Processing math: 100%

Difference between revisions of "Applets:PDF, CDF and Moments of Special Distributions"

From LNTwww
m (Text replacement - "Biographies_and_Bibliographies/LNTwww_members_from_LNT#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28at_LNT_since_1974.29" to "Biographies_and_Bibliographies/LNTwww_members_from_LNT#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28at_LNT_from_1974-2024.29")
 
(10 intermediate revisions by 3 users not shown)
Line 15: Line 15:
 
In addition, some integral parameters are output, namely
 
In addition, some integral parameters are output, namely
 
*the linear mean value  mX=E[X],
 
*the linear mean value  mX=E[X],
*the quadratic mean value  PX=E[X2],
+
*the second order moment  PX=E[X2],
 
*the variance  σ2X=PXm2X,
 
*the variance  σ2X=PXm2X,
 
*the standard deviation  σX,
 
*the standard deviation  σX,
Line 146: Line 146:
 
===Gaussian distributed random variables===
 
===Gaussian distributed random variables===
  
[[File:Gauss_WDF_VTF.png |right|frame|Gaussian random variable:  PDF and CDF]]
+
[[File:EN_Sto_T_3_5_S2_v2.png |right|frame|Gaussian random variable:  PDF and CDF]]
 
'''(1)'''    »'''Probability density function'''«   (axisymmetric around  mX)
 
'''(1)'''    »'''Probability density function'''«   (axisymmetric around  mX)
 
:fX(x)=12πσXe(XmX)2/(2σ2X).
 
:fX(x)=12πσXe(XmX)2/(2σ2X).
Line 293: Line 293:
 
===Brief description of other distributions===
 
===Brief description of other distributions===
 
<br>
 
<br>
(A)  Rayleigh distribution &nbsp; &nbsp; [[Mobile_Communications/Wahrscheinlichkeitsdichte_des_Rayleigh–Fadings|More detailed description]]
+
(A)  Rayleigh distribution &nbsp; &nbsp; [[Mobile_Communications/Probability_Density_of_Rayleigh_Fading|More detailed description]]
  
 
*Probability density function:  
 
*Probability density function:  
Line 305: Line 305:
  
  
(B)  Rice distribution &nbsp; &nbsp; [[Mobile_Communications/Nichtfrequenzselektives_Fading_mit_Direktkomponente|More detailed description]]
+
(B)  Rice distribution &nbsp; &nbsp; [[Mobile_Communications/Non-Frequency-Selective_Fading_With_Direct_Component|More detailed description]]
  
 
*Probability density function&nbsp; (I0&nbsp; denotes the modified zero-order Bessel function):  
 
*Probability density function&nbsp; (I0&nbsp; denotes the modified zero-order Bessel function):  
Line 315: Line 315:
  
  
(C)  Weibull distribution &nbsp; &nbsp; [[https://de.wikipedia.org/wiki/Weibull-Verteilung More detailed description]]
+
(C)  Weibull distribution &nbsp; &nbsp; [https://en.wikipedia.org/wiki/Weibull_distribution More detailed description]
  
 
*Probability density function:  
 
*Probability density function:  
Line 325: Line 325:
  
  
(D)  Wigner semicircle distribution &nbsp; &nbsp; [[https://de.qwertyu.wiki/wiki/Wigner_semicircle_distribution More detailed description]]
+
(D)  Wigner semicircle distribution &nbsp; &nbsp; [https://en.wikipedia.org/wiki/Wigner_semicircle_distribution More detailed description]  
  
 
*Probability density function:  
 
*Probability density function:  
Line 332: Line 332:
 
0  \end{array} \right.\hspace{0.15cm}
 
0  \end{array} \right.\hspace{0.15cm}
 
\begin{array}{*{1}c} {\rm for}\hspace{0.1cm} |x- m_X|\hspace{-0.05cm} \le \hspace{-0.05cm}R_X,
 
\begin{array}{*{1}c} {\rm for}\hspace{0.1cm} |x- m_X|\hspace{-0.05cm} \le \hspace{-0.05cm}R_X,
\\  {\rm fo}r}\hspace{0.1cm} |x- m_X| \hspace{-0.05cm} > \hspace{-0.05cm} R_X \\ \end{array}.$$
+
\\  {\rm for}\hspace{0.1cm} |x- m_X| \hspace{-0.05cm} > \hspace{-0.05cm} R_X \\ \end{array}.$$
 
*Application: &nbsp; &nbsp; PDF of Chebyshev nodes &nbsp; &rArr; &nbsp; zeros of Chebyshev polynomials from numerics.
 
