um den Faktor&nbsp; $8$&nbsp; $(104 \ \rm kbit/s$ bezogen auf $13 \ \rm kbit/s)$.
+
 
 +
*additionally,&nbsp; higher spectral components of&nbsp; $s(n)$&nbsp; are raised to improve the computational accuracy and effectiveness of the subsequent LPC analysis.
 +
 
 +
 
 +
The table shows the&nbsp; $76$&nbsp; parameters&nbsp; $(260$ bit$)$&nbsp; of the functional units LPC, LTP and RPE.&nbsp; The meaning of the individual quantities is described in detail on the following pages.
 +
 
 +
 
 +
All processing steps&nbsp; $($LPC, LTP, RPE$)$&nbsp; are performed in blocks of&nbsp; $20 \ \rm ms$&nbsp; duration over&nbsp; $160$&nbsp; samples of the preprocessed speech signal,&nbsp; which are called&nbsp; &raquo;'''GSM speech frames'''&laquo;&nbsp;.  
 +
*In the full rate codec,&nbsp; a total of&nbsp; $260$ bits&nbsp; are generated per speech frame,&nbsp; resulting in a data rate of&nbsp; $13\ \rm kbit/s$.
 +
 +
*This corresponds to a compression of the speech signal by a factor&nbsp; $8$&nbsp; $(104 \ \rm kbit/s$&nbsp; related to&nbsp; $13 \ \rm kbit/s)$.
  
  
 
 
 
 
  
==Linear Predictive Coding – Kurzzeitprädiktion== 
+
==Linear Predictive Coding == 
 
<br>
 
<br>
[[File:EN_Bei_T_3_3_S3_neu.png|right|frame|Bausteine der GSM-Kurzzeitprädiktion (LPC) ]]
+
The block&nbsp; &raquo;'''Linear Predictive Coding'''&laquo;&nbsp; $\rm (LPC)$&nbsp; performs short-time prediction, that is, it determines the statistical dependencies among the samples in a short range of one millisecond.&nbsp; The following is a brief description of the LPC principle circuit:
Der Block&nbsp; '''Linear Predictive Coding'''&nbsp; (LPC) führt eine Kurzzeitprädiktion durch, das heißt, es werden die statistischen Abhängigkeiten der Abtastwerte untereinander in einem kurzen Bereich von einer Millisekunde ermittelt.  
+
 
<br clear=all>
+
[[File:EN_Bei_T_3_3_S3_neu.png|right|frame|Building blocks of GSM Linear Predictive Coding&nbsp; $\rm (LPC)$ ]]
Es folgt eine Kurzbeschreibung des LPC–Prinzipschaltbildes:
+
 
*Zunächst wird dazu das zeitlich unbeschränkte Signal&nbsp; $s(n)$&nbsp; in Intervalle&nbsp; $s_{\rm R}(n)$&nbsp; von&nbsp; $20 \ \rm ms$ Dauer&nbsp; $(160$ Samples$)$ segmentiert. Die Laufvariable innerhalb eines solchen Sprachrahmens kann vereinbarungsgemäß die Werte&nbsp; $n = 1$, ... , $160$&nbsp; annehmen.
+
*First,&nbsp; for this purpose&nbsp; the time-unlimited signal&nbsp; $s(n)$&nbsp; is segmented into intervals&nbsp; $s_{\rm R}(n)$&nbsp; of&nbsp; $20\ \rm ms$ duration&nbsp; $(160$ samples$)$.&nbsp; By convention,&nbsp; the run variable within such a speech frame&nbsp; $($German:&nbsp; "Rahmen" &nbsp; &rArr; &nbsp; subscript:&nbsp; "R"$)$&nbsp; can take the values&nbsp; $n = 1$, ... , $160$.
*Im ersten Schritt der&nbsp; '''LPC-Analyse'''&nbsp; werden Abhängigkeiten zwischen den Abtastwerten durch die Autokorrelationskoeffizienten  mit Indizes&nbsp; $0 ≤ k ≤ 8$&nbsp; quantifiziert:
+
 
 +
*In the first step of&nbsp; &raquo;'''LPC analysis'''&laquo;&nbsp; dependencies between samples are quantified by the autocorrelation&nbsp; $\rm ACF)$&nbsp; coefficients with indices&nbsp; $0 ≤ k ≤ 8$&nbsp; :
 
:$$φ_{\rm s}(k) = \text{E}\big [s_{\rm R}(n) · s_{\rm R}(n + k)\big ].$$  
 
:$$φ_{\rm s}(k) = \text{E}\big [s_{\rm R}(n) · s_{\rm R}(n + k)\big ].$$  
*Aus diesen neun AKF–Werten werden mit Hilfe der so genannten&nbsp; ''Schur–Rekursion''&nbsp; acht Reflexionskoeffizienten&nbsp; $r_{k}$&nbsp; berechnet, die als Grundlage für die Einstellung der Koeffizienten des LPC–Analysefilters für den aktuellen Rahmen dienen.
+
 
*Die Koeffizienten&nbsp; $r_{k}$&nbsp; haben Werte zwischen&nbsp; $±1$. Schon geringe Änderungen der&nbsp; $r_{k}$&nbsp; am Rand ihres Wertesbereichs bewirken große Änderungen für die Sprachcodierung. Die acht Reflexionswerte&nbsp; $r_{k}$&nbsp; werden logarithmisch dargestellt &nbsp; ⇒ &nbsp; '''LAR–Parameter''' (''Log Area Ratio''):
+
*From these nine ACF values,&nbsp; using the so-called&nbsp; "Schur recursion"&nbsp; eight reflection coefficients&nbsp; $r_{k}$&nbsp; are calculated,&nbsp; which serve as a basis for setting the coefficients of the LPC analysis filter for the current frame.
 +
 
 +
*The coefficients&nbsp; $r_{k}$&nbsp; have values between&nbsp; $±1$.&nbsp; Even small changes in&nbsp; $r_{k}$&nbsp; at the edge of their value range cause large changes for speech coding.&nbsp; The eight reflectance values&nbsp; $r_{k}$&nbsp; are represented logarithmically &nbsp; ⇒ &nbsp; &raquo;'''LAR parameters'''&laquo;&nbsp; $($"Log Area Ratio"$)$:
 
:$${\rm LAR}(k) = \ln \ \frac{1-r_k}{1+r_k}, \hspace{1cm} k = 1,\hspace{0.05cm} \text{...}\hspace{0.05cm} , 8.$$  
 
:$${\rm LAR}(k) = \ln \ \frac{1-r_k}{1+r_k}, \hspace{1cm} k = 1,\hspace{0.05cm} \text{...}\hspace{0.05cm} , 8.$$  
+
*Then,&nbsp; the eight LAR parameters are quantized by different bit numbers according to their subjective meaning,&nbsp; encoded and made available for transmission.&nbsp;
*Anschließend werden die acht LAR–Parameter entsprechend ihrer subjektiven Bedeutung durch unterschiedlich viele Bit quantisiert, codiert und zur Übertragung bereitgestellt. Die beiden ersten Parameter werden mit je sechs Bit, die beiden nächsten mit je fünf Bit, $\rm LAR(5)$&nbsp; und&nbsp; $\rm LAR(6)$&nbsp; mit je vier Bit und die beiden letzten &ndash; &nbsp; $\rm LAR(7)$&nbsp; und&nbsp; $\rm LAR(8)$&ndash; &nbsp; mit je drei Bit dargestellt.
+
:*The first two parameters are represented with six bits each,&nbsp;
*Bei fehlerfreier Übertragung kann am Empfänger aus den acht LPC–Parametern&nbsp; (insgesamt&nbsp; $36$&nbsp; Bit)&nbsp; mit dem entsprechenden LPC–Synthesefilter das ursprüngliche Signal&nbsp; $s(n)$&nbsp; wieder vollständig rekonstruiert werden, wenn man von den unvermeidbaren zusätzlichen Quantisierungsfehlern durch die digitale Beschreibung der LAR-Koeffizienten absieht.
+
:*the next two with five bits each,&nbsp;
*Weiterhin wird mit Hilfe des LPC–Filters das Prädiktionsfehlersignal&nbsp; $e_{\rm LPC}(n)$&nbsp; gewonnen. Dieses ist gleichzeitig das Eingangssignal für die nachfolgende Langzeitprädiktion. Das LPC–Filter ist nicht rekursiv und hat nur ein kurzes Gedächtnis von etwa einer Millisekunde.
+
:*$\rm LAR(5)$&nbsp; and&nbsp; $\rm LAR(6)$&nbsp; with four bits each,&nbsp; and
 +
:*the last two &ndash; &nbsp; $\rm LAR(7)$&nbsp; and&nbsp; $\rm LAR(8)$&ndash; &nbsp; with three bits each.
 +
*If the transmission is error-free,&nbsp; the original speech signal&nbsp; $s(n)$&nbsp; can be completely reconstructed again at the receiver from the eight LPC parameters&nbsp; $($in total&nbsp; $36$&nbsp; bits$)$&nbsp; with the corresponding LPC synthesis filter,&nbsp; if one disregards the unavoidable additional quantization errors due to the digital description of the LAR coefficients.
 +
 
 +
*Further,&nbsp; the prediction error signal&nbsp; $e_{\rm LPC}(n)$&nbsp; is obtained using the LPC filter.&nbsp; This is also the input signal for the subsequent long-term prediction.&nbsp; The LPC filter is not recursive and has only a short memory of about one millisecond.
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
[[File:EN_Bei_T_3_3_S3b_v4.png|right|frame|LPC Prediction error signal at GSM&nbsp; $($time&ndash;frequency representation$)$]] 
 +
$\text{Example 1:}$&nbsp;
 +
The graph from&nbsp; [Kai05]<ref name ='Kai05'>Kaindl, M.:&nbsp; Channel coding for speech and data in GSM systems.&nbsp; Dissertation. Chair of Communications Engineering, TU Munich. VDI Fortschritt-Berichte, Series 10, No. 764, 2005.</ref>&nbsp;  shows
 +
*top left:&nbsp; a section of the speech signal&nbsp; $s(n)$,&nbsp; 
  
 +
*top right:&nbsp; its time-frequency representation,
  
{{GraueBox|TEXT= 
+
* bottom left:&nbsp; the LPC prediction error signal&nbsp; $e_{\rm LPC}(n)$,
$\text{Beispiel 1:}$&nbsp;
 
Die Grafik aus&nbsp; [Kai05]<ref name ='Kai05'>Kaindl, M.:&nbsp; Kanalcodierung für Sprache und Daten in GSM-Systemen.&nbsp; Dissertation. Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 764, 2005.</ref>&nbsp; zeigt oben einen Ausschnitt des Sprachsignals&nbsp; $s(n)$&nbsp; und dessen Zeit–Frequenzdarstellung. Unten ist das LPC–Prädiktionsfehlersignal&nbsp; $e_{\rm LPC}(n)$&nbsp; dargestellt.
 
  
[[File:EN_Bei_T_3_3_S3b_neu.png|right|frame|LPC&ndash;Prädiktionsfehlersignal bei GSM (Zeit&ndash;Frequenzdarstellung) ]]
+
*bottom right:&nbsp; its time-frequency representation.
  
