Difference between revisions of "Exercise 2.6: Cyclic Prefix"

From LNTwww
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Verfahren zur Senkung der Bitfehlerrate bei DSL
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL
  
  
 
}}
 
}}
  
[[File:P_ID1982__Bei_A_2_6.png|right|frame|$\rm DSL/DMT$&nbsp; mit <br>zyklischem Präfix]]
+
[[File:EN_Bei_A_2_6.png|right|frame|$\rm DSL/DMT$&nbsp; realization with cyclic prefix]]
  
 
+
A major advantage of&nbsp; $\rm DSL/DMT$&nbsp; is the simple equalization of channel distortion by inserting a guard interval and a cyclic prefix. The diagram shows a simplified block diagram, where the prefix used for equalization of the channel frequency response
Ein wesentlicher Vorteil von&nbsp; $\rm DSL/DMT$&nbsp; ist die einfache Entzerrung von Kanalverzerrungen durch die Einfügung eines Guard–Intervalls und eines zyklischen Präfix. Die Grafik zeigt ein vereinfachendes Blockschaltbild, wobei die zur Entzerrung des Kanalfrequenzgangs
 
 
:$$H_{\rm K}(f) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm K}(t)$$
 
:$$H_{\rm K}(f) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm K}(t)$$
  
erforderlichen Komponenten rot hervorgehoben sind.
+
required components are highlighted in red.
  
Für den&nbsp; $\rm ADSL/DMT$&ndash;Downstream gelten folgende Parameter:
+
For the&nbsp; $\rm ADSL/DMT$ downstream the following parameters apply:
  
*Mit jedem Rahmen werden die Subkanäle&nbsp; $k = 64$, ... , $255$&nbsp; bei den Trägerfrequenzen&nbsp; $f_k = k \cdot f_0$&nbsp; mit den QAM–Symbolen&nbsp; $D_k$&nbsp; belegt. Wegen der Reservierung der untersten Frequenzen für ISDN und für den Upstream gilt&nbsp; $D_0 =$ ... $= D_{63} = 0$.
+
*With each frame, the subchannels&nbsp; $k = 64$, ... , $255$&nbsp; at the carrier frequencies&nbsp; $f_k = k \cdot f_0$&nbsp; occupied with the QAM symbols&nbsp; $D_k$&nbsp;. Because of the reservation of the lowest frequencies for ISDN and for upstream&nbsp; $D_0 =$ ... $= D_{63} = 0$.
  
*Die Grundfrequenz ist zu&nbsp; $f_0 = 4.3125 \ \rm kHz$&nbsp; gewählt und die Rahmendauer beträgt&nbsp; $T = 1/f_0 \approx 232 \ {\rm &micro; s}$. Diese Werte ergeben sich aus der Forderung, dass pro Sekunde $4000$ Rahmen übertragen werden sollen und nach jedem $68$&ndash;ten Rahmen ein Synchronisationsrahmen eingefügt wird.
+
*The fundamental frequency is chosen to&nbsp; $f_0 = 4.3125 \ \rm kHz$&nbsp; and the frame duration is&nbsp; $T = 1/f_0 \approx 232 \ {\rm &micro; s}$. These values result from the requirement that $4000$ frames should be transmitted per second and a synchronization frame is inserted after every $68$&ndash;th frame.
  
*Nach Belegung der oberen Koeffizienten&nbsp; $(k = 257$, ... , $448)$&nbsp; gemäß&nbsp; $D_k = D_{512-k}^{\ast}$&nbsp; wird der gesamte Block&nbsp; $D_0$, ... , $D_{511}$&nbsp; einer ''Inversen Diskreten Fouriertransformation''&nbsp; $\rm (IDFT)$&nbsp; zugeführt. Die Zeitkoeffizienten sind dann&nbsp; $s_0$, ... , $s_{511}$.
+
*After occupying the upper coefficients&nbsp; $(k = 257$, ... , $448)$&nbsp; according to&nbsp; $D_k = D_{512-k}^{\ast}$&nbsp; the entire block&nbsp; $D_0$, ... , $D_{511}$&nbsp; is fed to an ''Inverse Discrete Fourier Transform''&nbsp; $\rm (IDFT)$&nbsp; . The time coefficients are then&nbsp; $s_0$, ... , $s_{511}$.
  