*Application: &nbsp; &nbsp; PDF of Chebyshev nodes &nbsp; &rArr; &nbsp; zeros of Chebyshev polynomials from numerics.
  
Line 349: Line 349:
  
  
(F)  Cauchy distribution &nbsp; &nbsp; [[Theory_of_Stochastic_Signals/Weitere_Verteilungen#Cauchyverteilung|More detailed description]]
+
(F)  Cauchy distribution &nbsp; &nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Cauchy_PDF|More detailed description]]
  
 
*Probability density function and distribution function:  
 
*Probability density function and distribution function:  
Line 382: Line 382:
  
 
{{BlueBox|TEXT=
 
{{BlueBox|TEXT=
'''(3)'''&nbsp; Same settings as before.&nbsp; How must the standard deviation&nbsp; σX&nbsp; be changed so that with the same mean&nbsp; mX&nbsp; it holds for the quadratic mean:&nbsp; PX=2&nbsp;?}}
+
'''(3)'''&nbsp; Same settings as before.&nbsp; How must the standard deviation&nbsp; σX&nbsp; be changed so that with the same mean&nbsp; mX&nbsp; it holds for the second order moment:&nbsp; PX=2&nbsp;?}}
  
 
*&nbsp;According to Steiner's theorem:&nbsp; PX=m2X+σ2X &nbsp; &rArr; &nbsp; σ2X=PXm2X=212=1 &nbsp; &rArr; &nbsp; σX=1.
 
*&nbsp;According to Steiner's theorem:&nbsp; PX=m2X+σ2X &nbsp; &rArr; &nbsp; σ2X=PXm2X=212=1 &nbsp; &rArr; &nbsp; σX=1.
Line 470: Line 470:
 
<br>
 
<br>
 
[[File:Bildschirm_WDF_VTF_neu.png|right|600px|frame|Screenshot of the German version]]
 
[[File:Bildschirm_WDF_VTF_neu.png|right|600px|frame|Screenshot of the German version]]
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Auswahl der Verteilung&nbsp; fX(x)&nbsp; (rote Kurven und Ausgabewerte)
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Selection of the distribution&nbsp; fX(x)&nbsp; (red curves and output values)
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parametereingabe für die "rote Verteilung" per Slider
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parameter input for the "red distribution" via slider
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Auswahl der Verteilung&nbsp; fY(y)&nbsp; (blaue Kurven und Ausgabewerte)
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Selection of the distribution&nbsp; fY(y)&nbsp; (blue curves and output values)
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parametereingabe für die "rote Verteilung" per Slider
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parameter input for the "red distribution" via slider
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Grafikbereich für die Wahrscheinlichkeitsdichtefunktion (WDF)
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Graphic area for the probability density function (PDF)
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Grafikbereich für die Verteilungsfunktion (VTF)
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Graphic area for the distribution function (CDF)
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerikausgabe für die "rote Verteilung"
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerical output for the "red distribution"
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Numerikausgabe für die "blaue Verteilung"
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Numerical output for the "blue distribution"
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Eingabe der Abszissenwerte &nbsp;x&nbsp; und &nbsp;y&nbsp; für die Numerik&ndash;Ausgaben
+
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Input of &nbsp;x&nbsp; and &nbsp;y&nbsp; abscissa values for the numerics outputs
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Aufgabenauswahl  
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Experiment execution area: &nbsp;  task selection  
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Aufgabenstellung
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Experiment execution area: &nbsp;  task description
  
&nbsp; &nbsp; '''( L)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: &nbsp;  Musterlösung
+
&nbsp; &nbsp; '''( L)''' &nbsp; &nbsp; Experiment execution area: &nbsp;  sample solution
 
<br>
 
<br>
  
  
'''Auswahlmöglichkeiten''' für&nbsp; A&nbsp; und&nbsp; C: &nbsp;
+
'''Selection options for''' for&nbsp; A&nbsp; and&nbsp; C: &nbsp;
 
   
 
   
Gaußverteilung, &nbsp; Gleichverteilung, &nbsp; Dreieckverteilung, &nbsp; Exponentialverteilung, &nbsp; Laplaceverteilung, &nbsp; Rayleighverteilung,&nbsp;  Riceverteilung,  &nbsp; Weibullverteilung, &nbsp; Wigner&ndash;Halbkreisverteilung, &nbsp;  Wigner&ndash;Parabelverteilung, &nbsp; Cauchyverteilung.
+
Gaussian distribution, &nbsp; uniform distribution, &nbsp; triangular distribution, &nbsp; exponential distribution, &nbsp; Laplace distribution, &nbsp; Rayleigh distribution,&nbsp;  Rice distribution,  &nbsp; Weibull distribution, &nbsp; Wigner semicircle distribution, &nbsp;  Wigner parabolic distribution, &nbsp; Cauchy distribution.
  