<br><br>Man erkennt aus diesen Bildern
+
<br><br><br><br><br><br>One can see from these pictures
*die kleinere Amplitude von&nbsp; $e_{\rm LPC}(n)$&nbsp; gegenüber&nbsp; $s(n)$,
+
#the smaller amplitude of&nbsp; $e_{\rm LPC}(n)$&nbsp; compared to&nbsp; $s(n)$,
*den deutlich reduzierten Dynamikumfang, und
+
#the significantly reduced dynamic range,&nbsp; and
*das flachere Spektrum des verbleibenden Signals.}}
+
#the flatter spectrum of the remaining signal.}}
  
  
== Long Term Prediction – Langzeitprädiktion==   
+
== Long Term Prediction ==   
 
<br>
 
<br>
Bei der&nbsp; '''Long Term Prediction'''&nbsp; (LTP) wird die Eigenschaft des Sprachsignals ausgenutzt, dass es auch periodische Strukturen (stimmhafte Abschnitte) besitzt. Dieser Umstand wird dazu verwendet, um die im Signal vorhandene Redundanz zu reduzieren.
+
The block&nbsp; &raquo;'''Long Term Prediction'''&laquo;&nbsp; $\rm (LTP)$&nbsp; exploits the property of the speech signal that it also has periodic structures&nbsp; $($voiced sections$)$.&nbsp; This fact is used to reduce the redundancy present in the signal.
[[File:EN_Bei_T_3_3_S4.png|right|frame|Bausteine der GSM-Langzeitprädiktion (LTP) ]]  
+
[[File:EN_Bei_T_3_3_S4.png|right|frame|Blocks of GSM Long Term Prediction&nbsp; $\rm (LTP)$ <br><br> ]]  
*Die Langzeitprädiktion (LTP–Analyse und –Filterung) wird viermal pro Sprachrahmen, also alle&nbsp; $5 \ \rm ms$&nbsp; durchgeführt.
+
*The long-term prediction&nbsp; $($(LTP analysis and filtering$)$&nbsp; is performed four times per speech frame,&nbsp; i.e. every&nbsp; $5 \rm ms$.
*Die vier Subblöcke bestehen aus jeweils $40$ Samples und werden mit&nbsp; $i = 1$, ... , $4$&nbsp; nummeriert.
+
<br clear=all>
+
*The four subblocks consist of&nbsp; $40$&nbsp; samples each and are numbered by&nbsp; $i = 1$, ... , $4$.
Es folgt eine Kurzbeschreibung gemäß dem obigen LTP&ndash;Prinzipschaltbild – siehe&nbsp; [Kai05]<ref name ='Kai05'>Kaindl, M.:&nbsp; Kanalcodierung für Sprache und Daten in GSM-Systemen.&nbsp; Dissertation. Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 764, 2005.</ref>.  
 
  
*Das Eingangssignal ist das Ausgangssignal&nbsp; $e_{\rm LPC}(n)$&nbsp; der Kurzzeitprädiktion. Die Signale nach der Segmentierung in vier Subblöcken werden mit&nbsp; $e_i(l)$&nbsp; bezeichnet, wobei jeweils&nbsp; $l = 1, 2$, ... , $40$&nbsp; gilt.
 
  
*Zu dieser Analyse wird die Kreuzkorrelationsfunktion&nbsp; $φ_{ee\hspace{0.03cm}',\hspace{0.05cm}i}(k)$&nbsp;  des aktuellen Subblocks&nbsp; $i$&nbsp; des LPC–Prädiktionsfehlersignals&nbsp; $e_i(l)$&nbsp; mit dem rekonstruierten LPC–Restsignal&nbsp; $e\hspace{0.03cm}'_i(l)$&nbsp; aus den drei vorherigen Teilrahmen berechnet. Das Gedächtnis dieses LTP–Prädiktors beträgt zwischen&nbsp; $5 \ \rm ms$&nbsp; und&nbsp; $15 \ \rm ms$&nbsp; und ist somit deutlich länger als das des LPC–Prädiktors&nbsp; $(1 \ \rm ms)$.
+
The following is a short description according to the shown LTP schematic diagram &ndash; see&nbsp; [Kai05]<ref name ='Kai05'>Kaindl, M.:&nbsp; Channel coding for speech and data in GSM systems.&nbsp; Dissertation. Chair of Communications Engineering, TU Munich. VDI Fortschritt-Berichte, Series 10, No. 764, 2005.</ref>.  
* $e\hspace{0.03cm}'_i(l)$&nbsp; ist die Summe aus dem LTP–Filter–Ausgangssignal&nbsp; $y_i(l)$&nbsp; und dem Korrektursignal&nbsp; $e_{\rm RPE,\hspace{0.05cm}i}(l)$, das von der folgenden Komponente&nbsp; (''Regular Pulse Excitation'')&nbsp; für den&nbsp; $i$–ten Subblock bereitgestellt wird.
 
*Der Wert von&nbsp; $k$, für den die Kreuzkorrelationsfunktion&nbsp; $φ_{ee\hspace{0.03cm}',\hspace{0.05cm}i}(k)$&nbsp; maximal wird, bestimmt die für jeden Subblock&nbsp; $i$&nbsp; optimale LTP–Verzögerung&nbsp; $N(i)$. Die Verzögerungen&nbsp; $N(1)$&nbsp; bis&nbsp; $N(4)$&nbsp; werden jeweils mit sieben Bit quantisiert und zur Übertragung bereitgestellt.
 
*Der zu&nbsp; $N(i)$&nbsp; gehörige Verstärkungsfaktor&nbsp; $G(i)$&nbsp; – auch ''LTP–Gain''&nbsp; genannt – wird so bestimmt, dass der an der Stelle&nbsp; $N(i)$&nbsp; gefundene Subblock nach Multiplikation mit&nbsp; $G(i)$&nbsp; am besten zum aktuellen Teilrahmen&nbsp; $e_i(l)$&nbsp; passt. Die Verstärkungsfaktoren&nbsp; $G(1)$&nbsp; bis&nbsp; $G(4)$&nbsp; werden jeweils mit zwei Bit quantisiert und ergeben zusammen mit&nbsp; $N(1)$, ..., $N(4)$&nbsp; die&nbsp; $36$&nbsp; Bit für die acht LTP–Parameter.
 
*Das Signal&nbsp; $y_i(l)$&nbsp; nach LTP–Analyse und –Filterung ist ein Schätzsignal für das LPC–Signal&nbsp; $e_i(l)$&nbsp; im&nbsp; $i$–ten Subblock. Die Differenz zwischen beiden ergibt das LTP–Restsignal&nbsp; $e_{\rm LTP,\hspace{0.05cm}i}(l)$, das an die nächste Funktionseinheit „RPE” weitergegeben wird.
 
  
 +
#The LTP input signal is the output signal&nbsp; $e_{\rm LPC}(n)$&nbsp; of the short-term prediction.&nbsp; The signals after segmentation into four subblocks are denoted by&nbsp; $e_i(l)$&nbsp; where each&nbsp; $l = 1,\ 2$, ... , $40$.
 +
#For this analysis,&nbsp; the cross-correlation function&nbsp; $φ_{ee\hspace{0.03cm}',\hspace{0.05cm}i}(k)$&nbsp; of the subblock&nbsp; $i$&nbsp; of the LPC predictor error signal&nbsp; $e_i(l)$&nbsp; with the reconstructed LPC residual signal&nbsp; $e\hspace{0.03cm}'_i(l)$&nbsp; from the three previous subframes.
 +
#The memory of this LTP predictor is&nbsp; $5 \ \rm ms$&nbsp; ...&nbsp; $15 \ \rm ms$&nbsp; and thus significantly longer than that of the LPC predictor&nbsp; $(1 \ \rm ms)$.
 +
# $e\hspace{0.03cm}'_i(l)$&nbsp; is the sum of the LTP filter output signal&nbsp; $y_i(l)$&nbsp; and the correction signal&nbsp; $e_{\rm RPE,\hspace{0.05cm}i}(l)$ provided by the following component&nbsp; $($"Regular Pulse Excitation"$)$&nbsp; for the&nbsp; $i$-th subblock.
 +
#The&nbsp; $k$&nbsp; value for which the cross-correlation function&nbsp; $φ_{ee\hspace{0.03cm}',\hspace{0.05cm}i}(k)$&nbsp; becomes maximum determines the optimal LTP delay&nbsp; $N(i)$&nbsp; for each subblock&nbsp; $i$.&nbsp;
 +
#The delays&nbsp; $N(1)$&nbsp; to&nbsp; $N(4)$&nbsp; are each quantized to seven bits and made available for transmission.
 +
#The gain factor&nbsp; $G(i)$&nbsp; associated with&nbsp; $N(i)$&nbsp; &ndash; also called&nbsp; "LTP gain"&nbsp; &ndash; is determined so that the subblock found at the location&nbsp; $N(i)$&nbsp; after multiplication by&nbsp; $G(i)$&nbsp; best matches the current subframe&nbsp; $e_i(l)$.
 +
#The gains&nbsp; $G(1)$,&nbsp; ... ,&nbsp; $G(4)$&nbsp; are each quantized by two bits and together with&nbsp; $N(1)$, ... , $N(4)$&nbsp; give the&nbsp; $36$&nbsp; bits for the eight LTP parameters.
 +
#The signal&nbsp; $y_i(l)$&nbsp; after LTP analysis and filtering is an estimated signal for the LPC signal&nbsp; $e_i(l)$&nbsp; in&nbsp; $i$-th subblock.
 +
#The difference between the two signals  gives the LTP residual signal&nbsp; $e_{ {\rm LTP},\hspace{0.05cm}i}(l)$,&nbsp; which is passed on to the next functional unit&nbsp; "RPE".
  
{{GraueBox|TEXT= 
 
$\text{Beispiel 2:}$&nbsp;
 
Die Grafik aus&nbsp; [Kai05]<ref name ='Kai05'>Kaindl, M.:&nbsp;Kanalcodierung für Sprache und Daten in GSM-Systemen.&nbsp; Dissertation. Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 764, 2005.</ref>&nbsp;  zeigt
 
*oben das LPC–Prädiktionsfehlersignal&nbsp; $e_{\rm LPC}(n)$&nbsp; – gleichzeitig das LTP-Eingangssignal,
 
*unten das Restfehlersignal&nbsp; $e_{\rm LTP}(n)$&nbsp; nach der Langzeitprädiktion.
 
  
[[File:EN_Bei_T_3_3_S4b.png|right|frame|LTP&ndash;Prädiktionsfehlersignal bei GSM (Zeit&ndash;Frequenzdarstellung) ]]
+
{{GraueBox|TEXT=
 +
[[File:EN_Bei_T_3_3_S4b_v3.png|right|frame|LTP prediction error signal at GSM (time&ndash;frequency representation)]] 
 +
$\text{Example 2:}$&nbsp;
 +
The graph from&nbsp; [Kai05]<ref name ='Kai05'>Kaindl, M.:&nbsp; Channel coding for speech and data in GSM systems.&nbsp; Dissertation. Chair of Communications Engineering, TU Munich. VDI Fortschritt-Berichte, Series 10, No. 764, 2005.</ref>&nbsp; shows
 +
*top left:&nbsp; a section of the LPC prediction error signal&nbsp; $e_{\rm LPC}(n)$&nbsp; &ndash; simultaneously the LTP input signal, 
  
 +
*top right:&nbsp; its time-frequency representation,
  
Es wird nur ein Subblock betrachtet. Deshalb wird hier für die diskrete Zeit bei LPC und LTP der gleiche Buchstabe&nbsp; $n$&nbsp; verwendet.
+
* bottom left:&nbsp; the the residual error signal&nbsp; $e_{\rm LTP}(n)$&nbsp; after long-term prediction,
  
 +
*bottom right:&nbsp; its time-frequency representation.
 +
  
Man erkennt aus diesen Darstellungen
+
Only one subblock is considered.&nbsp; Therefore,&nbsp; the same letter&nbsp; $n$&nbsp; is used here for the discrete time in LPC and LTP.
*die kleineren Amplituden von&nbsp; $e_{\rm LTP}(n)$&nbsp; gegenüber&nbsp; $e_{\rm LPC}(n)$&nbsp; und
 
*den deutlich reduzierten Dynamikumfang von&nbsp; $e_{\rm LTP}(n)$,
 
*besonders in periodischen, also stimmhaften Abschnitten.  
 