*Um Impulsinterferenzen – auch ''Inter–Symbol–Interferenzen''&nbsp; $\rm (ISI)$&nbsp; genannt – zwischen benachbarten Rahmen zu vermeiden, wird zwischen zwei Rahmen ein Schutzabstand („Guard–Intervall”) der Dauer&nbsp; $T_{\rm G}$&nbsp; eingefügt. Der Rahmenabstand muss dabei mindestens so groß sein wie die "Länge"&nbsp; $T_{\rm K}$&nbsp; der Impulsantwort.
+
*To avoid impulse interference - also called ''inter-symbol interference''&nbsp; $\rm (ISI)$&nbsp; - between adjacent frames, a guard interval of duration&nbsp; $T_{\rm G}$&nbsp; is inserted between two frames. The frame spacing must be at least as large as the "length"&nbsp; $T_{\rm K}$&nbsp; of the impulse response.
  
*Zudem werden die IDFT–Ausgangswerte&nbsp; $(s_{480}$, ... , $s_{511})$&nbsp; dupliziert, als&nbsp; $(s_{-32}$, ... , $s_{-1})$&nbsp; dem Ausgangsvektor&nbsp; $(s_0$, ... , $s_{511})$&nbsp; vorangestellt und im Guard–Intervall übertragen. Man nennt dies das „zyklische Präfix”. Somit stören sich auch die Subträger eines Rahmens nicht, das heißt, es gibt nicht nur keine&nbsp; $\rm ISI$, sondern auch keine Inter–Carrier–Interferenzen&nbsp; $\rm (ICI)$.
+
*In addition, the IDFT output values&nbsp; $(s_{480}$, ... , $s_{511})$&nbsp; are duplicated, prefixed as&nbsp; $(s_{-32}$, ... , $s_{-1})$&nbsp; to the output vector&nbsp; $(s_0$, ... , $s_{511})$&nbsp; and transmitted in the guard interval. This is called the "cyclic prefix". Thus, the subcarriers of a frame do not interfere with each other either, which means that there is not only no&nbsp; $\rm ISI$, but also no inter-carrier interference&nbsp; $\rm (ICI)$.
  
  
Line 32: Line 31:
  
  
''Hinweise:''
+
Hints:
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Examples_of_Communication_Systems/Verfahren_zur_Senkung_der_Bitfehlerrate_bei_DSL|Verfahren zur Senkung der Bitfehlerrate bei DSL]].
+
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL|"Methods to Reduce the Bit Error Rate in DSL"]].
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Examples_of_Communication_Systems/Verfahren_zur_Senkung_der_Bitfehlerrate_bei_DSL#Einf.C3.BCgen_von_Guard.E2.80.93Intervall_und_zyklischem_Pr.C3.A4fix|Einfügen von Guard&ndash;Intervall und zyklischem Präfix]].  
+
*Reference is made in particular to the page&nbsp; [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL#Inserting_guard_interval_and_cyclic_prefix|"Inserting guard interval and cyclic prefix"]].  
*Im Fragebogen bezeichnet&nbsp; $s_k(t)$ den&nbsp; (zeitkontinuierlichen) Signalverlauf, wenn allein der Koeffizient&nbsp; $D_k$&nbsp; des Trägers bei&nbsp; $f_k = k \cdot f_0$&nbsp; von Null verschieden ist.
+
*In the questions&nbsp; $s_k(t)$ denotes the&nbsp; (continuous-time) waveform when only the coefficient&nbsp; $D_k$&nbsp; of the carrier at&nbsp; $f_k = k \cdot f_0$&nbsp; is different from zero.
 