  
Folgende &raquo;'''integrale Kenngrößen'''&laquo; werden ausgegeben&nbsp; (bzgl. X): &nbsp;
+
The following &raquo;'''integral parameters'''&laquo; are output&nbsp; (with respect to X): &nbsp;
 
    
 
    
Linearer Mittelwert&nbsp; mX=E[X], &nbsp; quadratischer Mittelwert&nbsp; PX=E[X2], &nbsp; Varianz&nbsp; σ2X=PXm2X, &nbsp; Standardabweichung (oder Streuung)&nbsp; σX,&nbsp; Charliersche Schiefe&nbsp; SX, &nbsp; Kurtosis&nbsp; KX.
+
Linear mean value&nbsp; mX=E[X], &nbsp; second order moment&nbsp; PX=E[X2], &nbsp; variance&nbsp; σ2X=PXm2X, &nbsp; standard deviation&nbsp; σX,&nbsp; Charlier's skewness&nbsp; SX, &nbsp; kurtosis&nbsp; KX.
  
  
Line 515: Line 515:
 
<br>
 
<br>
 
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
 
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
*The first version was created in 2005 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|$\text{Bettina Hirner}$]]&nbsp; as part of her diploma thesis with “FlashMX – Actionscript”&nbsp; (Supervisor:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|$\text{Günter Söder}$]]&nbsp; and&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|$\text{Klaus Eichin}$]]).
+
*The first version was created in 2005 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|&raquo;Bettina Hirner&laquo;]]&nbsp; as part of her diploma thesis with “FlashMX – Actionscript”&nbsp; (Supervisor:&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LNT#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28at_LNT_from_1974-2024.29| &raquo;Günter Söder&laquo; ]]&nbsp; and&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LNT#Dr.-Ing._Klaus_Eichin_.28at_LNT_from_1972-2011.29| &raquo;Klaus Eichin&laquo; ]]).
 
   
 
   
*In 2019 the program was redesigned via HTML5/JavaScript by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Matthias_Niller_.28Ingenieurspraxis_Math_2019.29|$\text{Matthias Niller}$]]&nbsp;  (Ingenieurspraxis Mathematik, Supervisor:&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LÜT#Benedikt_Leible.2C_M.Sc._.28at_L.C3.9CT_since_2017.29|$\text{Benedikt Leible}$]]&nbsp; and&nbsp; [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|$\text{Tasnád Kernetzky}$]] ).
+
*In 2019 the program was redesigned via HTML5/JavaScript by&nbsp; [[Biographies_and_Bibliographies/Students_involved_in_LNTwww#Matthias_Niller_.28Ingenieurspraxis_Math_2019.29|&raquo;Matthias Niller&laquo;]]&nbsp;  (Ingenieurspraxis Mathematik, Supervisor:&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LÜT#Dr.-Ing._Benedikt_Leible_.28at_L.C3.9CT_since_2017.29| &raquo;Benedikt Leible&laquo; ]]&nbsp; and&nbsp; [[Biographies_and_Bibliographies/LNTwww_members_from_LÜT#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28at_L.C3.9CT_from_2014-2022.29| &raquo;Tasnád Kernetzky&laquo; ]] ).
  
*Last revision and English version 2021 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|$\text{Carolin Mirschina}$]]&nbsp; in the context of a working student activity.&nbsp; Translation using DEEPL.com (free version).
+
*Last revision and English version 2021 by&nbsp; [[Biographies_and_Bibliographies/Students_involved_in_LNTwww#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|&raquo;Carolin Mirschina&laquo;]]&nbsp; in the context of a working student activity.&nbsp;  
  
 
*The conversion of this applet was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; (TUM Department of Electrical and Computer Engineering).&nbsp; We thank.
 
*The conversion of this applet was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; (TUM Department of Electrical and Computer Engineering).&nbsp; We thank.

Latest revision as of 15:39, 24 February 2025

Open Applet in new Tab   Deutsche Version Öffnen

Applet Description


The applet presents the description forms of two continuous value random variables  X  and  Y.  For the red random variable  X  and the blue random variable  Y,  the following basic forms are available for selection:

  • Gaussian distribution, uniform distribution, triangular distribution, exponential distribution, Laplace distribution, Rayleigh distribution, Rice distribution, Weibull distribution, Wigner semicircle distribution, Wigner parabolic distribution, Cauchy distribution.


The following data refer to the random variables  X. Graphically represented are

  • the probability density function  fX(x)  (above) and
  • the cumulative distribution function  FX(x)  (bottom).