 
 
  
Auch im Frequenzbereich zeigt sich eine Reduktion des Prädiktionsfehlersignals aufgrund der Langzeitprädiktion.}}
+
<br><br><br><br>
 +
One can see from these representations:
 +
#The smaller amplitudes of&nbsp; $e_{\rm LTP}(n)$&nbsp; compared to&nbsp; $e_{\rm LPC}(n)$;
 +
#the significantly reduced dynamic range of&nbsp; $e_{\rm LTP}(n)$,&nbsp; especially in periodic&nbsp;  $($i.e. voiced$)$&nbsp;  sections;
 +
#in the frequency domain,&nbsp; a reduction of the prediction error signal due to LTP is also evident.}}
  
 
 
 
 
 
==Regular Pulse Excitation – RPE Coding ==  
 
==Regular Pulse Excitation – RPE Coding ==  
 
<br>
 
<br>
Das Signal nach LPC– und LTP–Filterung ist bereits redundanz&ndash;reduziert, das heißt, es benötigt eine geringere Bitrate als das abgetastete Sprachsignal&nbsp; $s(n)$.  
+
The signal after LPC and LTP filtering is already redundancy&ndash;reduced,&nbsp; i.e.&nbsp; it requires a lower bit rate than the sampled speech signal&nbsp; $s(n)$.  
 +
 
 +
[[File:EN_Bei_T_3_3_S5.png|right|frame|Building blocks of Regular Pulse Excitation&nbsp; $\rm (RPE)$&nbsp; in GSM]]
 +
*In the following functional unit&nbsp; &raquo;'''Regular Pulse Excitation'''&laquo;&nbsp; $\rm (RPE)$&nbsp; the irrelevance is further reduced.
 +
 
 +
*This means that signal components that are less important for the subjective hearing impression are removed.
 +
 
 +
 
 +
It should be noted with regard to this block diagram:
 +
*RPE coding is performed for&nbsp; $5 \rm ms$ subframes&nbsp; $(40$&nbsp; samples$)$.&nbsp; This is indicated by the index&nbsp; $i$&nbsp; in the input signal&nbsp; $e_{{\rm LTP},\hspace{0.03cm} i}(l)$&nbsp; where with&nbsp; $i = 1, 2, 3, 4$&nbsp; again the individual subblocks are numbered.
 +
 
 +
*In the first step,&nbsp; the LTP prediction error signal&nbsp; $e_{{\rm LTP}, \hspace{0.03cm}i}(l)$&nbsp; is bandlimited by a low-pass filter to about one third of the original bandwidth &ndash; i.e. to&nbsp; $1.3 \rm kHz$.&nbsp;
  
[[File:EN_Bei_T_3_3_S5.png|right|frame|Bausteine der Regular Pulse Excitation (RPE) bei GSM]]
+
*In a second step,&nbsp; this enables a reduction of the sampling rate by a factor of about&nbsp; $3$.
*Nun wird in der nachfolgenden Funktionseinheit&nbsp; '''Regular Pulse Excitation'''&nbsp; (RPE) die Irrelevanz weiter verringert.
+
 
*Das bedeutet: &nbsp; Signalanteile, die für den subjektiven Höreindruck weniger wichtig sind, werden entfernt.
+
*So the output signal&nbsp; $x_i(l)$&nbsp; is decomposed with&nbsp; $l = 1$, ... , $40$&nbsp; by subsampling into four subsequences&nbsp; $x_{m, \hspace{0.03cm} i}(j)$&nbsp; with&nbsp; $m = 1$, ... , $4$&nbsp; and&nbsp; $j = 1$, ... , $13$.&nbsp;
<br clear=all>
+
 
Zu diesem Blockschaltbild ist anzumerken:
+
*The subsequences&nbsp; $x_{m,\hspace{0.08cm} i}(j)$&nbsp; include the following samples of the signal&nbsp; $x_i(l)$:
*Die RPE–Codierung wird jeweils für&nbsp; $5 \ \rm ms$–Teilrahmen&nbsp; $(40$ Abtastwerte$)$&nbsp; durchgeführt. Dies ist hier durch den Index&nbsp; $i$&nbsp; im Eingangssignal&nbsp; $e_{\rm LTP},\hspace{0.03cm} i(l)$&nbsp; angedeutet, wobei mit&nbsp; $i = 1, 2, 3, 4$&nbsp; wieder die einzelnen Subblöcke durchnummeriert sind.
+
# &nbsp; $m = 1$:  &nbsp; $l = 1, \ 4, \ 7$, ... , $34, \ 37$&nbsp; $($red dots$)$,
*Im ersten Schritt wird das LTP–Prädiktionsfehlersignal&nbsp; $e_{{\rm LTP}, \hspace{0.03cm}i}(l)$&nbsp; durch ein Tiefpassfilter auf etwa ein Drittel der ursprünglichen Bandbreite – also auf&nbsp; $1.3 \ \rm  kHz$&nbsp; – bandbegrenzt. Dies ermöglicht in einem zweiten Schritt eine Reduktion der Abtastrate um ca. den Faktor&nbsp; $3$.
+
# &nbsp; $m = 2$:  &nbsp; $l = 2, \ 5, \ 8$, ... , $35, \ 38$&nbsp; $($green dots$)$,
*So wird das Ausgangssignal&nbsp; $x_i(l)$&nbsp; mit&nbsp; $l = 1$, ... , $40$&nbsp; durch Unterabtastung in vier Teilfolgen&nbsp; $x_{m, \hspace{0.03cm} i}(j)$&nbsp; mit&nbsp; $m = 1$, ... , $4$&nbsp; und&nbsp; $j = 1$, ... , $13$&nbsp; zerlegt. Diese Aufspaltung ist in der Grafik verdeutlicht.
+
# &nbsp; $m = 3$:  &nbsp; $l = 3, \ 6, \ 9$, ... , $36, \ 39$&nbsp; $($blue dots$)$,
*Die Teilfolgen&nbsp; $x_{m,\hspace{0.03cm} i}(j)$&nbsp; beinhalten folgende Abtastwerte des Signals&nbsp; $x_i(l)$:
+
# &nbsp; $m = 4$:  &nbsp; $l = 4, \ 7, \ 10$, ... , $37, \ 40$&nbsp; $($also red,&nbsp; largely identical to&nbsp; $m = 1)$.
**$m = 1$:  &nbsp;   $l = 1, \ 4, \ 7$, ... , $34, \ 37$ (rote Punkte),
+
 
**$m = 2$:  &nbsp;   $l = 2, \ 5, \ 8$, ... , $35, \ 38$ (grüne Punkte),
+
*For each subblock&nbsp; $i$&nbsp; in the block&nbsp; "RPE Grid Selection"&nbsp; the subsequence&nbsp; $x_{m,\hspace{0.03cm}i}(j)$&nbsp; with the highest energy is selected.&nbsp; The index&nbsp; $M_i$&nbsp; of this&nbsp; "optimal sequence"&nbsp; is quantized with two bits and transmitted as&nbsp; $\mathbf{\it M}(i)$.&nbsp;  In total,&nbsp; the four RPE subsequence indices require&nbsp; $\mathbf{\it M}(1)$, ... ,&nbsp; $\mathbf{\it M}(4)$&nbsp; thus eight bits.
**$m = 3$:  &nbsp;   $l = 3, \ 6, \ 9$, ... , $36, \ 39$ (blaue Punkte),
+
 
**$m = 4$:  &nbsp;   $l = 4, \ 7, \ 10$, ... , $37, \ 40$ $($ebenfalls rot, weitgehend identisch mit&nbsp; $m = 1)$.
+
*From the optimal subsequence for subblock&nbsp; $i$&nbsp; $($with index&nbsp; $M_i)$&nbsp; the&nbsp; amplitude maximum&nbsp; $x_{\rm max,\hspace{0.03cm}i}$&nbsp; is determined.&nbsp; This value is logarithmically quantized with six bits and made available for transmission as&nbsp; $\mathbf{{\it x}_{\rm max}}(i)$.&nbsp; In total,&nbsp; the four RPE block amplitudes require&nbsp; $24$&nbsp; bits.
 +
 
 +
*In addition,&nbsp; for each subblock&nbsp; $i$&nbsp; the optimal subsequence is normalised to&nbsp; $x_{{\rm max},\hspace{0.03cm}i}$.&nbsp; The obtained&nbsp; $13$&nbsp; samples are then quantized with three bits each and transmitted encoded as&nbsp; $\mathbf{\it X}_j(i)$.&nbsp; The&nbsp; $4 \cdot 13 \cdot 3 = 156$&nbsp; bits describe the so-called&nbsp; &raquo;'''RPE pulse'''&laquo;.
 +
 
 +
*Then these RPE parameters are decoded locally again and fed back as a signal&nbsp; $e_{{\rm RPE},\hspace{0.03cm}i}(l)$&nbsp; to the LTP synthesis filter in the previous subblock,&nbsp; from which,&nbsp; together with the LTP estimation signal&nbsp; $y_i(l)$&nbsp; the signal&nbsp; $e\hspace{0.03cm}'_i(l)$&nbsp; is generated&nbsp; (see&nbsp; [[Examples_of_Communication_Systems/Voice_Coding#Long_Term_Prediction|$\rm LTP graph$]]).
  
 +
*By interposing two zero values between each two transmitted RPE samples,&nbsp; the baseband from zero to&nbsp; $1300 \ \rm Hz$&nbsp; in the range from&nbsp; $1300 \ \rm Hz$&nbsp; to&nbsp; $2600 \ \ \rm Hz$&nbsp; in sweep position and from&nbsp; $2600 \ \ \rm Hz$&nbsp; to&nbsp; $3900 \ \rm Hz$&nbsp; in normal position.
  
*Für jeden Subblock&nbsp; $i$&nbsp; wird im Block&nbsp; ''RPE Grid Selection''&nbsp; die Teilfolge&nbsp; $x_{m,\hspace{0.03cm}i}(j)$&nbsp; mit der höchsten Energie ausgewählt und der Index&nbsp; $M_i$&nbsp; der&nbsp; ''optimalen Folge''&nbsp; mit zwei Bit quantisiert und als&nbsp; $\mathbf{M}(i)$ &nbsp; übertragen. Insgesamt benötigen die vier RPE–Teilfolgen–Indizes&nbsp; $\mathbf{M}(1)$, ... ,&nbsp; $\mathbf{M}(4)$&nbsp; somit acht Bit.
+
*This is the reason for the necessary DC signal release in the preprocessing.&nbsp; Otherwise,&nbsp; a disturbing whistling tone at&nbsp; $2.6 \ \rm kHz$ would result from the described convolution operation.
*Von der optimalen Teilfolge für den Subblock&nbsp; $i$&nbsp; $($mit Index&nbsp; $M_i)$&nbsp; wird das&nbsp; ''Betragsmaximum''&nbsp; $x_{\rm max,\hspace{0.03cm}i}$&nbsp; ermittelt, dieser Wert mit sechs Bit logarithmisch quantisiert und als&nbsp; $\mathbf{x_{\rm max}}(i)$&nbsp; zur Übertragung bereit gestellt. Insgesamt benötigen die vier RPE–Blockamplituden&nbsp; $24$&nbsp; Bit.
 
*Zusätzlich wird für jeden Subblock&nbsp; $i$&nbsp; die optimale Teilfolge auf&nbsp; $x_{{\rm max},\hspace{0.03cm}i}$&nbsp; normiert. Die so erhaltenen&nbsp; $13$&nbsp; Abtastwerte werden anschließend mit jeweils drei Bit quantisiert und als&nbsp; $\mathbf{X}_j(i)$&nbsp; codiert übertragen. Die&nbsp; $4 · 13 · 3 = 156$&nbsp; Bit beschreiben den so genannten&nbsp; '''RPE–Pulse'''.
 