   
 
   
  
Line 41: Line 40:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Dauer&nbsp; $T_{\rm G}$&nbsp; des Guard–Intervalls zu wählen?
+
{What should be the duration&nbsp; $T_{\rm G}$&nbsp; of the guard interval?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm G} \ = \ ${ 14.5 3% } $ \ \rm &micro; s$
 
$T_{\rm G} \ = \ ${ 14.5 3% } $ \ \rm &micro; s$
  
  
{Welche Ausdehnung&nbsp; $(T_{\rm K, \ max} )$&nbsp; darf die Kanalimpulsantwort&nbsp; $h_{\rm K}(t)$&nbsp; haben, damit es keine Intersymbolinterferenzen gibt?
+
{What extent&nbsp; $(T_{\rm K, \ max} )$&nbsp; may the channel impulse response&nbsp; $h_{\rm K}(t)$&nbsp; have so that there is no intersymbol interference?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm K, \ max} \ = \ ${ 14.5 3% } $ \ \rm &micro; s$
 
$T_{\rm K, \ max} \ = \ ${ 14.5 3% } $ \ \rm &micro; s$
  
{Welche Eigenschaften besitzt das DMT–System mit zyklischem Präfix? Der Einfluss des Rauschens soll hier unberücksichtigt bleiben.
+
{What are the properties of the DMT system with cyclic prefix? The influence of the noise shall be disregarded here.
 
|type="()"}
 
|type="()"}
- Alle Spektralkoeffizienten nach der DFT&nbsp; $(D_k\hspace{0.01cm}')$&nbsp; sind gleich&nbsp; $D_k$.
+
- All spectral coefficients after DFT&nbsp; $(D_k\hspace{0.01cm}')$&nbsp; are equal&nbsp; $D_k$.
+ Die Koeffizienten nach Entzerrung&nbsp; $(\hat{D}_k)$&nbsp; sind gleich&nbsp; $D_k$.
+
+ The coefficients after equalization&nbsp; $(\hat{D}_k)$&nbsp; are equal&nbsp; $D_k$.
- Das Guard–Intervall hat keine Auswirkung auf die Datenrate.
+
- The guard interval has no effect on the data rate.
  
  
{Was wäre, wenn man das Guard–Intervall unbelegt lässt?
+
{What if the guard interval is left unassigned?
 
|type="()"}
 
|type="()"}
- Das würde nichts verbessern.
+
- This would not improve anything.
+ Daten verschiedener Rahmen stören sich nicht gegenseitig.
+
+ Data of different frames do not interfere with each other.
- Daten innerhalb eines Rahmens stören sich nicht gegenseitig.
+
- Data within a frame does not interfere with each other.
  
  
  
{Auf welchem Prinzip beruht das zyklische Präfix?
+
{On what principle is the cyclic prefix based?
 
|type="[]"}
 
|type="[]"}
+ Der Einfluss von&nbsp; $h_K(t)$&nbsp; wird auf den Bereich&nbsp; $t < 0$&nbsp; begrenzt.
+
+ The influence of&nbsp; $h_K(t)$&nbsp; is limited to the range&nbsp; $t < 0$&nbsp; .
+ Für&nbsp; $0 ≤ t ≤ T$&nbsp; stellt&nbsp; $s_k(t)$&nbsp; eine harmonische Schwingung dar.
+
+ For&nbsp; $0 ≤ t ≤ T$&nbsp; represents&nbsp; $s_k(t)$&nbsp; a harmonic oscillation.
- $h_{\rm K}(t)$&nbsp; hat keinen Einfluss auf Betrag und Phase von&nbsp; $s_k(t)$.
+
- $h_{\rm K}(t)$&nbsp; has no influence on magnitude and phase of&nbsp; $s_k(t)$.
  