In addition, some integral parameters are output, namely

  • the linear mean value  mX=E[X],
  • the second order moment  PX=E[X2],
  • the variance  σ2X=PXm2X,
  • the standard deviation  σX,
  • the Charlier skewness  SX,
  • the kurtosis  KX.


Definition and Properties of the Presented Descriptive Variables


In this applet we consider only (value–)continuous random variables, i.e. those whose possible numerical values are not countable.

  • The range of values of these random variables is thus in general that of the real numbers  (X+).
  • However, it is possible that the range of values is limited to an interval:  xminX+xmax.



Probability density function (PDF)

For a continuous random variable  X  the probabilities that  X  takes on quite specific values  x  are zero:  Pr(X=x)0.  Therefore, to describe a continuous random variable, we must always refer to the  probability density function  – in short  PDF

Definition:  The value of the  »probability density function«  fX(x)  at location  x  is equal to the probability that the instantaneous value of the random variable  x  lies in an  (infinitesimally small)  interval of width  Δx  around  xμ,  divided by  Δx:

fX(x)=limΔx0Pr[xΔx/2Xx+Δx/2]Δx.


This extremely important descriptive variable has the following properties:

  • For the probability that the random variable  X  lies in the range between  xu  and  xo>xu
Pr(xuXxo)=xoxufX(x) dx.
  • As an important normalization property,  this yields for the area under the PDF with the boundary transitions  xu  and  xo+:
+fX(x) dx=1.


Cumulative distribution function (CDF)

The  cumulative distribution function  – in short  CDF  – provides the same information about the random variable  X  as the probability density function.

Definition:  The  »cumulative distribution function«  FX(x)  corresponds to the probability that the random variable  X  is less than or equal to a real number  x

FX(x)=Pr(Xx).


The CDF has the following characteristics:

  • The CDF is computable from the probability density function  fX(x)  by integration.  It holds:
FX(x)=xfX(ξ)dξ.
  • Since the PDF is never negative,  FX(x)  increases at least weakly monotonically,  and always lies between the following limits:
FX(x)=0,FX(x+)=1.
  • Inversely,  the probability density function can be determined from the CDF by differentiation:
fX(x)=dFX(ξ)dξ|x=ξ.
  • For the probability that the random variable  X  is in the range between  xu  and  xo>xu  holds:
Pr(xuXxo)=FX(xo)FX(xu).


Expected values and moments

The probability density function provides very extensive information about the random variable under consideration.  Less,  but more compact information is provided by the so-called  "expected values"  and  "moments".

Definition:  The  »expected value«  with respect to any weighting function  g(x)  can be calculated with the PDF  fX(x)  in the following way:

E[g(X)]=+g(x)fX(x)dx.

Substituting into this equation for  g(x)=xk  we get the  »moment of k-th order«:

mk=E[Xk]=+xkfX(x)dx.


From this equation follows.

  • with  k=1  for the  first order moment  or the  (linear)  mean:
m1=E[X]=+xfX(x)dx,
  • with  k=2  for the  second order moment  or the  second moment:
m2=E[X2]=+x2fX(x)dx.

In relation to signals,  the following terms are also common:

  • m1  indicates the  DC component;    with respect to the random quantity  X  in the following we also write  mX.
  • m2  corresponds to the signal power  PX   (referred to the unit resistance  1 Ω ) .


For example, if  X  denotes a voltage, then according to these equations  mX  has the unit  V  and the power  PX  has the unit  V2. If the power is to be expressed in "watts"  (W), then  PX  must be divided by the resistance value  R

Central moments

Of particular importance in statistics in general are the so-called  central moments from which many characteristics are derived,

Definition:  The  »central moments«,  in contrast to the conventional moments, are each related to the mean value  m1  in each case. For these, the following applies with  k=1, 2, ...:

μk=E[(Xm1)k]=+(xm1)kfx(x)dx.


  • For mean-free random variables, the central moments  μk  coincide with the noncentral moments  mk
  • The first order central moment is by definition equal to  μ1=0.
  • The noncentral moments  mk  and the central moments  μk  can be converted directly into each other.  With  m0=1  and  μ0=1  it is valid:
μk=kκ=0(kκ)mκ(m1)kκ,
mk=kκ=0(kκ)μκm1kκ.


Some Frequently Used Central Moments

From the last definition the following additional characteristics can be derived:

Definition:  The  »variance«  of the considered random variable  X  is the second order central moment:

μ2=E[(Xm1)2]=σ2X.
  • The variance  σ2X  corresponds physically to the  "switching power"  and  »standard deviation«  σX  gives the "rms value".
  • From the linear and the second moment,  the variance can be calculated according to  Steiner's theorem  in the following way:  σ2X=E[X2]E2[X].