*Anschließend werden diese RPE–Parameter lokal wieder decodiert und als Signal&nbsp; $e_{{\rm RPE},\hspace{0.03cm}i}(l)$&nbsp; an das LTP–Synthesefilter im vorherigen Subblock zurückgeführt, woraus zusammen mit dem LTP–Schätzsignal&nbsp; $y_i(l)$&nbsp; das Signal&nbsp; $e\hspace{0.03cm}'_i(l)$&nbsp; erzeugt wird (siehe&nbsp; [[Examples_of_Communication_Systems/Sprachcodierung#Long_Term_Prediction_.E2.80.93_Langzeitpr.C3.A4diktion|LTP&ndash;Grafik]]).
 
*Durch das Zwischenfügen von jeweils zwei Nullwerten zwischen zwei übertragenen RPE–Abtastwerten wird näherungsweise das Basisband von Null bis&nbsp; $1300 \ \rm Hz$&nbsp; in den Bereich von&nbsp; $1300 \ \rm Hz$&nbsp; bis&nbsp; $2600 \ \rm Hz$&nbsp; in Kehrlage und von&nbsp; $2600 \ \rm Hz$&nbsp; bis&nbsp; $3900 \ \rm Hz$&nbsp; in Normallage gefaltet. Dies ist der Grund für die notwendige Gleichsignalbefreiung in der Vorverarbeitung. Sonst entstünde durch die beschriebene Faltungsoperation ein störender Pfeifton bei&nbsp; $2.6 \ \rm kHz$.
 
 
 
 
 
  
==Halfrate Vocoder und Enhanced Fullrate Codec== 
+
==Half Rate Vocoder and Enhanced Full Rate Codec== 
 
<br>
 
<br>
Nach der Standardisierung des Vollraten–Codecs im Jahre 1991 ging es in der Folgezeit um die Entwicklung neuer Sprachcodecs mit zwei spezifischen Zielen, nämlich um
+
After the standardization of the full rate codec in 1991,&nbsp; the subsequent focus was on the development of new speech codecs with two specific objectives,&nbsp; namely
*die bessere Ausnutzung der in GSM–Systemen verfügbaren Bandbreite, und
+
*the better utilisation of the bandwidth available in GSM systems,&nbsp; and
*die Verbesserung der Sprachqualität.
 
  
 +
*the improvement of voice quality.
  
Diese Entwicklung kann wie folgt zusammengefasst werden:
+
 
*Bis 1994 wurde mit dem&nbsp; '''Halfrate Vocoder'''&nbsp; (deutsch:&nbsp; Halbraten-Codec)&nbsp; ein neues Verfahren entwickelt. Dieser hat eine Datenrate von&nbsp; $5.6 \ \rm kbit/s$&nbsp; und bietet so die Möglichkeit, Sprache in einem halben Verkehrskanal bei annähernd gleicher Qualität zu übertragen. Dadurch können auf einem Zeitschlitz zwei Gespräche gleichzeitig abgewickelt werden. Der Halbraten–Codec wurde allerdings von den Mobilfunkbetreibern nur dann eingesetzt, wenn eine Funkzelle überlastet war. Inzwischen spielt der Halfrate–Codec keine Rolle mehr.
+
This development can be summarised as follows:
*Um die Sprachqualität weiter zu verbessern, wurde 1995 der&nbsp; '''Enhanced Fullrate Codec'''&nbsp; (EFR–Codec) eingeführt. Dieses Sprachcodierverfahren – ursprünglich für das US–amerikanische DCS1900–Netz entwickelt – ist ein Vollraten–Codec mit der (etwas niedrigeren) Datenrate&nbsp; $12.2 \ \rm kbit/s$. Die Nutzung dieses Codecs muss natürlich vom Mobiltelefon unterstützt werden.
+
#By 1994, a new process was developed with the&nbsp; &raquo;'''Half Rate Vocoder'''&laquo;.&nbsp; This has a data rate of $5.6\ \rm kbit/s$&nbsp; and thus offers the possibility of transmitting speech in half a traffic channel with approximately the same quality.&nbsp; This allows two calls to be handled simultaneously on one time slot.&nbsp; However,&nbsp; the half rate codec was only used by mobile phone operators when a radio cell was congested.&nbsp; In the meantime,&nbsp; the half rate codec no longer plays a role.<br><br>
*Statt der RPE–LTP–Komprimierung (''Regular Pulse Excitation – Long Term Prediction'') beim herkömmlichen Vollraten–Codec wird bei dieser Weiterentwicklung zudem&nbsp; '''Algebraic Code Excitation Linear Prediction'''&nbsp; (ACELP) angewandt, was eine deutlich bessere Sprachqualität und eine ebenfalls verbesserte Fehlererkennung und –verschleierung bietet. Nähere Informationen darüber finden Sie auf der übernächsten Seite.
+
#In order to further improve the voice quality, the&nbsp; &raquo;'''Enhanced Full Rate Codec'''&laquo;&nbsp; $\rm(EFR$&nbsp; codec$)$&nbsp; was introduced in 1995.&nbsp; This speech coding method &ndash; originally developed for the US American DCS1900 network &ndash; is a full rate codec with the&nbsp; $($slightly lower$)$&nbsp; data rate&nbsp; $12.2 \ \rm kbit/s$.&nbsp; The use of this codec must of course be supported by the mobile phone.<br><br>
 +
#Instead of the&nbsp; $\rm RPE &ndash; LPT$ &nbsp; $($"regular pulse excitation - long term prediction"$)$&nbsp;  compression  of the conventional full rate codec,&nbsp; this further development also uses&nbsp; &raquo;'''Algebraic Code Excitation Linear Prediction'''&laquo;,&nbsp; which offers a significantly better speech quality and also improved error detection and concealment.&nbsp; More information about this can be found on the page after next.
  
 
   
 
   
==Adaptive Multi–Rate Codec==   
+
==Adaptive Multi Rate Codec==   
 
<br>
 
<br>
Die bisher beschriebenen GSM–Codecs arbeiten hinsichtlich Sprach– und Kanalcodierung unabhängig von den Kanalbedingungen und der Netzauslastung stets mit einer festen Datenrate. 1997 wurde ein neues adaptives Sprachcodierverfahren für Mobilfunksysteme entwickelt und kurz darauf durch das ''European Telecommunications Standards Institute'' (ETSI) nach Vorschlägen der Firmen Ericsson, Nokia und Siemens standardisiert. Bei den Forschungsarbeiten zum Systemvorschlag der Siemens AG war der Lehrstuhl für Nachrichtentechnik der TU München, der dieses Lerntutorial $\rm LNTwww$ zur Verfügung stellt, entscheidend beteiligt. Näheres finden Sie unter&nbsp; [Hin02]<ref name ='Hin02'>Hindelang, T.: ''Source-Controlled Channel Decoding and Decoding for Mobile Communications''. Dissertation. Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 695, 2002.</ref>.
+
The GSM codecs described so far always work with a fixed data rate with regard to speech and channel coding,&nbsp; regardless of the channel conditions and the network load.  
  
Der&nbsp; '''Adaptive Multi–Rate Codec'''&nbsp; – abgekürzt AMR – hat folgende Eigenschaften:
+
In 1997,&nbsp; a new adaptive speech coding method for mobile radio systems was developed and shortly afterwards standardized by the&nbsp; "European Telecommunications Standards Institute"&nbsp; $\rm (ETSI)$&nbsp; according to proposals of the companies Ericsson,&nbsp; Nokia and Siemens.  
*Er passt sich flexibel an die aktuellen Kanalgegebenheiten und an die Netzauslastung an, indem er entweder im Vollraten–Modus (höhere Sprachqualität) oder im Halbraten–Modus (geringere Datenrate) arbeitet. Daneben gibt es noch etliche Zwischenstufen.
 
*Er bietet sowohl beim Vollraten– als auch beim Halbratenverkehrskanal eine verbesserte Sprachqualität, was auf die flexibel handhabbare Aufteilung der zur Verfügung stehenden Brutto–Kanaldatenrate zwischen Sprach– und Kanalcodierung zurückzuführen ist.
 
*Er besitzt eine größere Robustheit gegenüber Kanalfehlern als die Codecs aus der Frühzeit der Mobilfunktechnik. Dies gilt besonders beim Einsatz im Vollraten–Verkehrskanal.
 
  
 +
:The Chair of Communications Engineering of the Technical University of Munich,&nbsp; which provides this learning tutorial&nbsp; "LNTwww",&nbsp; was decisively involved in the research work on the system proposal of Siemens AG.&nbsp; For more details,&nbsp; see&nbsp; [Hin02]<ref name ='Hin02'>Hindelang, T.:&nbsp; Source-Controlled Channel Decoding and Decoding for Mobile Communications.&nbsp; Dissertation. Chair of Communications Engineering, TU Munich. VDI Fortschritt-Berichte, Series 10, No. 695, 2002.</ref>.
  
Der AMR–Codec stellt&nbsp; '''acht verschiedene Modi'''&nbsp; mit Datenraten zwischen&nbsp; $12.2 \ \rm kbit/s$&nbsp; $(244$&nbsp; Bit pro Rahmen von&nbsp; $20  \ \rm ms)$&nbsp; und&nbsp; $4.75  \ \rm kbit/s$&nbsp; $(95$ Bit pro Rahmen$)$ zur Verfügung. Drei Modi spielen eine herausgehobene Rolle, nämlich
 
* $12.2 \ \rm kbit/s$&nbsp; – der verbesserte GSM–Vollraten–Codec (EFR-Codec),
 
* $7.4 \ \rm kbit/s$&nbsp; – die Sprachkompression gemäß dem US–amerikanischen Standard IS–641, und
 
* $6.7 \ \rm kbit/s$&nbsp; – die EFR–Sprachübertragung des japanischen PDC–Mobilfunkstandards.
 
  
 +
The&nbsp; &raquo;'''Adaptive Multi Rate Codec'''&laquo;&nbsp; $\rm (AMR)$&nbsp; has the following properties:
 +
#It adapts flexibly to the current channel conditions and to the network load by operating either in full rate mode&nbsp; $($higher voice quality$)$&nbsp; or in half rate mode&nbsp; $($lower data rate$)$.&nbsp; In addition,&nbsp; there are several intermediate stages.
 +
#It offers improved voice quality in both full rate and half rate traffic channels,&nbsp; due to the flexible division of the available gross channel data rate between speech and channel coding.
 +
#It has greater robustness against channel errors than the codecs from the early days of mobile radio technology.&nbsp; This is especially true when used in the full rate traffic channel.
  
Die folgenden Beschreibungen beziehen sich meist auf den Modus mit&nbsp; $12.2 \ \rm kbit/s$.
 
  
[[File:EN Bei T 3 3 S8c.png|right|frame|Zusammenstellung der AMR&ndash;Parameter]]
+
The AMR codec provides&nbsp; &raquo;'''eight different modes'''&laquo;&nbsp; with data rates between&nbsp; $12.2 \ \rm kbit/s$&nbsp; $(244$&nbsp; bits per frame of&nbsp; $20 \ \rm ms)$&nbsp; and&nbsp; $4.75 \ \rm kbit/s$&nbsp; $(95$ bits per frame$)$.
  
*Alle Vorgänger–Verfahren des AMR basieren auf der Minimierung des Prädiktionsfehlersignals durch eine Vorwärtsprädiktion in den Teilschritten LPC, LTP und RPE.
+
Three modes play a prominent role,&nbsp; namely
*Im Gegensatz dazu verwendet der AMR-Codec eine Rückwärtsprädiktion gemäß dem Prinzip „Analyse durch Synthese”. Dieses Codierungsprinzip bezeichnet man auch als&nbsp; '''Algebraic Code Excited Linear Prediction'''&nbsp; (ACELP).
+
* $12.2 \ \rm kbit/s$&nbsp; &ndash; the enhanced GSM full rate&nbsp; $\rm EFR)$&nbsp; codec,
  
 +
* $7.4 \rm kbit/s$&nbsp; &ndash; the speech compression according to the US standard&nbsp; "IS-641",&nbsp; and
  
In der Tabelle sind die Parameter des Adaptive Multi–Rate Codecs für zwei Modi zusammengestellt:
+
* $6.7 \rm kbit/s$&nbsp; &ndash; the EFR speech transmission of the Japanese PDC mobile radio standard.
*&nbsp; $244$&nbsp; Bit pro&nbsp; $20 \ \rm ms$ &nbsp; &rArr; &nbsp; Modus&nbsp; $12.2 \ \rm kbit/s$,  
+
 
*&nbsp; $95$&nbsp; Bit pro&nbsp; $20 \ \rm ms$ &nbsp; &rArr; &nbsp; Modus&nbsp; $4.75 \ \rm kbit/s$.
+
 
 +
[[File:EN_Bei_T_3_3_S8c_v2.png|right|frame|Compilation of AMR parameters]]
 +
 
 +
The following descriptions mostly refer to the mode with&nbsp; $12.2 \ \rm kbit/s$:
 +
 
 +
*All earlier methods of the AMR are based on minimizing the prediction error signal by forward prediction in the substeps LPC, LTP,&nbsp; and RPE.
 +
 +
*In contrast,&nbsp; the AMR codec uses a backward prediction according to the principle of&nbsp; "analysis by synthesis".&nbsp; This encoding principle is also called&nbsp; &raquo;'''Algebraic Code Excited Linear Prediction'''&laquo;&nbsp; $\rm (ACELP)$.
 +
 
 +
 
 +
In the table, the parameters of the AMR codec are compiled for two modes:
 +
*&nbsp; $244$&nbsp; bits per&nbsp; $20 \ \rm ms$ &nbsp; &rArr; &nbsp; "mode&nbsp; $12.2 \ \rm kbit/s$",
 +
 +
*&nbsp; $95$&nbsp; bits per&nbsp; $20 \ \rm ms$ &nbsp; &rArr; &nbsp; mode&nbsp; "$4.75 \ \rm kbit/s$".
 
<br clear=all>
 
<br clear=all>
 
== Algebraic Code Excited Linear Prediction== 
 
== Algebraic Code Excited Linear Prediction== 
 
<br>
 
<br>
Die Grafik zeigt den auf&nbsp; '''ACELP'''&nbsp; basierenden&nbsp; '''AMR-Codec'''. Es folgt eine kurze Beschreibung des Prinzips. Eine detaillierte Beschreibung finden Sie zum Beispiel in&nbsp; [Kai05]<ref name ='Kai05'>Kaindl, M.: ''Kanalcodierung für Sprache und Daten in GSM-Systemen''. Dissertation. Lehrstuhl für Nachrichtentechnik, TU München. VDI Fortschritt-Berichte, Reihe 10, Nr. 764, 2005.</ref>.
+
The graphic shows the&nbsp; &raquo;'''AMR codec'''&laquo;&nbsp; based on&nbsp; $\rm ACELP$.&nbsp;  A short description of the principle follows.&nbsp; A detailed description can be found for example in [Kai05]&nbsp; <ref name ='Kai05'>Kaindl, M.:&nbsp; Channel coding for speech and data in GSM systems.&nbsp; Dissertation. Chair of Communications Engineering, TU Munich. VDI Fortschritt-Berichte, Series 10, No. 764, 2005.</ref>.
  
[[File:EN_Bei_T_3_3_S8.png|center|frame|Algebraic Code Excited Linear Prediction &ndash; Prinzip]]
+
[[File:EN_Bei_T_3_3_S8.png|right|frame|Algebraic Code Excited Linear Prediction &ndash; Principle]]
  
*Das Sprachsignal&nbsp; $s(n)$, wie beim GSM–Vollraten–Sprachcodec mit&nbsp; $8 \ \rm kHz$&nbsp; abgetastet und mit&nbsp; $13$&nbsp; Bit quantisiert, wird vor der weiteren Verarbeitung in Rahmen&nbsp; $s_{\rm R}(n)$&nbsp; mit&nbsp; $n = 1$, ... , $160$&nbsp; bzw. in Subblöcke&nbsp; $s_i(l)$&nbsp; mit&nbsp; $i = 1, 2, 3, 4$&nbsp; und&nbsp; $l = 1$, ... , $40$&nbsp; segmentiert.
+
*The speech signal&nbsp; $s(n)$,&nbsp; sampled at&nbsp; $8 \ \rm kHz$&nbsp; and quantized at&nbsp; $13$&nbsp; bits as in the GSM full rate codec,&nbsp; is before further processing segmented into
*Die Berechnung der LPC–Koeffizienten erfolgt im rot hinterlegten Block rahmenweise alle&nbsp; $20 \ \rm ms$&nbsp; entsprechend&nbsp; $160$&nbsp; Abtastwerten, da innerhalb dieser kurzen Zeitspanne die spektrale Einhüllende des Sprachsignal&nbsp; $s_{\rm R}(n)$&nbsp; als konstant angesehen werden kann.
+
# frames&nbsp; $s_{\rm R}(n)$&nbsp; with&nbsp; $n = 1$, ... , $160$,&nbsp; and
*Zur LPC–Analyse wird meist ein Filter&nbsp; $A(z)$&nbsp; der Ordnung&nbsp; $10$&nbsp; gewählt. Beim höchstratigen Modus mit&nbsp; $12.2 \ \rm kbit/s$&nbsp; werden die aktuellen Koeffizienten&nbsp; $a_k \ ( k = 1$, ... , $10)$&nbsp; der Kurzzeitprädiktion alle&nbsp; $10\ \rm ms$&nbsp; quantisiert, codiert und beim gelb hinterlegten Punkt '''1''' zur Übertragung bereitgestellt.
+
#subblocks&nbsp; $s_i(l)$&nbsp; with&nbsp; $i = 1,\ 2,\ 3, 4$&nbsp; and&nbsp; $l = 1$, ... , $40$.
*Die weiteren Schritte des AMR werden alle&nbsp; $5 \ \rm ms$&nbsp; entsprechend den&nbsp; $40$&nbsp; Abtastwerten der Signale&nbsp; $s_i(l)$&nbsp; durchgeführt. Die Langzeitprädiktion (LTP) – im Bild blau umrandet – ist hier als adaptives Codebuch realisiert, in dem die Abtastwerte der vorangegangenen Subblöcke eingetragen sind.
+
 
*Für die Langzeitprädiktion (LTP) wird zunächst die Verstärkung&nbsp; $G_{\rm FCB}$&nbsp; für das&nbsp; ''Fixed Code Book''&nbsp; (FCB) zu Null gesetzt, so dass eine Folge von&nbsp; $40$&nbsp; Samples des adaptiven Codebuchs am Eingang&nbsp; $u_i(l)$&nbsp; des durch die LPC festgelegten Sprachtraktfilters&nbsp; $A(z)^{–1}$&nbsp; anliegen. Der Index&nbsp; $i$&nbsp; bezeichnet den betrachteten Subblock.
+
*The calculation of the LPC coefficients is done in the red highlighted block frame by frame every&nbsp; $20 \ \rm ms$&nbsp; corresponding to&nbsp; $160$&nbsp; samples,&nbsp; since within this short time the spectral envelope of the signal&nbsp; $s_{\rm R}(n)$&nbsp; can be considered constant.
*Durch Variation der beiden LTP–Parameter&nbsp; $N_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; und&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; soll für diesen&nbsp; $i$–ten Subblock erreicht werden, dass der quadratische Mittelwert – also die mittlere Leistung – des gewichteten Fehlersignals&nbsp; $w_i(l)$&nbsp; minimal wird.
+
 
*Das Fehlersignal&nbsp; $w_i(l)$&nbsp; ist gleich der Differenz zwischen dem aktuellen Sprachrahmen&nbsp; $s_i(l)$&nbsp; und dem Ausgangssignal&nbsp; $y_i(l)$&nbsp; des so genannten Sprachtraktfilters bei Anregung mit&nbsp; $u_i(l)$, unter Berücksichtigung des Wichtungsfilters&nbsp; $W(z)$&nbsp; zur Anpassung an die Spektraleigenschaften des menschlichen Gehörs.
+
*For LPC analysis,&nbsp; a filter&nbsp; $A(z)$&nbsp; of order&nbsp; $10$&nbsp; is usually chosen.&nbsp; In the highest-rate mode with&nbsp; $12.2 \ \rm kbit/s$,&nbsp; the current coefficients&nbsp; $a_k \ ( k = 1$, ... , $10)$&nbsp; of the short-time prediction are quantized every&nbsp; $10\ \rm ms$,&nbsp; encoded and made available for transmission at point '''1''' highlighted in yellow.
*In anderen Worten: &nbsp; $W(z)$&nbsp; entfernt solche spektralen Anteile im Signal&nbsp; $e_i(l)$, die von einem „durchschnittlichen” Ohr nicht wahrgenommen werden. Beim Modus&nbsp; $12.2 \ \rm kbit/s$&nbsp; verwendet man&nbsp; $W(z) = A(z/γ_1)/A(z/γ_2)$&nbsp; mit konstanten Faktoren&nbsp; $γ_1 = 0.9$&nbsp; und&nbsp; $γ_2 = 0.6$.
+
 
*Für jeden Subblock kennzeichnet&nbsp; $N_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; die bestmögliche LTP–Verzögerung, die zusammen mit der LTP–Verstärkung&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; nach Mittelung bezüglich&nbsp; $l = 1$, ... , $40$&nbsp; den quadratischen Fehler&nbsp; $\text{E}[w_i(l)^2]$&nbsp; minimiert. Gestrichelte Linien kennzeichnen Steuerleitungen zur iterativen Optimierung.
+
*The further steps of the AMR are carried out every&nbsp; $5 \ \rm ms$&nbsp; according to the&nbsp; $40$&nbsp; samples of the signals&nbsp; $s_i(l)$.&nbsp; The long-term prediction&nbsp; $\rm (LTP)$&nbsp; &ndash; in the graphic outlined in blue &ndash;  is realized here as an adaptive code book in which the samples of the preceding subblocks are entered.
*Man bezeichnet die beschriebene Vorgehensweise als&nbsp; '''Analyse durch Synthese'''. Nach einer ausreichend großen Anzahl an Iterationen wird der Subblock&nbsp; $u_i(l)$&nbsp; in das adaptive Codebuch aufgenommen. Die ermittelten LTP–Parameter&nbsp; $N_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; und&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; werden codiert und zur Übertragung bereitgestellt.
+
 
 +
*For the long-term prediction,&nbsp; first the gain&nbsp; $G_{\rm FCB}$&nbsp; for the&nbsp; "fixed code book"&nbsp; $\rm (FCB)$&nbsp; is set to zero,&nbsp; so that a sequence of&nbsp; $40$&nbsp; samples of the adaptive code book are present at the input&nbsp; $u_i(l)$&nbsp; of the speech tract filter&nbsp; $A(z)^{-1}$&nbsp; set by the LPC.&nbsp; The index&nbsp; $i$&nbsp; denotes the subblock under consideration.
 +
 
 +
*By varying the  long-term prediction parameters&nbsp; $N_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; and&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; shall be achieved for this&nbsp; $i$-th subblock that the  mean power  of the weighted error signal&nbsp; $w_i(l)$&nbsp; becomes minimal.
 +
 
 +
*The error signal&nbsp; $w_i(l)$&nbsp; is equal to the difference between the current speech frame&nbsp; $s_i(l)$&nbsp; and the output signal&nbsp; $y_i(l)$&nbsp; of the speech tract filter when excited with&nbsp; $u_i(l)$,&nbsp; taking into account the weighting filter&nbsp; $W(z)$&nbsp; to match the spectral characteristics of human hearing.
 +
 
 +
*In other words:&nbsp; $W(z)$&nbsp; removes those spectral components in the signal&nbsp; $e_i(l)$&nbsp; that are not perceived by an&nbsp; "average ear".&nbsp; In the&nbsp; $12.2 \ \rm kbit/s$&nbsp; mode one uses for the weighting filter&nbsp; $W(z) = A(z/γ_1)/A(z/γ_2)$&nbsp; with constant factors&nbsp; $γ_1 = 0.9$&nbsp; and&nbsp; $γ_2 = 0.6$.
 +
 
 +
*For each subblock,&nbsp; $N_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; denotes the best possible LTP delay,&nbsp; which together with the LTP gain&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; after averaging with respect to &nbsp; $l = 1$, ... , $40$ &nbsp; minimizes the squared error&nbsp; $\text{E}[w_i(l)^2]$.&nbsp; In the graph dashed lines indicate control lines for iterative optimization.
 +
 
 +
*The  described procedure is called&nbsp; &raquo;'''analysis by synthesis'''&laquo;.&nbsp; After a sufficiently large number of iterations,&nbsp; the subblock&nbsp; $u_i(l)$&nbsp; is included in the adaptive code book.&nbsp; The determined LTP parameters&nbsp; $N_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; and&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; are encoded and made available for transmission.
  
  
 
==Fixed Code Book &ndash; FCB==
 
==Fixed Code Book &ndash; FCB==
 
<br>
 
<br>
[[File:P_ID1214__Bei_T_3_2_S8b_v1.png|right|frame|Spureinteilung beim ACELP-Sprachcodec]]
+
After determining the best adaptive excitation,&nbsp; a search is made for the best entry in the fixed code book&nbsp; $\rm (FCB)$.  
Nach der Ermittlung der besten adaptiven Anregung erfolgt die Suche nach dem besten Eintrag im festen Codebuch (''Fixed Code Book'', FCB).  
+
*This provides the most important information about the speech signal.
*Dieses liefert die wichtigste Information über das Sprachsignal.  
+
*Zum Beispiel werden beim&nbsp; $12.2 \ \rm kbit/s$–Modus hieraus pro Subblock&nbsp; $40$&nbsp; Bit abgeleitet.
+
*For example,&nbsp; in the $12.2 \ \rm kbit/s$&nbsp; mode,&nbsp; $40$&nbsp;bits are derived from this per subblock.
* Somit gehen in jedem Rahmen von&nbsp; $20$&nbsp; Millisekunden&nbsp; $160/244 ≈ 65\%$&nbsp; der Codierung auf den im Bild auf der letzten Seite grün umrandeten Block zurück.
+
 
<br clear=all>
+
* Thus,&nbsp; in each frame of&nbsp; $20$&nbsp; milliseconds: &nbsp; &nbsp; $160/244 ≈ 65\%$&nbsp; of the encoding goes back to the block outlined in green in the graph in the last section.
Das Prinzip lässt sich anhand der Grafik in wenigen Stichpunkten wie folgt beschreiben:
+
 
*Im festen Codebuch kennzeichnet jeder Eintrag einen Puls, bei dem genau&nbsp; $10$&nbsp; der&nbsp; $40$&nbsp; Positionen mit&nbsp; $+1$&nbsp; bzw.&nbsp; $-1$&nbsp; belegt sind. Erreicht wird dies gemäß der Grafik durch fünf Spuren mit jeweils acht Positionen, von denen genau zwei die Werte&nbsp; $±1$&nbsp; aufweisen und alle anderen Null sind.
+
 
*Ein roter Kreis in obiger Grafik&nbsp; $($an den Positionen&nbsp; $2,\ 11,\ 26,\ 30,\ 38)$&nbsp; kennzeichnet eine&nbsp; $+1$&nbsp; und  ein blauer eine&nbsp; $-1$&nbsp; $($im Beispiel bei&nbsp; $13,\ 17,\ 19,\ 24,\ 35)$. In jeder Spur werden die beiden belegten Positionen mit lediglich je drei Bit codiert (da es nur acht mögliche Positionen gibt).
+
The principle can be described in a few key points using the diagram as follows:
*Für das Vorzeichen wird ein weiteres Bit verwendet, welches das Vorzeichen des erstgenannten Impulses definiert. Ist die Pulsposition des zweiten Impulses größer als die des ersten, so hat der zweite Impuls das gleiche Vorzeichen wie der erste, ansonsten das entgegengesetzte.
+
 
*In der ersten Spur des obigen Beispiels gibt es positive Pulse auf Position&nbsp; $2 \ (010)$&nbsp; und Position&nbsp; $5 \ (101)$, wobei die Positionszählung bei&nbsp; $0$&nbsp; beginnt. Diese Spur ist also gekennzeichnet durch die Positionen&nbsp; $010$&nbsp; und&nbsp; $101$&nbsp; sowie das Vorzeichen&nbsp; $1$&nbsp; (positiv).
+
[[File:P_ID1214__Bei_T_3_2_S8b_v1.png|right|frame|Track division at ACELP speech codec <br><br>]]
*Die Kennzeichnung für die zweite Spur lautet: &nbsp; Positionen&nbsp; $011$&nbsp; und&nbsp; $000$, Vorzeichen&nbsp; $0$. Da hier die Pulse an Position&nbsp; $0$&nbsp; und&nbsp; $3$&nbsp; unterschiedliche Vorzeichen haben, steht&nbsp; $011$&nbsp; vor&nbsp; $000$. Das Vorzeichen $0$ &nbsp; ⇒  &nbsp; negativ bezieht sich auf den Puls an der erstgenannten Position&nbsp; $3$.
+
 
*Ein jeder Puls – bestehend aus&nbsp; $40$&nbsp; Impulsen, von denen allerdings&nbsp; $30$&nbsp; das Gewicht "Null" besitzen – ergibt ein stochastisches, rauschähnliches Akustiksignal, das nach Verstärkung mit&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; und Formung durch das LPC–Sprachtraktfilter&nbsp; $A(z)^{–1}$&nbsp; den Sprachrahmen&nbsp; $s_i(l)$&nbsp; approximiert.
+
#In the fixed code book,&nbsp; each entry denotes a pulse where exactly&nbsp; $10$&nbsp; of&nbsp; $40$&nbsp; positions are occupied by&nbsp; $+1$&nbsp; resp.&nbsp; $-1$.  
 +
#According to the diagram, this is achieved by five tracks with eight positions each, of which exactly two have the values&nbsp; $±1$&nbsp; and all others are zero.
 +
#A red circle in the diagram&nbsp; $($at positions&nbsp; $2,\ 11,\ 26,\ 30,\ 38)$&nbsp; indicates&nbsp; "$+1$"&nbsp; and a blue one&nbsp; "$-1$"&nbsp; $($in the example at the positions&nbsp; $13,\ 17,\ 19,\ 24,\ 35)$.  
 +
#In each track,&nbsp; the two occupied positions are encoded with only three bits each&nbsp; $($there are only eight possible positions$)$.
 +
#Another bit is used for the sign,&nbsp; which defines the sign of the first&ndash;mentioned pulse.  
 +
#If the pulse position of the second pulse is greater than that of the first, the second pulse has the same sign as the first, otherwise the opposite.
 +
#In the first track of our example,&nbsp; there are positive pulses at position&nbsp; $2 \ (010)$&nbsp; and position&nbsp; $5 \ (101)$,&nbsp; where the position count starts at&nbsp; $0$.&nbsp; This track is thus marked by positions&nbsp; "$010$"&nbsp; and&nbsp; "$101$"&nbsp; and sign&nbsp; "$1$"&nbsp; $($positive$)$.
 +
#The marking for the second track is: &nbsp; Positions&nbsp; "$011$"&nbsp; and&nbsp; "$000$", sign&nbsp; "$0$".&nbsp; Since here the pulses at position&nbsp; $0$&nbsp; and&nbsp; $3$&nbsp; have different signs,&nbsp; "$011$"&nbsp; precedes&nbsp; "$000$".&nbsp; The sign "$0$"&nbsp; $($negative$)$&nbsp; refers to the pulse at the first&ndash;mentioned position&nbsp; $3$.
 +
#Each impulse comb &nbsp; consisting of&nbsp; $40$&nbsp; pulses, of which however&nbsp; $30$&nbsp; have the weight "zero" &nbsp; results in a stochastic, &nbsp; noise-like acoustic signal,&nbsp; which after amplification with&nbsp; $G_{{\rm LTP},\hspace{0.05cm}i}$&nbsp; and shaping by the LPC speech filter&nbsp; $A(z)^{-1}$&nbsp; approximates the speech frame&nbsp; $s_i(l)$.
  
 
   
 
   
== Aufgaben zum Kapitel== 
+
== Exercises for the chapter== 
 
<br>  
 
<br>  
[[Aufgaben:Aufgabe_3.5:_GSM–Vollraten–Sprachcodec|Aufgabe 3.5: GSM–Vollraten–Sprachcodec]]
+
[[Aufgaben:Exercise_3.5:_GSM_Full_Rate_Vocoder|Exercise 3.5: GSM Full Rate Vocoder]]
  
[[Aufgaben:Aufgabe_3.6:_Adaptive_Multi–Rate_Codec|Aufgabe 3.6: Adaptive Multi–Rate Codec]]
+
[[Aufgaben:Exercise_3.6:_Adaptive_Multi–Rate_Codec|Exercise 3.6: Adaptive Multi Rate Codec]]
==Quellenverzeichnis==
+
==References==
 
<references />
 
<references />
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:06, 20 February 2023

Various speech coding methods


Each GSM subscriber has a maximum net data rate of  $\text{22.8 kbit/s}$  available,  while the ISDN fixed network operates with a data rate of  $\text{64 kbit/s}$  $($with  $8$  bit quantization$)$  or  $\text{104 kbit/s}$  $($with $13$ bit quantization$)$  respectively. 

  • The task of  "speech encoding"  in GSM is to limit the amount of data for speech signal transmission to  $\text{22.8 kbit/s}$  and to reproduce the speech signal at the receiver side in the best possible way.
  • The functions of the GSM encoder and the GSM decoder are usually combined in a single functional unit called  "codec".


Different signal processing methods are used for speech encoding and decoding:

  • The  »GSM Full Rate Vocoder«  was standardized in 1991 from a combination of three compression methods for the GSM radio channel.  It is based on  "Linear Predictive Coding"  $\rm (LPC)$  in conjunction with  "Long Term Prediction"  $\rm (LTP)$  and  "Regular Pulse Excitation"  $\rm (RPE)$.
  • The  »GSM Half Rate Vocoder«  was introduced in 1994 and provides the ability to transmit speech at nearly the same quality in half a traffic channel  $($data rate  $\text{11.4 kbit/s})$.
  • The  »Enhanced Full Rate Vocoder«  $\rm (EFR\ codec)$  was standardized and implemented in 1995,  originally for the North American DCS1900 network.  The EFR codec provides better voice quality compared to the conventional full rate codec.
  • The  »Adaptive Multi Rate Codec«  $\rm (AMR\ codec)$  is the latest speech codec for GSM.  It was standardized in 1997 and also mandated in 1999 by the  "Third Generation Partnership Project" $\rm (3GPP)$  as the standard speech codec for third generation mobile systems such as UMTS.
  • In contrast to conventional AMR,  where the speech signal is bandlimited to the frequency range from  $\text{300 Hz}$  to   $\text{3.4 kHz}$,  $\text{Wideband AMR}$,  which was developed and standardized for UMTS in 2007,  assumes a wideband signal   $\text{(50 Hz - 7 kHz)}$.  This is therefore also suitable for music signals.


⇒   You can visualize the quality of these speech coding schemes for speech and music with the  $($German language$)$  SWF applet 
               "Qualität verschiedener Sprach–Codecs"   ⇒   "Quality of different speech codecs".



GSM Full Rate Vocoder


LPC, LTP and RPE parameters in the GSM Full Rate Vocoder
Table of GSM full rate codec parameters

In the  »Full Rate Vocoder«,  the analog speech signal in the frequency range between  $300 \ \rm Hz$  and  $3400 \ \rm Hz$ 

  • is first sampled with  $8 \ \rm kHz$  and
  • then linearly quantized with  $13$  bits   ⇒   »A/D conversion«,


resulting in a data rate of  $104 \ \rm kbit/s$.

In this method,  speech coding is performed in four steps:

  1. The preprocessing,
  2. the setting of the short-term analyze filter  $($Linear Predictive Coding,  $\rm LPC)$,
  3. the control of the Long Term Prediction  $\rm (LTP)$  filter,  and
  4. the encoding of the residual signal by a sequence of pulses  $($Regular Pulse Excitation,  $\rm RPE)$.


In the upper graph,  $s(n)$  denotes the speech signal sampled and quantized at distance  $T_{\rm A} = 125\ \rm µ s$  after the continuously performed preprocessing,  where

  • the digitized microphone signal is freed from a possibly existing DC signal component  $($"offset"$)$  in order to avoid a disturbing whistling tone of approx.  $2.6 \ \rm kHz$  during decoding when recovering the higher frequency components,  and
  • additionally,  higher spectral components of  $s(n)$  are raised to improve the computational accuracy and effectiveness of the subsequent LPC analysis.


The table shows the  $76$  parameters  $(260$ bit$)$  of the functional units LPC, LTP and RPE.  The meaning of the individual quantities is described in detail on the following pages.


All processing steps  $($LPC, LTP, RPE$)$  are performed in blocks of  $20 \ \rm ms$  duration over  $160$  samples of the preprocessed speech signal,  which are called  »GSM speech frames« .

  • In the full rate codec,  a total of  $260$ bits  are generated per speech frame,  resulting in a data rate of  $13\ \rm kbit/s$.
  • This corresponds to a compression of the speech signal by a factor  $8$  $(104 \ \rm kbit/s$  related to  $13 \ \rm kbit/s)$.



Linear Predictive Coding


The block  »Linear Predictive Coding«  $\rm (LPC)$  performs short-time prediction, that is, it determines the statistical dependencies among the samples in a short range of one millisecond.  The following is a brief description of the LPC principle circuit:

Building blocks of GSM Linear Predictive Coding  $\rm (LPC)$
  • First,  for this purpose  the time-unlimited signal  $s(n)$  is segmented into intervals  $s_{\rm R}(n)$  of  $20\ \rm ms$ duration  $(160$ samples$)$.  By convention,  the run variable within such a speech frame  $($German:  "Rahmen"   ⇒   subscript:  "R"$)$  can take the values  $n = 1$, ... , $160$.
  • In the first step of  »LPC analysis«  dependencies between samples are quantified by the autocorrelation  $\rm ACF)$  coefficients with indices  $0 ≤ k ≤ 8$  :
$$φ_{\rm s}(k) = \text{E}\big [s_{\rm R}(n) · s_{\rm R}(n + k)\big ].$$
  • From these nine ACF values,  using the so-called  "Schur recursion"  eight reflection coefficients  $r_{k}$  are calculated,  which serve as a basis for setting the coefficients of the LPC analysis filter for the current frame.
  • The coefficients  $r_{k}$  have values between  $±1$.  Even small changes in  $r_{k}$  at the edge of their value range cause large changes for speech coding.  The eight reflectance values  $r_{k}$  are represented logarithmically   ⇒   »LAR parameters«  $($"Log Area Ratio"$)$:
$${\rm LAR}(k) = \ln \ \frac{1-r_k}{1+r_k}, \hspace{1cm} k = 1,\hspace{0.05cm} \text{...}\hspace{0.05cm} , 8.$$
  • Then,  the eight LAR parameters are quantized by different bit numbers according to their subjective meaning,  encoded and made available for transmission. 
  • The first two parameters are represented with six bits each, 
  • the next two with five bits each, 
  • $\rm LAR(5)$  and  $\rm LAR(6)$  with four bits each,  and
  • the last two –   $\rm LAR(7)$  and  $\rm LAR(8)$–   with three bits each.
  • If the transmission is error-free,  the original speech signal  $s(n)$  can be completely reconstructed again at the receiver from the eight LPC parameters  $($in total  $36$  bits$)$  with the corresponding LPC synthesis filter,  if one disregards the unavoidable additional quantization errors due to the digital description of the LAR coefficients.
  • Further,  the prediction error signal  $e_{\rm LPC}(n)$  is obtained using the LPC filter.  This is also the input signal for the subsequent long-term prediction.  The LPC filter is not recursive and has only a short memory of about one millisecond.


LPC Prediction error signal at GSM  $($time–frequency representation$)$

$\text{Example 1:}$  The graph from  [Kai05][1]  shows

  • top left:  a section of the speech signal  $s(n)$, 
  • top right:  its time-frequency representation,
  • bottom left:  the LPC prediction error signal  $e_{\rm LPC}(n)$,
  • bottom right:  its time-frequency representation.







One can see from these pictures

  1. the smaller amplitude of  $e_{\rm LPC}(n)$  compared to  $s(n)$,
  2. the significantly reduced dynamic range,  and
  3. the flatter spectrum of the remaining signal.


Long Term Prediction


The block  »Long Term Prediction«  $\rm (LTP)$  exploits the property of the speech signal that it also has periodic structures  $($voiced sections$)$.  This fact is used to reduce the redundancy present in the signal.

Blocks of GSM Long Term Prediction  $\rm (LTP)$

  • The long-term prediction  $($(LTP analysis and filtering$)$  is performed four times per speech frame,  i.e. every  $5 \rm ms$.
  • The four subblocks consist of  $40$  samples each and are numbered by  $i = 1$, ... , $4$.


The following is a short description according to the shown LTP schematic diagram – see  [Kai05][1].

  1. The LTP input signal is the output signal  $e_{\rm LPC}(n)$  of the short-term prediction.  The signals after segmentation into four subblocks are denoted by  $e_i(l)$  where each  $l = 1,\ 2$, ... , $40$.
  2. For this analysis,  the cross-correlation function  $φ_{ee\hspace{0.03cm}',\hspace{0.05cm}i}(k)$  of the subblock  $i$  of the LPC predictor error signal  $e_i(l)$  with the reconstructed LPC residual signal  $e\hspace{0.03cm}'_i(l)$  from the three previous subframes.
  3. The memory of this LTP predictor is  $5 \ \rm ms$  ...  $15 \ \rm ms$  and thus significantly longer than that of the LPC predictor  $(1 \ \rm ms)$.
  4. $e\hspace{0.03cm}'_i(l)$  is the sum of the LTP filter output signal  $y_i(l)$  and the correction signal  $e_{\rm RPE,\hspace{0.05cm}i}(l)$ provided by the following component  $($"Regular Pulse Excitation"$)$  for the  $i$-th subblock.
  5. The  $k$  value for which the cross-correlation function  $φ_{ee\hspace{0.03cm}',\hspace{0.05cm}i}(k)$  becomes maximum determines the optimal LTP delay  $N(i)$  for each subblock  $i$. 
  6. The delays  $N(1)$  to  $N(4)$  are each quantized to seven bits and made available for transmission.
  7. The gain factor  $G(i)$  associated with  $N(i)$  – also called  "LTP gain"  – is determined so that the subblock found at the location  $N(i)$  after multiplication by  $G(i)$  best matches the current subframe  $e_i(l)$.
  8. The gains  $G(1)$,  ... ,  $G(4)$  are each quantized by two bits and together with  $N(1)$, ... , $N(4)$  give the  $36$  bits for the eight LTP parameters.
  9. The signal  $y_i(l)$  after LTP analysis and filtering is an estimated signal for the LPC signal  $e_i(l)$  in  $i$-th subblock.
  10. The difference between the two signals gives the LTP residual signal  $e_{ {\rm LTP},\hspace{0.05cm}i}(l)$,  which is passed on to the next functional unit  "RPE".


LTP prediction error signal at GSM (time–frequency representation)

$\text{Example 2:}$  The graph from  [Kai05][1]  shows

  • top left:  a section of the LPC prediction error signal  $e_{\rm LPC}(n)$  – simultaneously the LTP input signal,
  • top right:  its time-frequency representation,
  • bottom left:  the the residual error signal  $e_{\rm LTP}(n)$  after long-term prediction,
  • bottom right:  its time-frequency representation.


Only one subblock is considered.  Therefore,  the same letter  $n$  is used here for the discrete time in LPC and LTP.





One can see from these representations:

  1. The smaller amplitudes of  $e_{\rm LTP}(n)$  compared to  $e_{\rm LPC}(n)$;
  2. the significantly reduced dynamic range of  $e_{\rm LTP}(n)$,  especially in periodic  $($i.e. voiced$)$  sections;
  3. in the frequency domain,  a reduction of the prediction error signal due to LTP is also evident.


Regular Pulse Excitation – RPE Coding


The signal after LPC and LTP filtering is already redundancy–reduced,  i.e.  it requires a lower bit rate than the sampled speech signal  $s(n)$.

Building blocks of Regular Pulse Excitation  $\rm (RPE)$  in GSM
  • In the following functional unit  »Regular Pulse Excitation«  $\rm (RPE)$  the irrelevance is further reduced.
  • This means that signal components that are less important for the subjective hearing impression are removed.


It should be noted with regard to this block diagram:

  • RPE coding is performed for  $5 \rm ms$ subframes  $(40$  samples$)$.  This is indicated by the index  $i$  in the input signal  $e_{{\rm LTP},\hspace{0.03cm} i}(l)$  where with  $i = 1, 2, 3, 4$  again the individual subblocks are numbered.
  • In the first step,  the LTP prediction error signal  $e_{{\rm LTP}, \hspace{0.03cm}i}(l)$  is bandlimited by a low-pass filter to about one third of the original bandwidth – i.e. to  $1.3 \rm kHz$. 
  • In a second step,  this enables a reduction of the sampling rate by a factor of about  $3$.
  • So the output signal  $x_i(l)$  is decomposed with  $l = 1$, ... , $40$  by subsampling into four subsequences  $x_{m, \hspace{0.03cm} i}(j)$  with  $m = 1$, ... , $4$  and  $j = 1$, ... , $13$. 
  • The subsequences  $x_{m,\hspace{0.08cm} i}(j)$  include the following samples of the signal  $x_i(l)$:
  1.   $m = 1$:   $l = 1, \ 4, \ 7$, ... , $34, \ 37$  $($red dots$)$,
  2.   $m = 2$:   $l = 2, \ 5, \ 8$, ... , $35, \ 38$  $($green dots$)$,
  3.   $m = 3$:   $l = 3, \ 6, \ 9$, ... , $36, \ 39$  $($blue dots$)$,
  4.   $m = 4$:   $l = 4, \ 7, \ 10$, ... , $37, \ 40$  $($also red,  largely identical to  $m = 1)$.
  • For each subblock  $i$  in the block  "RPE Grid Selection"  the subsequence  $x_{m,\hspace{0.03cm}i}(j)$  with the highest energy is selected.  The index  $M_i$  of this  "optimal sequence"  is quantized with two bits and transmitted as  $\mathbf{\it M}(i)$.  In total,  the four RPE subsequence indices require  $\mathbf{\it M}(1)$, ... ,  $\mathbf{\it M}(4)$  thus eight bits.
  • From the optimal subsequence for subblock  $i$  $($with index  $M_i)$  the  amplitude maximum  $x_{\rm max,\hspace{0.03cm}i}$  is determined.  This value is logarithmically quantized with six bits and made available for transmission as  $\mathbf{{\it x}_{\rm max}}(i)$.  In total,  the four RPE block amplitudes require  $24$  bits.
  • In addition,  for each subblock  $i$  the optimal subsequence is normalised to  $x_{{\rm max},\hspace{0.03cm}i}$.  The obtained  $13$  samples are then quantized with three bits each and transmitted encoded as  $\mathbf{\it X}_j(i)$.  The  $4 \cdot 13 \cdot 3 = 156$  bits describe the so-called  »RPE pulse«.
  • Then these RPE parameters are decoded locally again and fed back as a signal  $e_{{\rm RPE},\hspace{0.03cm}i}(l)$  to the LTP synthesis filter in the previous subblock,  from which,  together with the LTP estimation signal  $y_i(l)$  the signal  $e\hspace{0.03cm}'_i(l)$  is generated  (see  $\rm LTP graph$).
  • By interposing two zero values between each two transmitted RPE samples,  the baseband from zero to  $1300 \ \rm Hz$  in the range from  $1300 \ \rm Hz$  to  $2600 \ \ \rm Hz$  in sweep position and from  $2600 \ \ \rm Hz$  to  $3900 \ \rm Hz$  in normal position.
  • This is the reason for the necessary DC signal release in the preprocessing.  Otherwise,  a disturbing whistling tone at  $2.6 \ \rm kHz$ would result from the described convolution operation.