  
Line 80: Line 79:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Innerhalb des Guard–Intervalls müssen beim Sender $32$ zusätzliche Abtastwerte $s_{-32}$, ... , $s_{-1}$ eingefügt werden. Damit gilt:
+
'''(1)'''&nbsp; Within the guard interval, additional samples $s_{-32}$, ... must be inserted at sender $32$. , $s_{-1}$ must be inserted. Thus:
 
:$$T_{\rm G} = \frac{32}{512} \cdot T = \frac{232\,{\rm &micro; s}}{16} \hspace{0.15cm}\underline{= 14.5\,{\rm &micro; s} }\hspace{0.05cm}.$$
 
:$$T_{\rm G} = \frac{32}{512} \cdot T = \frac{232\,{\rm &micro; s}}{16} \hspace{0.15cm}\underline{= 14.5\,{\rm &micro; s} }\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Intersymbolinterferenzen (ISI) und Intercarrierinterferenzen (ICI) werden vermieden, so lange die Länge $T_{\rm K}$ der Kanalimpulsantwort nicht größer ist als die Länge $T_{\rm G}$ des Guard–Intervalls:
+
'''(2)'''&nbsp; Intersymbol interference (ISI) and intercarrier interference (ICI) are avoided as long as the length $T_{\rm K}$ of the channel impulse response is not greater than the length $T_{\rm G}$ of the guard interval:
 
:$$T_{\rm K,\hspace{0.08cm} max} \le T_{\rm G} \hspace{0.15cm}\underline{= 14.5\,{\rm &micro; s}} \hspace{0.05cm}.$$
 
:$$T_{\rm K,\hspace{0.08cm} max} \le T_{\rm G} \hspace{0.15cm}\underline{= 14.5\,{\rm &micro; s}} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>.  
+
'''(3)'''&nbsp; The correct solution is <u>proposed solution 2</u>.  
*Für die Ausgangskoeffizienten der DFT gilt im rauschfreien Fall:
+
*For the output coefficients of the DFT, in the noise-free case:
 
:$$D_k\hspace{0.01cm}' = D_k \cdot H_{\rm K} ( f = f_k), \hspace{0.2cm} f_k = k \cdot f_0 \hspace{0.05cm}.$$
 
:$$D_k\hspace{0.01cm}' = D_k \cdot H_{\rm K} ( f = f_k), \hspace{0.2cm} f_k = k \cdot f_0 \hspace{0.05cm}.$$
*Die einzelnen Subkanäle können einzeln durch Multiplikation mit $H_{\rm K}^{-1}(f = f_k)$ entzerrt werden. Damit gilt für alle $k = 1$, ... , $K$:
+
*The individual bins can be equalized individually by multiplying by $H_{\rm K}^{-1}(f = f_k)$. Thus, for all $k = 1$, ... , $K$:
 
:$$\hat{D}_k = D_k \hspace{0.05cm}.$$
 
:$$\hat{D}_k = D_k \hspace{0.05cm}.$$
*Aussage 3 ist falsch: Die Rate ist vielmehr um den Faktor $T/(T + T_{\rm G}) = 16/17$ geringer als ohne Guard–Intervall und zyklischem Präfix.  
+
*Statement 3 is false: rather, the rate is lower by a factor of $T/(T + T_{\rm G}) = 16/17$ than without guard interval and cyclic prefix.  
*Dieser geringe Verlust wird aber gerne in Kauf genommen, da die einfache Entzerrung diesen Nachteil mehr als ausgleicht.
+
*However, this small loss is readily accepted, since the ease of equalization more than compensates for this disadvantage.
  
  
  
'''(4)'''&nbsp; Richtig ist hier nur der <u>Lösungsvorschlag 2</u>:
+
'''(4)'''&nbsp; Correct here is only the <u>proposed solution 2</u>:
*Nicht verhindert würden dadurch so genannte Inter&ndash;Carrier&ndash;Interferenzen, das heißt, die Subträger eines Rahmens wären dann nicht mehr orthogonal zueinander, da die Faltung der zeitlich auf $T$ begrenzten harmonischen Schwingung mit der Impulsantwort keine si–Funktion ergibt, wie dies bei [[Examples_of_Communication_Systems/xDSL_als_Übertragungstechnik#Grundlagen_von_DMT_.E2.80.93_Discrete_Multitone_Transmission|idealem Kanal]] der Fall ist.  
+
*This would not prevent so-called intercarrier interference, that is, the subcarriers of a frame would then no longer be orthogonal to each other, since the convolution of the harmonic oscillation limited in time to $T$ with the impulse response does not yield an si function, as is the case with [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#Basics_of_DMT_-_Discrete_Multitone_Transmission|"ideal channel"]].  
*Damit beeinflusst der Koeffizient $D_k$ bei $k \cdot f_0$ auch die Spektralwerte bei $\kappa \cdot f_0$ in der Umgebung $(\kappa \neq k)$.
+
*Thus, the coefficient $D_k$ at $k \cdot f_0$ also affects the spectral values at $\kappa \cdot f_0$ in the neighborhood $(\kappa \neq k)$.
  
  
  
'''(5)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:  
+
'''(5)'''&nbsp; The correct <u>solutions 1 and 2</u> are:  
*Betrag und Phase von $s_k(t)$ wird sehr wohl durch $h_{\rm K}(t)$ verändert, und zwar entsprechend dem Wert $H_{\rm K}(f = f_k)$ des Frequenzgangs.  
+
*The magnitude and phase of $s_k(t)$ is very well changed by $h_{\rm K}(t)$, corresponding to the value $H_{\rm K}(f = f_k)$ of the frequency response.  
*Durch den Entzerrer auf der Empfängerseite lässt sich dieser Fehler aber in einfacher Weise (und unabhängig von den anderen Subkanälen) korrigieren.
+
*However, this error can be corrected in a simple way (and independently of the other bins) by the equalizer on the receiver side.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 114: Line 113:
  
  
[[Category:Examples of Communication Systems: Exercises|^2.4 BER lowering at DSL
+
[[Category:Examples of Communication Systems: Exercises|^2.4 BER Lowering at DSL
  
  
 
^]]
 
^]]

Latest revision as of 18:37, 25 March 2023

$\rm DSL/DMT$  realization with cyclic prefix

A major advantage of  $\rm DSL/DMT$  is the simple equalization of channel distortion by inserting a guard interval and a cyclic prefix. The diagram shows a simplified block diagram, where the prefix used for equalization of the channel frequency response

$$H_{\rm K}(f) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm K}(t)$$

required components are highlighted in red.

For the  $\rm ADSL/DMT$ downstream the following parameters apply:

  • With each frame, the subchannels  $k = 64$, ... , $255$  at the carrier frequencies  $f_k = k \cdot f_0$  occupied with the QAM symbols  $D_k$ . Because of the reservation of the lowest frequencies for ISDN and for upstream  $D_0 =$ ... $= D_{63} = 0$.
  • The fundamental frequency is chosen to  $f_0 = 4.3125 \ \rm kHz$  and the frame duration is  $T = 1/f_0 \approx 232 \ {\rm µ s}$. These values result from the requirement that $4000$ frames should be transmitted per second and a synchronization frame is inserted after every $68$–th frame.
  • After occupying the upper coefficients  $(k = 257$, ... , $448)$  according to  $D_k = D_{512-k}^{\ast}$  the entire block  $D_0$, ... , $D_{511}$  is fed to an Inverse Discrete Fourier Transform  $\rm (IDFT)$  . The time coefficients are then  $s_0$, ... , $s_{511}$.
  • To avoid impulse interference - also called inter-symbol interference  $\rm (ISI)$  - between adjacent frames, a guard interval of duration  $T_{\rm G}$  is inserted between two frames. The frame spacing must be at least as large as the "length"  $T_{\rm K}$  of the impulse response.
  • In addition, the IDFT output values  $(s_{480}$, ... , $s_{511})$  are duplicated, prefixed as  $(s_{-32}$, ... , $s_{-1})$  to the output vector  $(s_0$, ... , $s_{511})$  and transmitted in the guard interval. This is called the "cyclic prefix". Thus, the subcarriers of a frame do not interfere with each other either, which means that there is not only no  $\rm ISI$, but also no inter-carrier interference  $\rm (ICI)$.