Definition:  The  »Charlier's skewness«  SX  of the considered random variable  X  denotes the third central moment related to σ3X.

  • For symmetric probability density function,  this parameter   SX  is always zero.
  • The larger  SX=μ3/σ3X  is,  the more asymmetric is the PDF around the mean  mX.
  • For example,  for the exponential distribution the (positive) skewness  SX=2, and this is independent of the distribution parameter  λ.


Definition:  The  »kurtosis«  of the considered random variable  X  is the quotient  KX=μ4/σ4X    (μ4:  fourth-order central moment).

  • For a Gaussian distributed random variable this always yields the value  KX=3.
  • This parameter can be used, for example, to check whether a given random variable is actually Gaussian or can at least be approximated by a Gaussian distribution.


Compilation of some Continuous–Value Random Variables


The applet considers the following distributions: 

Gaussian distribution, uniform distribution, triangular distribution, exponential distribution, Laplace distribution, Rayleigh distribution,
Rice distribution, Weibull distribution, Wigner semicircle distribution, Wigner parabolic distribution, Cauchy distribution.

Some of these will be described in detail here.

Gaussian distributed random variables

Gaussian random variable:  PDF and CDF

(1)    »Probability density function«   (axisymmetric around  mX)

fX(x)=12πσXe(XmX)2/(2σ2X).

PDF parameters: 

  • mX  (mean or DC component),
  • σX  (standard deviation or rms value).


(2)    »Cumulative distribution function«   (point symmetric around  mX)

FX(x)=ϕ(xmXσX)withϕ(x)=12πxeu2/2du.

ϕ(x):   Gaussian error integral (cannot be calculated analytically, must be taken from tables).


(3)    »Central moments«

μk=(k1)(k3)  31σkX(ifkeven).
  • Charlier's skewness  SX=0,  since  μ3=0  (PDF is symmetric about  mX).
  • Kurtosis  KX=3,  since  μ4=3σ2X  ⇒   KX=3  results only for the Gaussian PDF.


(4)    »Further remarks«

  • The naming is due to the important mathematician, physicist and astronomer Carl Friedrich Gauss.
  • If  mX=0  and  σX=1, it is often referred to as the  normal distribution.
  • The standard deviation can also be determined graphically from the bell-shaped PDF fX(x)   (as the distance between the maximum value and the point of inflection).
  • Random quantities with Gaussian WDF are realistic models for many physical physical quantities and also of great importance for communications engineering.
  • The sum of many small and independent components always leads to the Gaussian PDF   ⇒   Central Limit Theorem of Statistics   ⇒   Basis for noise processes.
  • If one applies a Gaussian distributed signal to a linear filter for spectral shaping, the output signal is also Gaussian distributed.


Signal and PDF of a Gaussian noise signal

Example 1:  The graphic shows a section of a stochastic noise signal  x(t)  whose instantaneous value can be taken as a continuous random variable  X. From the PDF shown on the right, it can be seen that:

  • A Gaussian random variable is present.
  • Instantaneous values around the mean  mX  occur most frequently.
  • If there are no statistical ties between the samples  xν  of the sequence, such a signal is also called "white noise".


Uniformly distributed random variables

Uniform distribution:  PDF and CDF

(1)    »Probability density function«

  • The probability density function (PDF)  fX(x)  is in the range from  xmin  to  xmax  constant equal to  1/(xmaxxmin)  and outside zero.
  • At the range limits for  fX(x)  only half the value  (mean value between left and right limit value)  is to be set.


(2)    »Cumulative distribution function«

  • The cumulative distribution function (CDF) increases in the range from  xmin  to  xmax  linearly from zero to  1


'(3)    »'«

  • Mean and standard deviation have the following values for the uniform distribution:
mX=xmax+xmin2,σ2X=(xmaxxmin)212.
  • For symmetric PDF   ⇒   xmin=xmax  the mean value  mX=0  and the variance  σ2X=x2max/3.
  • Because of the symmetry around the mean  mX  the Charlier skewness  SX=0.
  • The kurtosis is with   KX=1.8  significantly smaller than for the Gaussian distribution because of the absence of PDF outliers.


(4)    »Further remarks«

  • For modeling transmission systems, uniformly distributed random variables are the exception. An example of an actual (nearly) uniformly distributed random variable is the phase in circularly symmetric interference, such as occurs in  quadrature amplitude modulation  (QAM) schemes.
  • The importance of uniformly distributed random variables for information and communication technology lies rather in the fact that, from the point of view of information theory, this PDF form represents an optimum with respect to differential entropy under the constraint of "peak limitation".
  • In image processing & encoding, the uniform distribution is often used instead of the actual distribution of the original image, which is usually much more complicated, because the difference in information content between a natural image and the model based on the uniform distribution is relatively small.
  • In the simulation of intelligence systems, one often uses "pseudo-random generators" based on the uniform distribution (which are relatively easy to realize), from which other distributions  (Gaussian distribution, exponential distribution, etc.)  can be easily derived.