Half Rate Vocoder and Enhanced Full Rate Codec


After the standardization of the full rate codec in 1991,  the subsequent focus was on the development of new speech codecs with two specific objectives,  namely

  • the better utilisation of the bandwidth available in GSM systems,  and
  • the improvement of voice quality.


This development can be summarised as follows:

  1. By 1994, a new process was developed with the  »Half Rate Vocoder«.  This has a data rate of $5.6\ \rm kbit/s$  and thus offers the possibility of transmitting speech in half a traffic channel with approximately the same quality.  This allows two calls to be handled simultaneously on one time slot.  However,  the half rate codec was only used by mobile phone operators when a radio cell was congested.  In the meantime,  the half rate codec no longer plays a role.

  2. In order to further improve the voice quality, the  »Enhanced Full Rate Codec«  $\rm(EFR$  codec$)$  was introduced in 1995.  This speech coding method – originally developed for the US American DCS1900 network – is a full rate codec with the  $($slightly lower$)$  data rate  $12.2 \ \rm kbit/s$.  The use of this codec must of course be supported by the mobile phone.

  3. Instead of the  $\rm RPE – LPT$   $($"regular pulse excitation - long term prediction"$)$  compression of the conventional full rate codec,  this further development also uses  »Algebraic Code Excitation Linear Prediction«,  which offers a significantly better speech quality and also improved error detection and concealment.  More information about this can be found on the page after next.


Adaptive Multi Rate Codec


The GSM codecs described so far always work with a fixed data rate with regard to speech and channel coding,  regardless of the channel conditions and the network load.

In 1997,  a new adaptive speech coding method for mobile radio systems was developed and shortly afterwards standardized by the  "European Telecommunications Standards Institute"  $\rm (ETSI)$  according to proposals of the companies Ericsson,  Nokia and Siemens.

The Chair of Communications Engineering of the Technical University of Munich,  which provides this learning tutorial  "LNTwww",  was decisively involved in the research work on the system proposal of Siemens AG.  For more details,  see  [Hin02][2].


The  »Adaptive Multi Rate Codec«  $\rm (AMR)$  has the following properties:

  1. It adapts flexibly to the current channel conditions and to the network load by operating either in full rate mode  $($higher voice quality$)$  or in half rate mode  $($lower data rate$)$.  In addition,  there are several intermediate stages.
  2. It offers improved voice quality in both full rate and half rate traffic channels,  due to the flexible division of the available gross channel data rate between speech and channel coding.
  3. It has greater robustness against channel errors than the codecs from the early days of mobile radio technology.  This is especially true when used in the full rate traffic channel.


The AMR codec provides  »eight different modes«  with data rates between  $12.2 \ \rm kbit/s$  $(244$  bits per frame of  $20 \ \rm ms)$  and  $4.75 \ \rm kbit/s$  $(95$ bits per frame$)$.

Three modes play a prominent role,  namely

  • $12.2 \ \rm kbit/s$  – the enhanced GSM full rate  $\rm EFR)$  codec,
  • $7.4 \rm kbit/s$  – the speech compression according to the US standard  "IS-641",  and
  • $6.7 \rm kbit/s$  – the EFR speech transmission of the Japanese PDC mobile radio standard.


Compilation of AMR parameters

The following descriptions mostly refer to the mode with  $12.2 \ \rm kbit/s$:

  • All earlier methods of the AMR are based on minimizing the prediction error signal by forward prediction in the substeps LPC, LTP,  and RPE.
  • In contrast,  the AMR codec uses a backward prediction according to the principle of  "analysis by synthesis".  This encoding principle is also called  »Algebraic Code Excited Linear Prediction«  $\rm (ACELP)$.


In the table, the parameters of the AMR codec are compiled for two modes:

  •   $244$  bits per  $20 \ \rm ms$   ⇒   "mode  $12.2 \ \rm kbit/s$",
  •   $95$  bits per  $20 \ \rm ms$   ⇒   mode  "$4.75 \ \rm kbit/s$".


Algebraic Code Excited Linear Prediction


The graphic shows the  »AMR codec«  based on  $\rm ACELP$.  A short description of the principle follows.  A detailed description can be found for example in [Kai05]  [1].

Algebraic Code Excited Linear Prediction – Principle
  • The speech signal  $s(n)$,  sampled at  $8 \ \rm kHz$  and quantized at  $13$  bits as in the GSM full rate codec,  is before further processing segmented into
  1. frames  $s_{\rm R}(n)$  with  $n = 1$, ... , $160$,  and
  2. subblocks  $s_i(l)$  with  $i = 1,\ 2,\ 3, 4$  and  $l = 1$, ... , $40$.
  • The calculation of the LPC coefficients is done in the red highlighted block frame by frame every  $20 \ \rm ms$  corresponding to  $160$  samples,  since within this short time the spectral envelope of the signal  $s_{\rm R}(n)$  can be considered constant.
  • For LPC analysis,  a filter  $A(z)$  of order  $10$  is usually chosen.  In the highest-rate mode with  $12.2 \ \rm kbit/s$,  the current coefficients  $a_k \ ( k = 1$, ... , $10)$  of the short-time prediction are quantized every  $10\ \rm ms$,  encoded and made available for transmission at point 1 highlighted in yellow.
  • The further steps of the AMR are carried out every  $5 \ \rm ms$  according to the  $40$  samples of the signals  $s_i(l)$.  The long-term prediction  $\rm (LTP)$  – in the graphic outlined in blue – is realized here as an adaptive code book in which the samples of the preceding subblocks are entered.
  • For the long-term prediction,  first the gain  $G_{\rm FCB}$  for the  "fixed code book"  $\rm (FCB)$  is set to zero,  so that a sequence of  $40$  samples of the adaptive code book are present at the input  $u_i(l)$  of the speech tract filter  $A(z)^{-1}$  set by the LPC.  The index  $i$  denotes the subblock under consideration.
  • By varying the long-term prediction parameters  $N_{{\rm LTP},\hspace{0.05cm}i}$  and  $G_{{\rm LTP},\hspace{0.05cm}i}$  shall be achieved for this  $i$-th subblock that the mean power of the weighted error signal  $w_i(l)$  becomes minimal.
  • The error signal  $w_i(l)$  is equal to the difference between the current speech frame  $s_i(l)$  and the output signal  $y_i(l)$  of the speech tract filter when excited with  $u_i(l)$,  taking into account the weighting filter  $W(z)$  to match the spectral characteristics of human hearing.
  • In other words:  $W(z)$  removes those spectral components in the signal  $e_i(l)$  that are not perceived by an  "average ear".  In the  $12.2 \ \rm kbit/s$  mode one uses for the weighting filter  $W(z) = A(z/γ_1)/A(z/γ_2)$  with constant factors  $γ_1 = 0.9$  and  $γ_2 = 0.6$.
  • For each subblock,  $N_{{\rm LTP},\hspace{0.05cm}i}$  denotes the best possible LTP delay,  which together with the LTP gain  $G_{{\rm LTP},\hspace{0.05cm}i}$  after averaging with respect to   $l = 1$, ... , $40$   minimizes the squared error  $\text{E}[w_i(l)^2]$.  In the graph dashed lines indicate control lines for iterative optimization.
  • The described procedure is called  »analysis by synthesis«.  After a sufficiently large number of iterations,  the subblock  $u_i(l)$  is included in the adaptive code book.  The determined LTP parameters  $N_{{\rm LTP},\hspace{0.05cm}i}$  and  $G_{{\rm LTP},\hspace{0.05cm}i}$  are encoded and made available for transmission.


Fixed Code Book – FCB


After determining the best adaptive excitation,  a search is made for the best entry in the fixed code book  $\rm (FCB)$.

  • This provides the most important information about the speech signal.
  • For example,  in the $12.2 \ \rm kbit/s$  mode,  $40$ bits are derived from this per subblock.
  • Thus,  in each frame of  $20$  milliseconds:     $160/244 ≈ 65\%$  of the encoding goes back to the block outlined in green in the graph in the last section.


The principle can be described in a few key points using the diagram as follows:

Track division at ACELP speech codec

  1. In the fixed code book,  each entry denotes a pulse where exactly  $10$  of  $40$  positions are occupied by  $+1$  resp.  $-1$.
  2. According to the diagram, this is achieved by five tracks with eight positions each, of which exactly two have the values  $±1$  and all others are zero.
  3. A red circle in the diagram  $($at positions  $2,\ 11,\ 26,\ 30,\ 38)$  indicates  "$+1$"  and a blue one  "$-1$"  $($in the example at the positions  $13,\ 17,\ 19,\ 24,\ 35)$.
  4. In each track,  the two occupied positions are encoded with only three bits each  $($there are only eight possible positions$)$.
  5. Another bit is used for the sign,  which defines the sign of the first–mentioned pulse.
  6. If the pulse position of the second pulse is greater than that of the first, the second pulse has the same sign as the first, otherwise the opposite.
  7. In the first track of our example,  there are positive pulses at position  $2 \ (010)$  and position  $5 \ (101)$,  where the position count starts at  $0$.  This track is thus marked by positions  "$010$"  and  "$101$"  and sign  "$1$"  $($positive$)$.
  8. The marking for the second track is:   Positions  "$011$"  and  "$000$", sign  "$0$".  Since here the pulses at position  $0$  and  $3$  have different signs,  "$011$"  precedes  "$000$".  The sign "$0$"  $($negative$)$  refers to the pulse at the first–mentioned position  $3$.
  9. Each impulse comb   consisting of  $40$  pulses, of which however  $30$  have the weight "zero"   results in a stochastic,   noise-like acoustic signal,  which after amplification with  $G_{{\rm LTP},\hspace{0.05cm}i}$  and shaping by the LPC speech filter  $A(z)^{-1}$  approximates the speech frame  $s_i(l)$.


Exercises for the chapter


Exercise 3.5: GSM Full Rate Vocoder

Exercise 3.6: Adaptive Multi Rate Codec

References

  1. 1.0 1.1 1.2 1.3 Kaindl, M.:  Channel coding for speech and data in GSM systems.  Dissertation. Chair of Communications Engineering, TU Munich. VDI Fortschritt-Berichte, Series 10, No. 764, 2005.
  2. Hindelang, T.:  Source-Controlled Channel Decoding and Decoding for Mobile Communications.  Dissertation. Chair of Communications Engineering, TU Munich. VDI Fortschritt-Berichte, Series 10, No. 695, 2002.