Hints:



Questions

1

What should be the duration  $T_{\rm G}$  of the guard interval?

$T_{\rm G} \ = \ $

$ \ \rm µ s$

2

What extent  $(T_{\rm K, \ max} )$  may the channel impulse response  $h_{\rm K}(t)$  have so that there is no intersymbol interference?

$T_{\rm K, \ max} \ = \ $

$ \ \rm µ s$

3

What are the properties of the DMT system with cyclic prefix? The influence of the noise shall be disregarded here.

All spectral coefficients after DFT  $(D_k\hspace{0.01cm}')$  are equal  $D_k$.
The coefficients after equalization  $(\hat{D}_k)$  are equal  $D_k$.
The guard interval has no effect on the data rate.

4

What if the guard interval is left unassigned?

This would not improve anything.
Data of different frames do not interfere with each other.
Data within a frame does not interfere with each other.

5

On what principle is the cyclic prefix based?

The influence of  $h_K(t)$  is limited to the range  $t < 0$  .
For  $0 ≤ t ≤ T$  represents  $s_k(t)$  a harmonic oscillation.
$h_{\rm K}(t)$  has no influence on magnitude and phase of  $s_k(t)$.


Solution

(1)  Within the guard interval, additional samples $s_{-32}$, ... must be inserted at sender $32$. , $s_{-1}$ must be inserted. Thus:

$$T_{\rm G} = \frac{32}{512} \cdot T = \frac{232\,{\rm µ s}}{16} \hspace{0.15cm}\underline{= 14.5\,{\rm µ s} }\hspace{0.05cm}.$$


(2)  Intersymbol interference (ISI) and intercarrier interference (ICI) are avoided as long as the length $T_{\rm K}$ of the channel impulse response is not greater than the length $T_{\rm G}$ of the guard interval:

$$T_{\rm K,\hspace{0.08cm} max} \le T_{\rm G} \hspace{0.15cm}\underline{= 14.5\,{\rm µ s}} \hspace{0.05cm}.$$


(3)  The correct solution is proposed solution 2.

  • For the output coefficients of the DFT, in the noise-free case:
$$D_k\hspace{0.01cm}' = D_k \cdot H_{\rm K} ( f = f_k), \hspace{0.2cm} f_k = k \cdot f_0 \hspace{0.05cm}.$$
  • The individual bins can be equalized individually by multiplying by $H_{\rm K}^{-1}(f = f_k)$. Thus, for all $k = 1$, ... , $K$:
$$\hat{D}_k = D_k \hspace{0.05cm}.$$
  • Statement 3 is false: rather, the rate is lower by a factor of $T/(T + T_{\rm G}) = 16/17$ than without guard interval and cyclic prefix.
  • However, this small loss is readily accepted, since the ease of equalization more than compensates for this disadvantage.


(4)  Correct here is only the proposed solution 2:

  • This would not prevent so-called intercarrier interference, that is, the subcarriers of a frame would then no longer be orthogonal to each other, since the convolution of the harmonic oscillation limited in time to $T$ with the impulse response does not yield an si function, as is the case with "ideal channel".
  • Thus, the coefficient $D_k$ at $k \cdot f_0$ also affects the spectral values at $\kappa \cdot f_0$ in the neighborhood $(\kappa \neq k)$.


(5)  The correct solutions 1 and 2 are:

  • The magnitude and phase of $s_k(t)$ is very well changed by $h_{\rm K}(t)$, corresponding to the value $H_{\rm K}(f = f_k)$ of the frequency response.
  • However, this error can be corrected in a simple way (and independently of the other bins) by the equalizer on the receiver side.