Exponentially distributed random variables

(1)    »Probability distribution function«

Exponential distribution:  PDF and CDF

An exponentially distributed random variable  X  can only take on non–negative values. For  x>0  the PDF has the following shape:

fX(x)=λXeλXx.
  • The larger the distribution parameter  λX,  the steeper the drop.
  • By definition,  fX(0)=λX/2, which is the average of the left-hand limit  (0)  and the right-hand limit  (λX).


(2)    »Cumulative distribution function«

Distribution function PDF, we obtain for  x>0:

FX(x)=1eλXx.

(3)    »Moments and central moments«

  • The  moments  of the (one-sided) exponential distribution are generally equal to:
mk=+xkfX(x)dx=k!λkX.
  • From this and from Steiner's theorem we get for mean and standard deviation:
mX=m1=1λX,σ2X=m2m21=2λ2X1λ2X=1λ2X.
  • The PDF is clearly asymmetric here. For the Charlier skewness  SX=2.
  • The kurtosis with   KX=9  is clearly larger than for the Gaussian distribution, because the PDF foothills extend much further.


(4)    »Further remarks«

  • The exponential distribution has great importance for reliability studies; in this context, the term "lifetime distribution" is also commonly used.
  • In these applications, the random variable is often the time  t, that elapses before a component fails.
  • Furthermore, it should be noted that the exponential distribution is closely related to the Laplace distribution.


Laplace distributed random variables

Laplace distribution:  PDF and CDF

(1)    »Probability density function«

As can be seen from the graph, the Laplace distribution is a "two-sided exponential distribution":

fX(x)=λX2eλX|x|.
  • The maximum value here is  λX/2.
  • The tangent at  x=0  intersects the abscissa at  1/λX, as in the exponential distribution.


(2)    »Cumulative distribution function«

FX(x)=Pr[Xx]=xfX(ξ)dξ
FX(x)=0.5+0.5sign(x)[1eλX|x|]
FX()=0,FX(0)=0.5,FX(+)=1.

(3)    »Moments and central moments«

  • For odd  k,  the Laplace distribution always gives  mk=0 due to symmetry. Among others:  Linear mean  mX=m1=0.
  • For even  k  the moments of Laplace distribution and exponential distribution agree:  mk=k!/λk.
  • For the variance  (= second order central moment = second order moment)  holds:  σ2X=2/λ2X   ⇒   twice as large as for the exponential distribution.
  • For the Charlier skewness,  SX=0 is obtained here due to the symmetric PDF.
  • The kurtosis is  KX=6,  significantly larger than for the Gaussian distribution, but smaller than for the exponential distribution.


(4)    »Further remarks«



Brief description of other distributions


(A) Rayleigh distribution     More detailed description

  • Probability density function:
fX(x)={x/λ2Xex2/(2λ2X)0forx0,forx<0..
  • Application:     Modeling of the cellular channel (non-frequency selective fading, attenuation, diffraction, and refraction effects only, no line-of-sight).


(B) Rice distribution     More detailed description

  • Probability density function  (I0  denotes the modified zero-order Bessel function):
fX(x)=xλ2Xexp[x2+C2X2λ2X]I0[xCXλ2X]withI0(u)=J0(ju)=k=0(u/2)2kk!Γ(k+1).
  • Application:     Cellular channel modeling (non-frequency selective fading, attenuation, diffraction, and refraction effects only, with line-of-sight).


(C) Weibull distribution     More detailed description

  • Probability density function:
fX(x)=λXkX(λXx)kX1e(λXx)kX.
  • Application:     PDF with adjustable skewness SX; exponential distribution  (kX=1)  and Rayleigh distribution  (kX=2)  included as special cases.


(D) Wigner semicircle distribution     More detailed description

  • Probability density function:
fX(x)={2/(πRX2)RX2(xmX)20for|xmX|RX,for|xmX|>RX.
  • Application:     PDF of Chebyshev nodes   ⇒   zeros of Chebyshev polynomials from numerics.


(E) Wigner parabolic distribution

  • Probability density function:
fX(x)={3/(4RX3)(RX2(xmX)2)0for|x|RX,for|x|>RX.
  • Application:     PDF of eigenvalues of symmetric random matrices whose dimension approaches infinity.


(F) Cauchy distribution     More detailed description

  • Probability density function and distribution function:
fX(x)=1πλXλ2X+x2,FX(x)=1/2+arctan(x/λX).
  • In the Cauchy distribution, all moments  mk  for even  k  have an infinitely large value, independent of the parameter  λX.
  • Thus, this distribution also has an infinitely large variance:  σ2X.
  • Due to symmetry, for odd  k  all moments  mk=0, if one assumes the "Cauchy Principal Value" as in the program:  mX=0, SX=0.
  • Example:     The quotient of two Gaussian mean-free random variables is Cauchy distributed. For practical applications the Cauchy distribution has less meaning.


Exercises


  • First, select the number  (1, 2,... )  of the task to be processed.  The number  "0"  corresponds to a  "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values are adjusted.  Solution after pressing  "Show Solution".
  • In the following  Red  stands for the random variable  X  and  Blue  for  Y.


(1)  Select  red: Gaussian PDF (mX=1, σX=0.4)  and  blue: Rectangular PDF (ymin=2, ymax=+3).  Interpret the  PDF  graph.

  •  Gaussian PDF:  The  PDF maximum is equal to  fX(x=mX)=1/(2πσ2X)=0.99741.
  •  Rectangular PDF:  All  PDF values are equal  0.2  in the range  2<y<+3.  At the edges  fY(2)=fY(+3)=0.1  (half value) holds.


(2)  Same setting as for  (1).  What are the probabilities  Pr(X=0),   Pr(0.5X1.5),   Pr(Y=0)   and  Pr(0.5Y1.5) .

  •  Pr(X=0)=Pr(Y=0)0   ⇒   Probability of a discrete random variable to take exactly a certain value.
  •  The other two probabilities can be obtained by integration over the PDF in the range  +0.5 ... +1.5.
  •  Or:  Pr(0.5X1.5)=FX(1.5)FX(0.5)=0.89440.1056=0.7888. Correspondingly:  Pr(0.5Y1.5)=0.70.5=0.2.


(3)  Same settings as before.  How must the standard deviation  σX  be changed so that with the same mean  mX  it holds for the second order moment:  PX=2 ?

  •  According to Steiner's theorem:  PX=m2X+σ2X   ⇒   σ2X=PXm2X=212=1   ⇒   σX=1.


(4)  Same settings as before:  How must the parameters  ymin  and  ymax  of the rectangular PDF be changed to yield  mY=0  and  σ2Y=0.75?

  •  Starting from the previous setting  (ymin=2, ymax=+3)  we change  ymax until  σ2Y=0.75  occurs   ⇒   ymax=1.
  •  The width of the rectangle is now  3.  The desired mean   mY=0  is obtained by shifting:  ymin=1.5, ymax=+1.5.
  •  You could also consider that for a mean-free random variable  (ymin=ymax)  the following equation holds:   σ2Y=y2max/3.


(5)  For which of the adjustable distributions is the Charlier skewness  S0 ?

  •  The Charlier's skewness denotes the third central moment related to  σ3X   ⇒  SX=μ3/σ3X  (valid for the random variable  X).
  •  If the PDF  fX(x)  is symmetric around the mean  mX  then the parameter  SX  is always zero.
  •  Exponential distribution:  SX=2;  Rayleigh distribution:  SX=0.631   (both independent of  λX);   Rice distribution:  SX>0  (dependent of  CX, λX).
  •  With the Weibull distribution, the Charlier skewness  SX  can be zero, positive or negative,  depending on the PDF parameter  kX.
  •   Weibull distribution,  λX=0.4:  With  kX=1.5  ⇒   PDF is curved to the left  (SX>0);   kX=7  ⇒   PDF is curved to the right  (SX<0).


(6)  Select  Red: Gaussian PDF (mX=1, σX=0.4)  and  Blue: Gaussian PDF (mX=0, σX=1).  What is the kurtosis in each case?

  •  For each Gaussian distribution the kurtosis has the same value:   KX=KY=3.  Therefore,  K3  is called "excess".
  • This parameter can be used to check whether a given random variable can be approximated by a Gaussian distribution.


(7)  For which distributions does a significantly smaller kurtosis value result than  K=3?  And for which distributions does a significantly larger one?

  •  K<3  always results when the PDF values are more concentrated around the mean than in the Gaussian distribution.
  •  This is true, for example, for the uniform distribution  (K=1.8)  and for the triangular distribution  (K=2.4).
  •  K>3,  if the PDF offshoots are more pronounced than for the Gaussian distribution.  Example:  Exponential PDF  (K=9).


(8)  Select  Red: Exponential PDF (λX=1)  and  Blue: Laplace PDF (λY=1).  Interpret the differences.

  •  The Laplace distribution is symmetric around its mean  (SY=0, mY=0)  unlike the exponential distribution  (SX=2, mX=1).
  •  The even moments  m2, m4, ...  are equal,  for example:  PX=PY=2.  But not the variances:  σ2X=1, σ2Y=2.
  •  The probabilities  Pr(|X|<2)=FX(2)=0.864  and  Pr(|Y|<2)=FY(2)FY(2)=0.9320.068=0.864  are equal.
  •  In the Laplace PDF, the values are more tightly concentrated around the mean than in the exponential PDF:  KY=6<KX=9.


(9)  Select  Red: Rice PDF (λX=1, CX=1)  and  Blue: Rayleigh PDF (λY=1).  Interpret the differences.

  •   With  CX=0  the Rice PDF transitions to the Rayleigh PDF.  A larger  CX  improves the performance, e.g., in mobile communications.
  •   Both, in  "Rayleigh"  and  "Rice"  the abscissa is the magnitude  A  of the received signal.  Favorably, if  Pr(AA0)  is small  (A0  given).
  •   For  CX0  and equal  λ  the Rice CDF is below the Rayleigh CDF   ⇒   smaller  Pr(AA0)  for all  A0.


(10)  Select  Red: Rice PDF (λX=0.6, CX=2).  By which distribution  FY(y)  can this Rice distribution be well approximated?

  •   The kurtosis   KX=2.95393  indicates the Gaussian distribution.   Favorable parameters:  mY=2.1>CX,  σY=λX=0.6.
  •   The larger tht quotient  CX/λX  is, the better the Rice PDF is approximated by a Gaussian PDF.
  •   For large   CX/λX  the Rice PDF has no more similarity with the Rayleigh PDF.


(11)  Select  Red: Weibull PDF (λX=1, kX=1)  and  Blue: Weibull PDF (λY=1, kY=2). Interpret the results.

  •   The Weibull PDF  fX(x)  is identical to the exponential PDF and  fY(y)  to the Rayleigh PDF.
  •   However, after best fit, the parameters  λWeibull=1  and  λRayleigh=0.7 differ.
  •   Moreover, it holds  fX(x=0)  for  kX<1.  However, this does not have the affect of infinite moments.


(12)  Select  Red: Weibull PDF (λX=1, kX=1.6)  and   Blue: Weibull PDF (λY=1, kY=5.6).  Interpret the Charlier skewness.

  •   One observes:   For the PDF parameter  k<k  the Charlier skewness is positive and for  k>k  negative.  It is approximately  k=3.6.


(13)  Select  Red: Semicircle PDF (mX=0, RX=1)  and  Blue: Parabolic PDF (mY=0, RY=1).  Vary the parameter  R  in each case.

  •   The PDF in each case is mean-free and symmetric  (SX=SY=0)  with  σ2X=0.25, KX=2  respectively,  σ2Y=0.2, KY2.2.



Applet Manual


Screenshot of the German version

    (A)     Selection of the distribution  fX(x)  (red curves and output values)

    (B)     Parameter input for the "red distribution" via slider

    (C)     Selection of the distribution  fY(y)  (blue curves and output values)

    (D)     Parameter input for the "red distribution" via slider

    (E)     Graphic area for the probability density function (PDF)

    (F)     Graphic area for the distribution function (CDF)

    (G)     Numerical output for the "red distribution"

    (H)     Numerical output for the "blue distribution"

    ( I )     Input of  x  and  y  abscissa values for the numerics outputs

    (J)     Experiment execution area:   task selection

    (K)     Experiment execution area:   task description

    ( L)     Experiment execution area:   sample solution


Selection options for for  A  and  C:  

Gaussian distribution,   uniform distribution,   triangular distribution,   exponential distribution,   Laplace distribution,   Rayleigh distribution,  Rice distribution,   Weibull distribution,   Wigner semicircle distribution,   Wigner parabolic distribution,   Cauchy distribution.


The following »integral parameters« are output  (with respect to X):  

Linear mean value  mX=E[X],   second order moment  PX=E[X2],   variance  σ2X=PXm2X,   standard deviation  σX,  Charlier's skewness  SX,   kurtosis  KX.


In all applets top right:    Changeable graphical interface design   ⇒   Theme:

  • Dark:   black background  (recommended by the authors).
  • Bright:   white background  (recommended for beamers and printouts)
  • Deuteranopia:   for users with pronounced green–visual impairment
  • Protanopia:   for users with pronounced red–visual impairment


About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • Last revision and English version 2021 by  »Carolin Mirschina«  in the context of a working student activity. 


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen