Difference between revisions of "Digital Signal Transmission/Basics of Coded Transmission"

From LNTwww
 
(69 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Codierte und mehrstufige Übertragung
+
|Untermenü=Coded and Multilevel Transmission
 
|Vorherige Seite=Lineare digitale Modulation – Kohärente Demodulation
 
|Vorherige Seite=Lineare digitale Modulation – Kohärente Demodulation
 
|Nächste Seite=Redundanzfreie Codierung
 
|Nächste Seite=Redundanzfreie Codierung
 
}}
 
}}
  
 +
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 +
<br>
 +
The second main chapter deals with so-called&nbsp; '''transmission coding''',&nbsp; which is sometimes also referred to as&nbsp; "line coding"&nbsp; in literature.&nbsp; In this process,&nbsp; an adaptation of the digital transmitted signal to the characteristics of the transmission channel is achieved through the targeted addition of redundancy.&nbsp; In detail,&nbsp; the following are dealt with:
 +
 +
#&nbsp; Some basic concepts of information theory such as&nbsp; &raquo;information content&laquo;&nbsp; and&nbsp; &raquo;entropy&laquo;,
 +
#&nbsp; the&nbsp; &raquo;auto-correlation function&laquo;&nbsp; and the&nbsp; &raquo;power-spectral densities&laquo;&nbsp; of digital signals,
 +
#&nbsp; the&nbsp; &raquo;redundancy-free coding&laquo;&nbsp; which leads to a non-binary transmitted signal,
 +
#&nbsp; the calculation of&nbsp; &raquo;symbol and bit error probability&laquo;&nbsp; for&nbsp; &raquo;multilevel systems&laquo;&nbsp;,
 +
#&nbsp; the so-called&nbsp; &raquo;4B3T codes&laquo;&nbsp; as an important example of&nbsp; &raquo;block-wise coding&laquo;,&nbsp; and
 +
#&nbsp; the&nbsp; &raquo;pseudo-ternary codes&laquo;,&nbsp; each of which realizes symbol-wise coding.
 +
 +
 +
The description is in baseband throughout and some simplifying assumptions&nbsp; (among others: &nbsp;no intersymbol interfering)&nbsp; are still made.
  
== Informationsgehalt Entropie Redundanz (1) ==
+
== Information content Entropy Redundancy ==
 
<br>
 
<br>
Wir gehen von einer <i>M</i>&ndash;stufigen digitalen Nachrichtenquelle aus, die das Quellensignal
+
We assume an &nbsp;$M$&ndash;level digital source that outputs the following source signal:
<br><br><math>q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.3cm}{\rm mit}\hspace{0.3cm}a_\nu \in \{ a_1, ... , a_\mu , ... , a_{ M}\}</math><br><br>
+
:$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm}a_\nu \in \{ a_1, \text{...} \ , a_\mu , \text{...} \ , a_{ M}\}.$$
abgibt. Die Quellensymbolfolge &#9001;<i>q<sub>&nu;</sub></i>&#9002; ist auf die Folge &#9001;<i>a<sub>&nu;</sub></i>&#9002; der dimensionslosen Amplitudenkoeffizienten abgebildet. Vereinfachend wird zunächst für die Zeitlaufvariable <i>&nu;</i> = 1, ... , <i>N</i> gesetzt, während der Vorratsindex <i>&mu;</i> stets Werte zwischen 1 und <i>M</i> annehmen kann.<br><br>
+
*The source symbol sequence &nbsp;$\langle q_\nu \rangle$&nbsp; is thus mapped to the sequence &nbsp;$\langle a_\nu \rangle$&nbsp; of the dimensionless amplitude coefficients.
Ist das <i>&nu;</i>&ndash;te Folgenelement gleich <i>a<sub>&mu;</sub></i>, so kann dessen Informationsgehalt mit der Wahrscheinlichkeit <i>p<sub>&nu;&mu;</sub></i> = Pr(<i>a<sub>&nu;</sub></i> = <i>a<sub>&mu;</sub></i>) wie folgt berechnet werden:
+
 
::<math>I_\nu  = \log_2 \frac{1}{p_{\nu \mu}}= {\rm ld} \frac{1}{p_{\nu \mu}} \hspace{1cm}{\rm (Einheit: \hspace{0.15cm}bit)}\hspace{0.05cm}.</math>
+
*Simplifying,&nbsp; first for the time indexing variable &nbsp;$\nu = 1$, ... , $N$&nbsp; is set,&nbsp; while the ensemble indexing variable &nbsp;$\mu$&nbsp; can assume values between &nbsp;$1$&nbsp; and level number&nbsp; $M$.
Der Logarithmus zur Basis 2 &nbsp;&#8658;&nbsp; log<sub>2</sub> wird oft auch mit &bdquo;ld(<i>x</i>)&rdquo; &nbsp;&#8658;&nbsp; <i>Logarithmus dualis</i> bezeichnet. Bei der numerischen Auswertung wird die Hinweiseinheit &bdquo;bit&rdquo; hinzugefügt. Mit dem Zehner-Logarithmus lg(<i>x</i>) bzw. dem natürlichen Logarithmus ln(<i>x</i>) gilt:
+
 
:<math>{\rm log_2}(x) =  \frac{{\rm lg}(x)}{{\rm lg}(2)}= \frac{{\rm ln}(x)}{{\rm ln}(2)}\hspace{0.05cm}.</math><br>
+
 
Nach dieser auf C. E. Shannon zurückgehenden Definition von Information ist der Informationsgehalt eines Symbols umso größer, je kleiner dessen Auftrittswahrscheinlichkeit ist.<br>
+
If the &nbsp;$\nu$&ndash;th sequence element is equal to &nbsp;$a_\mu$, its&nbsp; '''information content'''&nbsp; can be calculated with probability &nbsp;$p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$&nbsp; as follows:
{{Definition}}''':'''  Die Entropie ist der mittlere Informationsgehalt eines Folgenelements (Symbols). Diese wichtige informationstheoretische Größe lässt sich als Zeitmittelwert wie folgt ermitteln:
+
:$$I_\nu  = \log_2 \ (1/p_{\nu \mu})= {\rm ld} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit: bit)}\hspace{0.05cm}.$$
:<math>H =  \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  I_\nu  =
+
The logarithm to the base 2 &nbsp; &#8658; &nbsp; $\log_2(x)$ is often also called &nbsp;${\rm ld}(x)$ &nbsp; &#8658; &nbsp; "logarithm dualis".&nbsp; With the numerical evaluation the reference unit "bit" (from: &nbsp;"binary digit"&nbsp;) is added.&nbsp; With the tens logarithm &nbsp;$\lg(x)$&nbsp; and the natural logarithm &nbsp;$\ln(x)$&nbsp; applies:
  \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  \hspace{0.1cm}{\rm log_2}\hspace{0.05cm} \frac{1}{p_{\nu \mu}}  \hspace{1cm}{\rm (Einheit: \hspace{0.15cm}bit)}\hspace{0.05cm}.</math><br>
+
:$${\rm log_2}(x) =  \frac{{\rm lg}(x)}{{\rm lg}(2)}= \frac{{\rm ln}(x)}{{\rm ln}(2)}\hspace{0.05cm}.$$
Natürlich kann die Entropie auch durch Scharmittelung berechnet werden.
+
According to this definition,&nbsp; which goes back to &nbsp;[https://en.wikipedia.org/wiki/Claude_Shannon "Claude E. Shannon"],&nbsp; the smaller the probability of occurrence of a symbol,&nbsp; the greater its information content.
{{end}}<br>
 
Sind die Folgenelemente <i>a<sub>&nu;</sub></i> statistisch voneinander unabhängig, so sind die Auftrittswahrscheinlichkeiten <i>p<sub>&nu;&mu;</sub></i> = <i>p<sub>&mu;</sub></i> unabhängig von <i>&nu;</i> und man erhält in diesem Sonderfall für die Entropie:
 
:<math>H =    \sum_{\mu = 1}^M  p_{ \mu} \cdot {\rm log_2}\hspace{0.1cm} \frac{1}{p_{ \mu}}\hspace{0.05cm}.</math><br>
 
Bestehen dagegen statistische Bindungen zwischen benachbarten Amplitudenkoeffizienten <i>a<sub>&nu;</sub></i>, so muss zur Entropieberechnung die kompliziertere Definitionsgleichung herangezogen werden.<br>
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; '''Entropy'''&nbsp; is the&nbsp; "average information content"&nbsp; of a sequence element&nbsp; ("symbol").
 +
*This important information-theoretical quantity can be determined as a time average as follows:
 +
:$$H =  \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  I_\nu  =
 +
  \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N  \hspace{0.1cm}{\rm log_2}\hspace{0.05cm} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit:  bit)}\hspace{0.05cm}.$$
 +
*Of course,&nbsp; the entropy can also be calculated by ensemble averaging&nbsp; (over the symbol set).}}
  
== Informationsgehalt – Entropie – Redundanz (2) ==
+
 
 +
<u>Note:</u>
 +
*If the sequence elements &nbsp;$a_\nu$&nbsp; are statistically independent of each other,&nbsp; the probabilities &nbsp;$p_{\nu\mu} = p_{\mu}$&nbsp; are independent of &nbsp;$\nu$&nbsp; and we obtain in this special case:
 +
:$$H =   \sum_{\mu = 1}^M  p_{ \mu} \cdot {\rm log_2}\hspace{0.1cm} \ (1/p_{\mu})\hspace{0.05cm}.$$
 +
*If,&nbsp; on the other hand,&nbsp; there are statistical bindings between neighboring amplitude coefficients &nbsp;$a_\nu$,&nbsp; the more complicated equation according to the above definition must be used for entropy calculation.<br>
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp;
 +
 
 +
*The maximum value of entropy &nbsp; &rArr; &nbsp; '''decision content'''&nbsp; is obtained whenever the &nbsp;$M$&nbsp; occurrence probabilities&nbsp; (of the statistically independent symbols)&nbsp; are all equal &nbsp;$(p_{\mu} = 1/M)$:
 +
:$$H_{\rm max} = \sum_{\mu = 1}^M  \hspace{0.1cm}\frac{1}{M} \cdot {\rm log_2} (M) = {\rm log_2} (M) \cdot \sum_{\mu = 1}^M  \hspace{0.1cm} \frac{1}{M} = {\rm log_2} (M)
 +
\hspace{1cm}\text{(unit:  bit)}\hspace{0.05cm}.$$
 +
 
 +
*The&nbsp; '''relative redundancy'''&nbsp; is  then the following quotient:
 +
:$$r = \frac{H_{\rm max}-H}{H_{\rm max} }.$$
 +
*Since &nbsp;$0 \le H \le  H_{\rm max}$&nbsp; always holds,&nbsp; the relative redundancy can take values between &nbsp;$0$&nbsp; and &nbsp;$1$&nbsp; (including these limits).}}
 +
 
 +
 
 +
From the derivation of these descriptive quantities,&nbsp; it is obvious that a redundancy-free &nbsp;$(r=0)$&nbsp; digital signal  must satisfy the following properties:
 +
#The amplitude coefficients &nbsp;$a_\nu$&nbsp; are statistically independent &nbsp; &rArr; &nbsp;  $p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$&nbsp; is identical for all &nbsp;$\nu$.&nbsp; <br>
 +
#The &nbsp;$M$&nbsp; possible coefficients  &nbsp;$a_\mu$&nbsp; occur with equal probability &nbsp;$p_\mu = 1/M$.&nbsp;
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; If one analyzes a German text on the basis of &nbsp;$M = 32$&nbsp; characters:
 +
:$$\text{a, ... , z, ä, ö, ü, ß, spaces, punctuation, no distinction between upper and lower case},$$
 +
the result is the decision content &nbsp;$H_{\rm max} = 5 \ \rm bit/symbol$.&nbsp; Due to
 +
*the different frequencies&nbsp; $($for example,&nbsp; "e"&nbsp; occurs significantly more often than&nbsp; "u"$)$,&nbsp; and<br>
 +
*statistical ties&nbsp; $($for example&nbsp; "q"&nbsp; is followed by the letter&nbsp; "u"&nbsp; much more often than&nbsp; "e"$)$,
 +
 
 +
 
 +
according to &nbsp;[https://en.wikipedia.org/wiki/Karl_K%C3%BCpfm%C3%BCller "Karl Küpfmüller"],&nbsp; the entropy of the German language is only &nbsp;$H = 1.3 \ \rm bit/character$.&nbsp; This results in a relative redundancy of &nbsp;$r \approx (5 - 1.3)/5 = 74\%$.
 +
 
 +
For English texts, &nbsp;[https://en.wikipedia.org/wiki/Claude_Shannon "Claude Shannon"]  has given the entropy as &nbsp;$H = 1 \ \rm bit/character$&nbsp; and the relative redundancy as &nbsp;$r \approx 80\%$.}}
 +
 
 +
 
 +
== Source coding &ndash; Channel coding &ndash;  Line coding ==
 
<br>
 
<br>
Der Maximalwert der Entropie ergibt sich immer dann, wenn die <i>M</i> Auftrittswahrscheinlichkeiten (der statistisch unabhängigen Symbole) alle gleich sind (<i>p<sub>&mu;</sub></i> = 1/<i>M</i>):<br><br>
+
"Coding"&nbsp; is the conversion of the source symbol sequence &nbsp;$\langle q_\nu \rangle$&nbsp; with symbol set size &nbsp;$M_q$&nbsp; into an encoder symbol sequence &nbsp;$\langle c_\nu \rangle$&nbsp; with symbol set size &nbsp;$M_c$.&nbsp; Usually,&nbsp; coding manipulates the redundancy contained in a digital signal.&nbsp; Often &ndash; but not always &ndash; &nbsp;$M_q$&nbsp; and &nbsp;$M_c$&nbsp; are different.<br>
<math>H_{\rm max} = \sum_{\mu = 1}^M  \hspace{0.1cm}\frac{1}{M} \cdot {\rm log_2} (M) = {\rm log_2} (M) \cdot \sum_{\mu = 1}^M  \hspace{0.1cm} \frac{1}{M} = {\rm log_2} (M)
+
 
\hspace{1cm}{\rm (Einheit: \hspace{0.15cm}bit)}\hspace{0.05cm}.</math><br><br>
+
A distinction is made between different types of coding depending on the target direction:
Man bezeichnet <i>H</i><sub>max</sub> als den Entscheidungsgehalt (bzw. als Nachrichtengehalt) und den Quotienten<br><br>
+
*The task of&nbsp; '''source coding'''&nbsp; is redundancy reduction for data compression,&nbsp; as applied for example in image coding.&nbsp; By exploiting statistical ties between the individual points of an image or between the brightness values of a point at different times&nbsp; (in the case of moving image sequences),&nbsp; methods can be developed that lead to a noticeable reduction in the amount of data&nbsp; (measured in&nbsp; "bit"&nbsp; or "byte"),&nbsp; while maintaining virtually the same&nbsp; (subjective)&nbsp; image quality.&nbsp; A simple example of this is "differential pulse code modulation"&nbsp; $\rm (DPCM)$.<br>
<math>r = \frac{H_{\rm max}-H}{H_{\rm max}}</math><br><br>
+
 
als dierelative Redundanz. Da stets 0 &#8804; <i>H</i> &#8804; <i>H</i><sub>max</sub> gilt, kann die relative Redundanz Werte zwischen 0 und 1 (einschließlich dieser Grenzwerte) annehmen.<br><br>
+
*On the other hand,&nbsp; with&nbsp; '''channel coding'''&nbsp; a noticeable improvement in the transmission behavior is achieved by using a redundancy specifically added at the transmitter to detect and correct transmission errors at the receiver end.&nbsp; Such codes,&nbsp; the most important of which are block codes,&nbsp; convolutional codes and turbo codes,&nbsp; are particularly important in the case of heavily disturbed channels.&nbsp; The greater the relative redundancy of the encoded signal,&nbsp; the better the correction properties of the code,&nbsp; albeit at a reduced user data rate.
Aus der Herleitung dieser Beschreibungsgrößen ist offensichtlich, dass ein redundanzfreies Digitalsignal (<i>r</i> = 0) folgende Eigenschaften erfüllen muss:
+
 
*Die Amplitudenkoeffizienten <i>a<sub>&nu;</sub></i> sind statistisch unabhängig; Pr(<i>a<sub>&nu;</sub></i> = <i>a<sub>&mu;</sub></i>) ist für alle <i>&nu;</i> identisch.<br>
+
*'''Line coding'''&nbsp; is used to adapt the transmitted signal to the spectral characteristics of the transmission channel and the receiving equipment by recoding the source symbols.&nbsp; For example,&nbsp; in the case of a channel with the frequency response characteristic &nbsp;$H_{\rm K}(f=0) = 0$,&nbsp; over which consequently no DC signal can be transmitted,&nbsp; transmission coding must ensure that the encoder symbol sequence contains neither a long &nbsp;$\rm L$ sequence nor a long &nbsp;$\rm H$ sequence.<br>
*Die <i>M</i> möglichen Koeffizienten <i>a<sub>&mu;</sub></i> treten mit gleicher Wahrscheinlichkeit <i>p<sub>&mu;</sub></i> = 1/<i>M</i> auf.<br><br>
+
 
  
{{Beispiel}}''':''' Analysiert man einen zur Übertragung anstehenden deutschen Text auf der Basis von <i>M</i> = 32 Zeichen (a, ... , z, ä, ö, ü, ß, Leerzeichen, Interpunktion, keine Unterscheidung zwischen Groß&ndash; und Kleinschreibung), so ergibt sich der Entscheidungsgehalt <i>H</i><sub>max</sub> = 5 bit/Symbol. Aufgrund
+
In the current book&nbsp; "Digital Signal Transmission"&nbsp; we deal exclusively with this last,&nbsp; transmission-technical aspect.
*der unterschiedlichen Häufigkeiten (beispielsweise tritt &bdquo;e&rdquo; deutlich häufiger auf als &bdquo;u&rdquo;) und<br>
+
*[[Channel_Coding|"Channel Coding"]]&nbsp; has its own book dedicated to it in our learning tutorial.
*von statistischen Bindungen (zum Beispiel folgt auf &bdquo;q&rdquo; der Buchstabe &bdquo;u&rdquo; viel öfters als &bdquo;e&rdquo;)<br><br>
+
*Source coding is covered in detail in the book&nbsp; [[Information_Theory|"Information Theory"]]&nbsp; (main chapter 2).
beträgt nach Karl Küpfmüller die Entropie der deutschen Sprache nur <i>H</i> = 1.3 bit/Zeichen. Daraus ergibt sich die relative Redundanz zu <i>r</i> &asymp; (5 &ndash; 1.3)/5 = 74%. Für englische Texte wurde von Claude E. Shannon die Entropie mit <i>H</i> = 1 bit/Zeichen angegeben (<i>r</i> = 80%).
+
*[[Examples_of_Communication_Systems/Speech_Coding|"Speech coding"]]&nbsp; &ndash; described in the book "Examples of Communication Systems" &ndash;&nbsp; is a special form of source coding.<br>
{{end}}
+
 
 +
 
 +
== System model and description variables ==
 
<br>
 
<br>
 +
In the following we always assume the block diagram sketched on the right and the following agreements:
 +
[[File:EN_Dig_T_2_1_S3_v23.png|right|frame|Block diagram for the description of multilevel and coded transmission systems|class=fit]]
 +
*Let the digital source signal &nbsp;$q(t)$&nbsp; be binary &nbsp;$(M_q = 2)$&nbsp; and redundancy-free &nbsp;$(H_q = 1 \ \rm bit/symbol)$.
 +
 +
*With the symbol duration &nbsp;$T_q$&nbsp; results for the symbol rate of the source:
 +
:$$R_q = {H_{q}}/{T_q}=  {1}/{T_q}\hspace{0.05cm}.$$
 +
*Because of &nbsp;$M_q = 2$,&nbsp; in the following we also refer to &nbsp;$T_q$&nbsp; as the&nbsp; "bit duration"&nbsp; and &nbsp;$R_q$&nbsp; as the&nbsp; "bit rate".
 +
 +
*For the comparison of transmission systems with different coding, &nbsp;$T_q$&nbsp; and &nbsp;$R_q$&nbsp; are always assumed to be constant.&nbsp; Note:&nbsp; In later chapters we use &nbsp;$T_{\rm B}=T_q$&nbsp; and &nbsp;$R_{\rm B}=R_q$ for this purpose.
 +
 +
*The encoded signal &nbsp;$c(t)$&nbsp; and also the transmitted signal &nbsp;$s(t)$&nbsp; after pulse shaping with &nbsp;$g_s(t)$&nbsp; have the level number &nbsp;$M_c$,&nbsp; the symbol duration &nbsp;$T_c$&nbsp; and the symbol rate &nbsp;$1/T_c$.&nbsp; The equivalent bit rate is
 +
:$$R_c = {{\rm log_2} (M_c)}/{T_c} \ge R_q \hspace{0.05cm}.$$
 +
*The equal sign is only valid for the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding#Blockwise_coding_vs._symbolwise_coding|"redundancy-free codes"]]&nbsp; $(r_c = 0)$.&nbsp; <br>Otherwise, we obtain for the relative code redundancy:
 +
:$$r_c =({R_c - R_q})/{R_c} = 1 - R_q/{R_c} \hspace{0.05cm}.$$
 +
 +
 +
Notes on nomenclature:
 +
#In the context of transmission codes, &nbsp;$R_c$&nbsp; always indicates in our tutorial the equivalent bit rate of the encoded signal with unit&nbsp; "bit/s".&nbsp;
 +
#In the literature on channel coding,&nbsp; $R_c$&nbsp; is often used to denote the dimensionless code rate &nbsp;$1 - r_c$&nbsp;.
 +
#$R_c = 1 $&nbsp; then indicates a redundancy-free code,&nbsp; while &nbsp;$R_c = 1/3 $&nbsp; indicates a code with the relative redundancy &nbsp;$r_c = 2/3 $.&nbsp;
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; In the so-called&nbsp; "4B3T codes",
 +
*four binary symbols &nbsp;$(m_q = 4, \ M_q= 2)$&nbsp; are each represented by
 +
*three ternary symbols &nbsp;$(m_c = 3, \ M_c= 3)$.&nbsp;
 +
 +
 +
Because of &nbsp;$4 \cdot T_q = 3 \cdot T_c$&nbsp; holds:
 +
:$$R_q = {1}/{T_q}, \hspace{0.1cm} R_c = { {\rm log_2} (3)} \hspace{-0.05cm} /{T_c}
 +
= {3/4 \cdot {\rm log_2} (3)} \hspace{-0.05cm}/{T_q}$$
 +
:$$\Rightarrow
 +
\hspace{0.3cm}r_c =3/4\cdot {\rm log_2} (3) \hspace{-0.05cm}- \hspace{-0.05cm}1 \approx 15.9\, \%
 +
\hspace{0.05cm}.$$
 +
Detailed information about the 4B3T codes can be found in the &nbsp;[[Digital_Signal_Transmission/Blockweise_Codierung_mit_4B3T-Codes|"chapter of the same name"]].}}<br>
  
  
== Quellen–, Kanal– und Übertragungscodierung ==
+
== ACF calculation of a digital signal ==
 
<br>
 
<br>
Unter Codierung versteht man die Umsetzung der Quellensymbolfolge &#9001;<i>q<sub>&nu;</sub></i>&#9002; mit Symbolumfang <i>M<sub>q</sub></i> in eine Codesymbolfolge &#9001;<i>c<sub>&nu;</sub></i>&#9002; mit dem Symbolumfang <i>M<sub>c</sub></i>. Meist wird durch die Codierung die in einem Digitalsignal enthaltene Redundanz manipuliert. Oft &ndash; aber nicht immer &ndash; sind <i>M<sub>q</sub></i> und <i>M<sub>c</sub></i> verschieden.<br>
+
To simplify the notation, &nbsp;$M_c = M$&nbsp; and &nbsp;$T_c = T$&nbsp; is set in the following.&nbsp; Thus,&nbsp; for the transmitted signal &nbsp;$s(t)$&nbsp; in the case of an unlimited-time sybol sequence with &nbsp;$a_\nu \in \{ a_1,$ ... , $a_M\}$&nbsp; can be written:
Man unterscheidet je nach Zielrichtung zwischen verschiedenen Arten von Codierung:
+
[[File:P_ID1305__Dig_T_2_1_S4_v2.png|right|frame|Two different binary bipolar transmitted signals|class=fit]]
*Die Aufgabe der Quellencodierung ist die Redundanzreduktion zur Datenkomprimierung, wie sie beispielsweise in der Bildcodierung Anwendung findet. Durch Ausnutzung statistischer Bindungen zwischen den einzelnen Punkten eines Bildes bzw. zwischen den Helligkeitswerten eines Punktes zu verschiedenen Zeiten (bei Bewegtbildsequenzen) können Verfahren entwickelt werden, die bei nahezu gleicher Bildqualität zu einer merklichen Verminderung der Datenmenge (gemessen in bit oder byte) führen. Ein einfaches Beispiel hierfür ist die differentielle Pulscodemodulation (DPCM).<br>
 
*Bei der Kanalcodierung erzielt man demgegenüber dadurch eine merkliche Verbesserung des Übertragungsverhaltens, dass eine beim Sender gezielt hinzugefügte Redundanz empfangsseitig zur Erkennung und Korrektur von Übertragungsfehlern genutzt wird. Solche Codes, deren wichtigste Vertreter Block&ndash;, Faltungs&ndash; und Turbo-Codes sind, haben besonders bei stark gestörten Kanälen eine große Bedeutung. Je größer die relative Redundanz des codierten Signals ist, desto besser sind die Korrektureigenschaften des Codes, allerdings bei verringerter Nutzdatenrate.<br>
 
*Eine Übertragungscodierung &ndash; häufig auch als Leitungscodierung bezeichnet &ndash; verwendet man, um das Sendesignal durch eine Umcodierung der Quellensymbole an die spektralen Eigenschaften von Übertragungskanal und Empfangseinrichtungen anzupassen. Beispielsweise muss bei einem Kanal mit der Frequenzgangseigenschaft <i>H</i><sub>K</sub>(<i>f</i> = 0) = 0, über den kein Gleichsignal übertragen werden kann, durch Übertragungscodierung sichergestellt werden, dass die Codesymbolfolge weder eine lange <span style="font-weight: bold;">L</span>&ndash; noch eine lange <span style="font-weight: bold;">H</span>&ndash;Folge beinhaltet.<br><br>
 
Im vorliegenden Buch &bdquo;Digitalsignalübertragung&rdquo; beschäftigen wir uns ausschließlich mit diesem letzten, übertragungstechnischen Aspekt. Der Kanalcodierung ist in <i>LNTwww</i> ein eigenes Buch gewidmet (siehe Bücherregalseite), während die Quellencodierung im Buch &bdquo;Informationstheorie&rdquo; ausführlich behandelt wird. Auch die Sprachcodierung im Kapitel 3.3 des Buches &bdquo;Beispiele von Nachrichtensystemen&rdquo; stellt eine spezielle Form der Quellencodierung dar.<br>
 
  
 +
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$
 +
This signal representation includes both the source statistics $($amplitude coefficients &nbsp;$a_\nu$)&nbsp; and the transmission pulse shape &nbsp;$g_s(t)$.&nbsp; The diagram shows two binary bipolar transmitted signals &nbsp;$s_{\rm G}(t)$&nbsp; and &nbsp;$s_{\rm R}(t)$&nbsp; with the same amplitude coefficients &nbsp;$a_\nu$,&nbsp; which thus differ only by the basic transmission pulse &nbsp;$g_s(t)$.&nbsp;
  
== Systemmodell und Beschreibungsgrößen ==
+
It can be seen from this figure that a digital signal is generally non-stationary:
<br>
+
*For the transmitted signal &nbsp;$s_{\rm G}(t)$&nbsp; with narrow Gaussian pulses,&nbsp; the &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Stationary_random_processes|"non-stationarity"]]&nbsp; is obvious,&nbsp; since,&nbsp; for example,&nbsp; at multiples of &nbsp;$T$&nbsp; the variance is &nbsp;$\sigma_s^2 = s_0^2$,&nbsp; while exactly in between &nbsp; $\sigma_s^2 \approx 0$&nbsp; holds.<br>
Im weiteren Verlauf des zweiten Kapitels wird von folgendem Blockschaltbild ausgegangen.
 
<br><br>[[File:P_ID3136__Dig_T_2_1_S3_v3.png|Blockschaltbild zur Beschreibung mehrstufiger und codierter Übertragungssysteme|class=fit]]<br><br>
 
Zusätzlich gelten folgende Vereinbarungen:
 
*Das digitale Quellensignal <i>q</i>(<i>t</i>) sei binär (<i>M<sub>q</sub></i> = 2) und redundanzfrei (<i>H<sub>q</sub></i> = 1 bit/Symbol). Mit der Symboldauer <i>T<sub>q</sub></i> ergibt sich für die Symbolrate der Quelle:
 
::<math>R_q = {H_{q}}/{T_q}=  {1}/{T_q}\hspace{1cm}{\rm (Einheit: \hspace{0.15cm}bit/s)}\hspace{0.05cm}.</math>
 
*Wegen <i>M<sub>q</sub></i> = 2 bezeichnen wir im Folgenden <i>T<sub>q</sub></i> auch als die Bitdauer und <i>R<sub>q</sub></i> als die Bitrate. Für den Vergleich von Übertragungssystemen mit unterschiedlicher Codierung werden <i>T<sub>q</sub></i> und <i>R<sub>q</sub></i> (in späteren Kapiteln verwenden wir hierfür <i>T</i><sub>B</sub> und <i>R</i><sub>B</sub>) stets als konstant angenommen.<br>
 
*Das Codersignal <i>c</i>(<i>t</i>) und auch das Sendesignal <i>s</i>(<i>t</i>) nach der Impulsformung mit <i>g<sub>s</sub></i>(<i>t</i>) besitzen die Stufenzahl <i>M<sub>c</sub></i>, die Symboldauer <i>T<sub>c</sub></i> und die Symbolrate 1/<i>T<sub>c</sub></i>. Die äquivalente Bitrate beträgt
 
::<math>R_c = {{\rm log_2} (M_c)}/{T_c} \hspace{0.05cm}.</math>
 
*Es gilt stets <i>R<sub>c</sub></i> &#8805; <i>R<sub>q</sub></i>, wobei das Gleichheitszeichen nur bei den redundanzfreien Codes (<i>r<sub>c</sub></i> = 0) gültig ist. Andernfalls erhält man für die relative Coderedundanz:
 
::<math>r_c =({R_c - R_q})/{R_c} = 1 - R_q/{R_c} \hspace{0.05cm}.</math><br>
 
<b>Hinweis zur Nomenklatur:</b> Die äquivalente Bitrate <i>R<sub>c</sub></i> des Codersignals hat ebenso wie die Bitrate <i>R<sub>q</sub></i> der Quelle die Einheit &bdquo;bit/s&rdquo;. Insbesondere in der Literatur zur Kanalcodierung wird dagegen mit <i>R<sub>c</sub></i> häufig die dimensionslose Coderate 1 &ndash; <i>r<sub>c</sub></i> bezeichnet. <i>R<sub>c</sub></i> = 1 gibt dann einen redundanzfreien Code an, während <i>R<sub>c</sub></i> = 1/3 einen Code mit der Redundanz <i>r<sub>c</sub></i> = 2/3 kennzeichnet.<br>
 
{{Beispiel}}''':''' Bei den so genannten 4B3T&ndash;Codes werden jeweils vier Binärsymbole (<i>m<sub>q</sub></i> = 4, <i>M<sub>q</sub></i> = 2) durch drei Ternärsymbole (<i>m<sub>c</sub></i> = 3, <i>M<sub>c</sub></i> = 3) dargestellt. Wegen 4 &middot; <i>T<sub>q</sub></i> = 3 &middot; <i>T<sub>c</sub></i> gilt:
 
:<math>R_q = {1}/{T_q}, \hspace{-0.05cm}R_c = {{\rm log_2} (3)} \hspace{-0.05cm}/{T_c}
 
= {3/4 \cdot {\rm log_2} (3)} \hspace{-0.05cm}/{T_q}\hspace{0.1cm}\Rightarrow
 
\hspace{0.1cm}r_c =3/4\cdot {\rm log_2} (3) \hspace{-0.05cm}- \hspace{-0.05cm}1 \approx 15.9\, \%
 
\hspace{0.05cm}.</math>
 
Genauere Informationen zu den 4B3T-Codes finden Sie im Kapitel 2.3.{{end}}<br>
 
  
 +
*Also the signal &nbsp;$s_{\rm R}(t)$&nbsp; with NRZ rectangular pulses is non&ndash;stationary in a strict sense,&nbsp; because here the moments at the bit boundaries differ with respect to all other instants.&nbsp; For example, &nbsp;$s_{\rm R}(t = \pm T/2)=0$.
 +
<br clear=all>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
*A random process whose moments &nbsp;$m_k(t) =  m_k(t+ \nu \cdot T)$&nbsp; repeat periodically with &nbsp;$T$&nbsp; is called&nbsp; '''cyclostationary'''.
 +
*In this implicit definition, &nbsp;$k$&nbsp; and &nbsp;$\nu$&nbsp; have integer values .}}
  
== AKF–Berechnung eines Digitalsignals (1) ==
 
<br>
 
Zur Vereinfachung der Schreibweise wird im Folgenden <i>M<sub>c</sub></i> = <i>M</i> und <i>T<sub>c</sub></i> = <i>T</i> gesetzt. Damit kann für das Sendesignal bei einer zeitlich unbegrenzten Nachrichtenfolge geschrieben werden:
 
:<math>s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.</math><br>
 
Diese Signaldarstellung  beinhaltet sowohl die Quellenstatistik (Amplitudenkoeffizienten <i>a<sub>&nu;</sub></i>) als auch die Sendeimpulsform <i>g<sub>s</sub></i>(<i>t</i>).
 
Die Grafik zeigt zwei binäre bipolare Sendesignale <i>s</i><sub>G</sub>(<i>t</i>) und <i>s</i><sub>R</sub>(<i>t</i>) mit gleichen Amplitudenkoeffizienten <i>a<sub>&nu;</sub></i>, die sich lediglich durch den Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) unterscheiden.
 
<br><br>[[File:P_ID1305__Dig_T_2_1_S4_v2.png|Zwei verschiedene binäre bipolare Sendesignale|class=fit]]<br><br>
 
Man erkennt aus dieser Darstellung, dass ein Digitalsignal im Allgemeinen nichtstationär ist:
 
*Beim Sendesignal <i>s</i><sub>G</sub>(<i>t</i>) mit schmalen Gaußimpulsen ist die Nichtstationarität offensichtlich, da zum Beispiel bei Vielfachen von <i>T</i> die Varianz <i>&sigma;<sub>s</sub></i><sup>2</sup> = <i>s</i><sub>0</sub><sup>2</sup> ist, während dazwischen <i>&sigma;<sub>s</sub></i><sup>2</sup> &asymp; 0 gilt.<br>
 
*Auch das Signal <i>s</i><sub>R</sub>(<i>t</i>) mit NRZ&ndash;rechteckförmigen Impulsen ist im strengen Sinne nichtstationär, da sich hier die Momente an den Bitgrenzen gegenüber allen anderen Zeitpunkten unterscheiden.<br>
 
*Einen Zufallsprozess, dessen Momente <i>m<sub>k</sub></i>(<i>t</i>)&nbsp;=&nbsp;<i>m<sub>k</sub></i>(<i>t</i>&nbsp;+&nbsp;<i>&nu;</i>&nbsp;&middot;&nbsp;<i>T</i>) sich periodisch mit <i>T</i> wiederholen, bezeichnet man als zyklostationär; <i>k</i> und <i>&nu;</i> besitzen hierbei ganzzahlige Zahlenwerte.<br><br>
 
Viele der für [http://en.lntwww.de/Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Ergodische_Zufallsprozesse ergodische Prozesse] gültigen Regeln kann man mit nur geringen Einschränkungen auch auf zykloergodische (und damit ebenfalls auf zyklostationäre) Prozesse anwenden. Insbesondere gilt für die Autokorrelationsfunktion (AKF) solcher Zufallsprozesse mit Mustersignal <i>s</i>(<i>t</i>):
 
:<math>\varphi_s(\tau) = {\rm E}[s(t) \cdot s(t + \tau)] \hspace{0.05cm}.</math><br>
 
Mit obiger Gleichung des Sendesignals kann die AKF als Zeitmittelwert wie folgt geschrieben werden:
 
:<math>\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}\frac{1}{T}
 
\cdot  \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu =
 
-N}^{+N} a_\nu \cdot a_{\nu + \lambda}  \cdot
 
\int_{-\infty}^{+\infty}  g_s ( t ) \cdot g_s ( t + \tau -
 
\lambda \cdot T)\,{\rm d} t \hspace{0.05cm}.</math><br>
 
  
 +
Many of the rules valid for &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Ergodic_random_processes|"ergodic processes"]]&nbsp; can also be applied to&nbsp; "cycloergodic"&nbsp; (and hence to&nbsp; "cyclostationary")&nbsp; processes with only minor restrictions.
  
== AKF–Berechnung eines Digitalsignals (2) ==
+
*In particular,&nbsp; for the &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Random_processes|"auto-correlation function"]]&nbsp; $\rm (ACF)$&nbsp; of such random processes with sample signal &nbsp;$s(t)$ holds:
<br>
+
:$$\varphi_s(\tau) = {\rm E}\big [s(t) \cdot s(t + \tau)\big ] \hspace{0.05cm}.$$
Wir gehen weiterhin von folgender AKF&ndash;Gleichung aus:<br><br>
+
*With the above equation of the transmitted signal,&nbsp; the ACF as a time average can also be written as follows:
<math>\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}\frac{1}{T}
+
:$$\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}\frac{1}{T}
 
\cdot  \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu =
 
\cdot  \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu =
 
-N}^{+N} a_\nu \cdot a_{\nu + \lambda}  \cdot
 
-N}^{+N} a_\nu \cdot a_{\nu + \lambda}  \cdot
 
\int_{-\infty}^{+\infty}  g_s ( t ) \cdot g_s ( t + \tau -
 
\int_{-\infty}^{+\infty}  g_s ( t ) \cdot g_s ( t + \tau -
\lambda \cdot T)\,{\rm d} t \hspace{0.05cm}.</math><br>
+
\lambda \cdot T)\,{\rm d} t \hspace{0.05cm}.$$
<br>Da die Grenzwert&ndash;, Integral&ndash; und Summenbildung miteinander vertauscht werden darf, kann mit den Substitutionen <i>N</i> = <i>T</i><sub>M</sub>/(2<i>T</i>),  
+
 
<i>&lambda;</i> = <i>&kappa;</i> &ndash; <i>&nu;</i> und <i>t</i> &ndash; <i>&nu;</i> &middot; <i>T</i> &#8594; <i>t</i> hierfür auch geschrieben werden:<br><br>
+
*Since the limit,&nbsp; integral and sum may be interchanged,&nbsp; with the substitutions
<math>\varphi_s(\tau) = \lim_{T_{\rm M} \to \infty}\frac{1}{T_{\rm M}}
+
:$$N = T_{\rm M}/(2T), \hspace{0.5cm}\lambda = \kappa- \nu,\hspace{0.5cm}t - \nu \cdot T \to T$$
 +
:for this can also be written:
 +
:$$\varphi_s(\tau) = \lim_{T_{\rm M} \to \infty}\frac{1}{T_{\rm M}}
 
   \cdot
 
   \cdot
 
\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}
 
\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}
Line 115: Line 175:
 
a_\nu \cdot  g_s ( t - \nu \cdot T ) \cdot  
 
a_\nu \cdot  g_s ( t - \nu \cdot T ) \cdot  
 
a_\kappa \cdot  g_s ( t + \tau - \kappa \cdot T )  
 
a_\kappa \cdot  g_s ( t + \tau - \kappa \cdot T )  
\,{\rm d} t \hspace{0.05cm}.</math><br>
+
\,{\rm d} t \hspace{0.05cm}.$$
<br>Nun werden zur Abkürzung folgende Größen eingeführt:
+
Now the following quantities are introduced for abbreviation:
*Die diskrete AKF der Amplitudenkoeffizienten liefert Aussagen über die linearen statistischen Bindungen der Amplitudenkoeffizienten <i>a<sub>&nu;</sub></i> und <i>a<sub>&nu;+&lambda;</sub></i> und besitzt keine Einheit:
+
 
<math>\varphi_a(\lambda) =  \lim_{N \to \infty} \frac{1}{2N +1} \cdot
+
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp;
 +
*The&nbsp; '''discrete ACF of the amplitude coefficients'''&nbsp; provides statements about the linear statistical bonds of the amplitude coefficients &nbsp;$a_{\nu}$&nbsp; and &nbsp;$a_{\nu + \lambda}$&nbsp; and has no unit:
 +
:$$\varphi_a(\lambda) =  \lim_{N \to \infty} \frac{1}{2N +1} \cdot
 
\sum_{\nu = -\infty}^{+\infty} a_\nu \cdot a_{\nu + \lambda}
 
\sum_{\nu = -\infty}^{+\infty} a_\nu \cdot a_{\nu + \lambda}
\hspace{0.05cm}.</math><br>
+
\hspace{0.05cm}.$$
*Die Energie&ndash;AKF des Grundimpulses ist ähnlich definiert wie die allgemeine (Leistungs&ndash;)AKF. Sie wird mit einem Punkt gekennzeichnet. Es ist zu berücksichtigen, dass auf die Division durch <i>T</i><sub>M</sub> und den Grenzübergang verzichtet werden kann, da <i>g<sub>s</sub></i>(<i>t</i>) energiebegrenzt ist:
+
 
<math>\varphi^{^{\bullet}}_{gs}(\tau) =
+
*The&nbsp; '''energy ACF'''&nbsp; of the basic transmission pulse is defined similarly to the general&nbsp; (power)&nbsp; auto-correlation function.&nbsp; It is marked with a dot:
 +
:$$\varphi^{^{\bullet} }_{gs}(\tau) =
 
\int_{-\infty}^{+\infty} g_s ( t ) \cdot  g_s ( t +
 
\int_{-\infty}^{+\infty} g_s ( t ) \cdot  g_s ( t +
\tau)\,{\rm d} t \hspace{0.05cm}.</math><br>
+
\tau)\,{\rm d} t \hspace{0.05cm}.$$
{{Definition}}''':''' Für die Autokorrelationsfunktion eines Digitalsignals <i>s</i>(<i>t</i>) gilt allgemein:
+
:&rArr; &nbsp; Since &nbsp;$g_s(t)$ is &nbsp; [[Signal_Representation/Signal_classification#Energy.E2.80.93Limited_and_Power.E2.80.93Limited_Signals|"energy-limited"]],&nbsp; the division by &nbsp;$T_{\rm M}$&nbsp; and the boundary transition can be omitted.
<math>\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T}
+
 
\cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet}}_{gs}(\tau -
+
*For the&nbsp; '''auto-correlation function of a digital signal''' &nbsp;$s(t)$&nbsp; holds in general:
\lambda \cdot T)\hspace{0.05cm}.</math><br>
+
:$$\varphi_s(\tau) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T}
Das Signal <i>s</i>(<i>t</i>) kann dabei binär oder mehrstufig, unipolar oder bipolar sowie redundanzfrei oder redundant (leitungscodiert) sein. Die Impulsform wird durch die Energie&ndash;AKF berücksichtigt.{{end}}<br>
+
\cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet} }_{gs}(\tau -
Beschreibt das Digitalsignal <i>s</i>(<i>t</i>) einen Spannungsverlauf, so hat die Energie&ndash;AKF des Grundimpulses <i>g</i><sub><i>s</i></sub>(<i>t</i>) die Einheit V<sup>2</sup>s und <i>&phi;</i><sub>s</sub>(<i>&tau;</i>)  die Einheit V<sup>2</sup>, jeweils bezogen auf den Widerstand 1 &Omega;.<br><br>
+
\lambda \cdot T)\hspace{0.05cm}.$$
<b>Anmerkung:</b> Im strengen Sinne der Systemtheorie müsste man die AKF der Amplitudenkoeffizienten wie folgt definieren:<br><br>
+
:&rArr; &nbsp; $s(t)$&nbsp; can be binary or multilevel,&nbsp; unipolar or bipolar,&nbsp; redundancy-free or redundant (line-coded). The pulse shape is taken into account by the energy ACF.}}
<math>\varphi_{a , \delta}(\tau) =  \sum_{\lambda = -\infty}^{+\infty}
+
 
 +
 
 +
:<u>Note:</u>
 +
:*If the digital signal &nbsp;$s(t)$&nbsp; describes a voltage waveform,  
 +
::*the energy ACF of the basic transmission pulse &nbsp;$g_s(t)$&nbsp; has the unit &nbsp;$\rm V^2s$,
 +
::*the auto-correlation function &nbsp;$\varphi_s(\tau)$&nbsp; of the digital signal &nbsp;$s(t)$&nbsp; has the unit &nbsp;$\rm V^2$&nbsp; $($each related to the resistor &nbsp;$1 \ \rm \Omega)$.
 +
 
 +
:*In the strict sense of system theory,&nbsp; one would have to define the ACF of the amplitude coefficients as follows:
 +
::$$\varphi_{a , \hspace{0.08cm}\delta}(\tau) =  \sum_{\lambda = -\infty}^{+\infty}
 
\varphi_a(\lambda)\cdot \delta(\tau - \lambda \cdot
 
\varphi_a(\lambda)\cdot \delta(\tau - \lambda \cdot
T)\hspace{0.05cm}.</math><br>
+
T)\hspace{0.05cm}.$$
<br>Damit würde sich die obige Gleichung wie folgt darstellen:<br><br>
+
::&rArr; &nbsp; Thus,&nbsp; the above equation would be as follows:
<math>\varphi_s(\tau) ={1}/{T} \cdot \varphi_{a ,
+
::$$\varphi_s(\tau) ={1}/{T} \cdot \varphi_{a , \hspace{0.08cm}
 
\delta}(\tau)\star \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot
 
\delta}(\tau)\star \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot
 
T) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot
 
T) =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot
 
\varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda
 
\varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda
\cdot T)\hspace{0.05cm}.</math><br>
+
\cdot T)\hspace{0.05cm}.$$
<br>Zur einfacheren Darstellung wird im Folgenden die diskrete AKF der Amplitudenkoeffizienten
+
::&rArr; &nbsp; For simplicity,&nbsp; the discrete ACF of amplitude coefficients &nbsp; &#8658; &nbsp; $\varphi_a(\lambda)$&nbsp; is written&nbsp; '''without these Dirac delta functions in the following'''.<br>
&nbsp;&#8658;&nbsp; <i>&phi;<sub>a</sub></i>(<i>&lambda;</i>)
 
stets ohne diese Diracfunktionen verwendet.<br>
 
  
  
== LDS–Berechnung eines Digitalsignals ==
+
== PSD calculation of a digital signal ==
 
<br>
 
<br>
Die Entsprechungsgröße zur Autokorrelationsfunktion (AKF) eines Zufallssignals ist im Frequenzbereich das Leistungsdichtespektrum (LDS), das mit der AKF über das Fourierintegral in Bezug steht:<br>
+
The corresponding quantity to the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; of a random signal &nbsp; &rArr; &nbsp; $\varphi_s(\tau)$&nbsp; in the frequency domain is the&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Wiener-Khintchine_Theorem|"power-spectral density"]]&nbsp; $\rm (PSD)$ &nbsp; &rArr; &nbsp; ${\it \Phi}_s(f)$,&nbsp; which is in a fixed relation with the ACF via the Fourier integral:<br>
<math>\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
+
:$$\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
   {\it \Phi}_s(f)  =  \int\limits_{-\infty}^{+\infty} \varphi_s(\tau) \cdot
+
   {\it \Phi}_s(f)  =  \int_{-\infty}^{+\infty} \varphi_s(\tau) \cdot
 
   {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \tau}
 
   {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \tau}
   \,{\rm d} \tau  \hspace{0.05cm}.</math>
+
   \,{\rm d} \tau  \hspace{0.05cm}.$$
Berücksichtigt man den Zusammenhang zwischen Energie&ndash;AKF und Energiespektrum, <br><br>
+
*Considering the relation between energy ACF and energy spectrum,
<math>\varphi^{^{\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
+
:$$\varphi^{^{\hspace{0.05cm}\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
   {\it \Phi}^{^{\bullet}}_{gs}(f)  = |G_s(f)|^2
+
   {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{gs}(f)  = |G_s(f)|^2
   \hspace{0.05cm},</math><br><br>
+
   \hspace{0.05cm},$$
sowie den Verschiebungssatz, so kann das Leistungsdichtespektrum des Digitalsignals <i>s</i>(<i>t</i>) in folgender Weise dargestellt werden:<br><br>
+
:and the &nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|"shifting theorem"]],&nbsp; the&nbsp; '''power-spectral density of the digital signal''' &nbsp;$s(t)$&nbsp; can be represented in the following way:
<math>{\it \Phi}_s(f)  =    \sum_{\lambda =
+
:$${\it \Phi}_s(f)  =    \sum_{\lambda =
 
-\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot {\it
 
-\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot {\it
\Phi}^{^{\bullet}}_{gs}(f) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}
+
\Phi}^{^{\hspace{0.05cm}\bullet}}_{gs}(f) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}
2 \pi  f \hspace{0.02cm} \lambda T} = </math><br>
+
2 \pi  f \hspace{0.02cm} \lambda T} = {1}/{T} \cdot |G_s(f)|^2 \cdot \sum_{\lambda =
::<math> = {1}/{T} \cdot |G_s(f)|^2 \cdot \sum_{\lambda =
 
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot \cos (
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot \cos (
2 \pi  f \lambda  T)\hspace{0.05cm}.</math>
+
2 \pi  f \lambda  T)\hspace{0.05cm}.$$
Hierbei ist berücksichtigt, dass <i>&Phi;<sub>s</sub></i>(<i>f</i>) und |<i>G<sub>s</sub></i>(<i>f</i>)|<sup>2</sup> reellwertig sind und gleichzeitig <i>&phi;<sub>a</sub></i>(&ndash; <i>&lambda;</i>) = <i>&phi;<sub>a</sub></i>(<i>&lambda;</i>) gilt.<br><br>
+
:Here it is considered that &nbsp;${\it \Phi}_s(f)$&nbsp; and &nbsp;$|G_s(f)|^2$&nbsp; are real-valued and at the same time &nbsp;$\varphi_a(-\lambda) =\varphi_a(+\lambda)$&nbsp; holds.<br><br>
Definiert man nun die spektrale Leistungsdichte der Amplitudenkoeffizienten zu <br><br>
+
*If we now define the&nbsp; '''spectral power density of the amplitude coefficients'''&nbsp; to be
<math>{\it \Phi}_a(f) =  \sum_{\lambda =
+
:$${\it \Phi}_a(f) =  \sum_{\lambda =
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm
 
j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \lambda \hspace{0.02cm}T} =  
 
j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \lambda \hspace{0.02cm}T} =  
 
\varphi_a(0) + 2 \cdot \sum_{\lambda =
 
\varphi_a(0) + 2 \cdot \sum_{\lambda =
 
1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi  f  
 
1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi  f  
\lambda T) \hspace{0.05cm},</math><br><br>
+
\lambda T) \hspace{0.05cm},$$
so erhält man den folgenden Ausdruck:<br><br>
+
:then the following expression is obtained:
<math>{\it \Phi}_s(f) =  {\it \Phi}_a(f) \cdot  {1}/{T} \cdot
+
:$${\it \Phi}_s(f) =  {\it \Phi}_a(f) \cdot  {1}/{T} \cdot
|G_s(f)|^2 \hspace{0.05cm}.</math><br><br>
+
|G_s(f)|^2 \hspace{0.05cm}.$$
Das heißt, dass sich <i>&Phi;<sub>s</sub></i>(<i>f</i>) als Produkt zweier Funktionen darstellen lässt:
 
*Der erste Term <i>&Phi;<sub>a</sub></i>(<i>f</i>) ist dimensionslos und beschreibt die spektrale Formung des Sendesignals durch die statistischen Bindungen der Quelle.<br>
 
*Dagegen berücksichtigt |<i>G<sub>s</sub></i>(<i>f</i>)|<sup>2</sup> die spektrale Formung durch den Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>). Je schmaler dieser ist, desto breiter ist |<i>G<sub>s</sub></i>(<i>f</i>)|<sup>2</sup> und um so größer ist damit der Bandbreitenbedarf.<br>
 
*Das Energiespektrum hat die Einheit V<sup>2</sup>s/Hz. Die Einheit V<sup>2</sup>/Hz für das Leistungsdichtespektrum (nur gültig für den Widerstand 1 &Omega;) ergibt sich aufgrund der Division durch den Symbolabstand <i>T</i>.<br>
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; The power-spectral density &nbsp;${\it \Phi}_s(f)$&nbsp; of a digital signal &nbsp;$s(t)$&nbsp; can be represented as the product of two functions:
 +
#The first term &nbsp;${\it \Phi}_a(f)$&nbsp; is dimensionless and describes the spectral shaping of the transmitted signal by&nbsp; <u>the statistical constraints of the source</u>.<br>
 +
#In contrast, &nbsp;$\vert G_s(f) \vert^2$&nbsp; takes into account the&nbsp; <u>spectral shaping by the basic transmission pulse</u> &nbsp;$g_s(t)$.
 +
#The narrower &nbsp;$g_s(t)$&nbsp; is,&nbsp; the broader is the energy spectrum&nbsp; $\vert G_s(f) \vert^2$&nbsp; and thus the larger is the bandwidth requirement.<br>
 +
#The energy spectrum&nbsp; $\vert G_s(f) \vert^2$&nbsp; has the unit &nbsp;$\rm V^2s/Hz$&nbsp; and the power-spectral density&nbsp;${\it \Phi}_s(f)$&nbsp; &ndash; due to the division by symbol duration &nbsp;$T$&nbsp; &ndash; the unit &nbsp;$\rm V^2/Hz$.
 +
#Both specifications are again only valid for the resistor &nbsp;$1 \ \rm \Omega$.}}
  
== AKF und LDS bei bipolaren Binärsignalen ==
+
 
 +
== ACF and PSD for bipolar binary signals ==
 
<br>
 
<br>
Die bisherigen Ergebnisse werden nun an Beispielen verdeutlicht. Ausgehend von <i>binären bipolaren Amplitudenkoeffizienten</i> <i>a<sub>&nu;</sub></i> &#8712; {&ndash;1, +1} erhält man, falls keine  Bindungen zwischen den <i>a<sub>&nu;</sub></i> bestehen:<br>
+
The previous results are now illustrated by examples.&nbsp; Starting from binary bipolar amplitude coefficients  &nbsp;$a_\nu \in \{-1, +1\}$,&nbsp; if there are no bonds between the individual amplitude coefficients &nbsp;$a_\nu$,&nbsp; we obtain:<br>
 
+
[[File:P_ID1306__Dig_T_2_1_S6_v2.png|right|frame|Signal section&nbsp; ACF and PSD for binary bipolar signaling|class=fit]]
<math>\varphi_a(\lambda)  =  \left\{ \begin{array}{c} 1   
+
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} 1   
 
  \\ 0 \\  \end{array} \right.\quad
 
  \\ 0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c}\lambda = 0, \\  \lambda \ne 0 \\
 
\begin{array}{*{20}c}\lambda = 0, \\  \lambda \ne 0 \\
 
\end{array}
 
\end{array}
 
\hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varphi_s(\tau)=
 
\hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varphi_s(\tau)=
{1}/{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau)\hspace{0.05cm}.</math><br>
+
{1}/{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau)\hspace{0.05cm}.$$
 +
 
 +
The graph shows two signal sections each with rectangular pulses &nbsp;$g_s(t)$,&nbsp; which accordingly lead to a triangular auto-correlation function&nbsp; $\rm (ACF)$&nbsp; and to a &nbsp;$\rm sinc^2$&ndash;shaped power-spectral density&nbsp; $\rm (PSD)$.
 +
*The left pictures describe NRZ signaling &nbsp; &rArr; &nbsp; the width &nbsp;$T_{\rm S}$&nbsp; of the basic pulse is equal to the distance &nbsp;$T$&nbsp; of two transmitted pulses&nbsp; (source symbols).
 +
*In contrast,&nbsp; the right pictures apply to an RZ pulse with the duty cycle &nbsp;$T_{\rm S}/T = 0.5$.
  
Die Grafik zeigt zwei Signalausschnitte jeweils mit Rechteckimpulsen <i>g<sub>s</sub></i>(<i>t</i>), die dementsprechend zu einer dreieckförmigen AKF und zu einem si<sup>2</sup>&ndash;förmigen Leistungsdichtespektrum (LDS) führen.
 
  
<br>[[File:P_ID1306__Dig_T_2_1_S6_v2.png|Signalausschnitt, AKF und LDS bei binärer bipolarer Signalisierung|class=fit]]<br><br>
+
One can see from the left representation&nbsp; $\rm (NRZ)$:
  
Die linken Bilder beschreiben eine NRZ&ndash;Signalisierung, das heißt, dass die Breite <i>T</i><sub>S</sub> des Grundimpulses gleich dem Abstand <i>T</i> zweier Sendeimpulse (Quellensymbole) ist. Dagegen gelten die rechten Bilder für einen RZ&ndash;Impuls mit dem Tastverhältnis <i>T</i><sub>S</sub>/<i>T</i> = 0.5. Man erkennt:
+
#For NRZ rectangular pulses,&nbsp; the transmit power&nbsp; (reference: &nbsp;$1 \ \rm \Omega$&nbsp; resistor)&nbsp; is &nbsp;$P_{\rm S} = \varphi_s(\tau = 0) = s_0^2$.<br>  
 +
#The triangular ACF is limited to the range &nbsp;$|\tau| \le T_{\rm S}= T$.&nbsp; <br>
 +
#The PSD &nbsp;${\it \Phi}_s(f)$&nbsp; as the Fourier transform of &nbsp;$\varphi_s(\tau)$&nbsp; is &nbsp;$\rm sinc^2$&ndash;shaped with equidistant zeros at distance &nbsp;$1/T$.<br>
 +
# The area under the PSD curve again gives the transmit power &nbsp;$P_{\rm S} = s_0^2$.<br>
  
*Bei NRZ&ndash;Rechteckimpulsen ergibt sich für die (auf den Widerstand 1 &Omega; bezogene) Sendeleistung <i>&phi;<sub>s</sub></i>(<i>&tau;</i> = 0) = <i>s</i><sub>0</sub><sup>2</sup> und die dreieckförmige AKF ist auf den Bereich |<i>&tau;</i>| &#8804; <i>T</i><sub>S</sub> = <i>T</i> beschränkt.<br>
 
  
*Das LDS <i>&Phi;<sub>s</sub></i>(<i>f</i>) als die Fouriertransformierte von <i>&phi;<sub>s</sub></i>(<i>&tau;</i>) ist si<sup>2</sup>&ndash;förmig mit äquidistanten Nullstellen im Abstand 1/<i>T</i>. Die Fläche unter der LDS&ndash;Kurve ergibt wiederum die Sendeleistung <i>s</i><sub>0</sub><sup>2</sup>.<br>
+
In the case of RZ signaling&nbsp; (right column),&nbsp; the triangular ACF is smaller in height and width by a factor of &nbsp;$T_{\rm S}/T = 0.5$,&nbsp; resp.,&nbsp; compared to the left image.<br>
 +
<br clear=all>
  
*Im Fall der RZ&ndash;Signalisierung ist die dreieckförmige AKF gegenüber dem linken Bild in Höhe und Breite jeweils um den Faktor <i>T</i><sub>S</sub>/<i>T</i> = 0.5 kleiner.<br><br>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; If one compares the two power-spectral densities&nbsp; $($lower pictures$)$,&nbsp; one recognizes for &nbsp;$T_{\rm S}/T = 0.5$&nbsp; $($RZ pulse$)$&nbsp; compared to &nbsp;$T_{\rm S}/T = 1$&nbsp; $($NRZ pulse$)$&nbsp;
 +
* a reduction in height by a factor of &nbsp;$4$,&nbsp;
 +
*a broadening by a factor of &nbsp;$2$.&nbsp;
  
Vergleicht man die beiden Leistungsdichtespektren (untere Bilder), so erkennt man für <i>T</i><sub>S</sub>/<i>T</i> = 0.5 gegenüber <i>T</i><sub>S</sub>/<i>T</i> = 1 eine Verkleinerung in der Höhe um den Faktor 4 und eine Verbreiterung um den Faktor 2. Die Fläche (Leistung) ist somit halb so groß, da in der Hälfte der Zeit <i>s</i>(<i>t</i>) = 0 gilt.<br>
+
:&rArr; &nbsp; The area&nbsp; $($power$)$&nbsp; in the right sketch is thus half as large,&nbsp; since in half the time &nbsp;$s(t) = 0$.&nbsp; }}
  
  
== AKF und LDS bei unipolaren Binärsignalen (1) ==
+
== ACF and PSD for unipolar binary signals ==
 
<br>
 
<br>
Wir gehen weiterhin von NRZ&ndash; bzw. RZ&ndash;Rechteckimpulsen aus. Die binären Amplitudenkoeffizienten seien aber nun unipolar: <i>a<sub>&nu;</sub></i> &#8712; {0, 1}. Dann gilt für die diskrete AKF der Amplitudenkoeffizienten:
+
We continue to assume NRZ or RZ rectangular pulses. But let the binary amplitude coefficients now be unipolar: &nbsp; $a_\nu \in \{0, 1\}$.&nbsp; Then for the discrete ACF of the amplitude coefficients holds:
 
+
[[File:EN_Dig_T_2_1_S7_2.png|right|frame|Signal section,&nbsp; ACF and PSD with binary unipolar signaling|class=fit]]
<math>\varphi_a(\lambda)  =  \left\{ \begin{array}{c} m_2 = 0.5  \\
+
:$$\varphi_a(\lambda)  =  \left\{ \begin{array}{c} m_2 = 0.5  \\
 
  \\ m_1^2 = 0.25 \\  \end{array} \right.\quad
 
  \\ m_1^2 = 0.25 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\ {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  \\ {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c}\lambda = 0, \\ \\  \lambda \ne 0 \hspace{0.05cm}.\\
 
\begin{array}{*{20}c}\lambda = 0, \\ \\  \lambda \ne 0 \hspace{0.05cm}.\\
\end{array}</math><br>
+
\end{array}$$
 +
 
 +
Assumed here are equal probability amplitude coefficients &nbsp; &#8658; &nbsp; ${\rm Pr}(a_\nu =0) = {\rm Pr}(a_\nu =1) = 0.5$&nbsp; with no statistical ties, so that both the &nbsp;[[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#Second_order_moment_.E2.80.93_power_.E2.80.93_variance_.E2.80.93_standard_deviation|"power"]]&nbsp; $m_2$  and the &nbsp;[[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#First_order_moment_.E2.80.93_linear_mean_.E2.80.93_DC_component|"linear mean"]]&nbsp; $m_1$&nbsp; $($DC component$)$&nbsp; are &nbsp;$0.5$,&nbsp; respectively.<br>
  
Vorausgesetzt sind hier gleichwahrscheinliche Amplitudenkoeffizienten
+
The graph shows a signal section, the ACF and the PSD with unipolar amplitude coefficients,
&nbsp;&#8658;&nbsp; Pr(<i>a<sub>&nu;</sub></i> = 0) = Pr(<i>a<sub>&nu;</sub></i> = 1) = 0.5
+
*left for rectangular NRZ pulses &nbsp;$(T_{\rm S}/T = 1)$,&nbsp; and<br>
ohne statistische Bindungen untereinander, so dass sowohl der quadratische Mittelwert <i>m</i><sub>2</sub> als auch der lineare Mittelwert <i>m</i><sub>1</sub> jeweils gleich 0.5 sind.<br>
+
*right for RZ pulses with duty cycle &nbsp;$T_{\rm S}/T = 0.5$.
  
<i>Hinweis</i>: Unipolare Amplitudenkoeffizienten treten zum Beispiel bei <i>optischen Übertragungssystemen</i> auf. Trotzdem beschränken wir uns in späteren Kapiteln meist auf die bipolare Signalisierung.
 
  
<br>[[File:P_ID1307__Dig_T_2_1_S7_100.png|Signalausschnitt, AKF und LDS bei binärer unipolarer Signalisierung|class=fit]]<br><br>
+
There are the following differences compared to &nbsp;[[Digital_Signal_Transmission/Basics_of_Coded_Transmission#ACF_and_PSD_for_bipolar_binary_signals|"bipolar signaling"]]:
 +
*Adding the infinite number of triangular functions at distance &nbsp;$T$&nbsp; (all with the same height)&nbsp; results in a constant DC component &nbsp;$s_0^2/4$&nbsp; for the ACF in the left graph&nbsp; (NRZ).
  
Die Grafik zeigt einen Signalausschnitt, die AKF und das LDS mit unipolaren Amplitudenkoeffizienten,
+
*In addition,&nbsp; a single triangle also with height &nbsp;$s_0^2/4$ remains in the region &nbsp;$|\tau| \le T_{\rm S}$,&nbsp; which leads to the &nbsp;$\rm sinc^2$&ndash;shaped blue curve in the power-spectral density (PSD).<br>
*links für rechteckförmige NRZ&ndash;Impulse (<i>T</i><sub>S</sub>/<i>T</i> = 1), und<br>
 
*rechts für RZ&ndash;Impulse mit dem Tastverhältnis <i>T</i><sub>S</sub>/<i>T</i> = 0.5.<br><br>
 
  
Die Bildbeschreibung folgt auf der nächsten Seite.
+
*The DC component in the ACF results in a Dirac delta function at frequency &nbsp;$f = 0$&nbsp; with weight &nbsp;$s_0^2/4$ in the PSD. Thus the PSD value &nbsp;${\it \Phi}_s(f=0)$&nbsp; becomes infinitely large.<br>
  
  
 +
From the right graph &ndash; valid for &nbsp;$T_{\rm S}/T = 0.5$ &ndash; it can be seen that now the ACF is composed of a periodic triangular function&nbsp; (drawn dashed in the middle region)&nbsp; and additionally of a unique triangle in the region &nbsp;$|\tau| \le T_{\rm S} = T/2$&nbsp; with height &nbsp;$s_0^2/8$.&nbsp;
  
 +
*This unique triangle function leads to the continuous &nbsp;$\rm sinc^2$&ndash;shaped component (blue curve) of &nbsp;${\it \Phi}_s(f)$&nbsp; with the first zero at &nbsp;$1/T_{\rm S} = 2/T$.
 +
 +
*In contrast,&nbsp; the periodic triangular function leads to an infinite sum of Dirac delta functions with different weights at the distance &nbsp;$1/T$&nbsp; (drawn in red)&nbsp; according to the laws of the &nbsp;[[Signal_Representation/Fourier_Series#General_description|"Fourier series"]].&nbsp;<br>
  
<math></math><br>
+
*The weights of the Dirac delta functions are proportional to the continuous (blue) PSD component.&nbsp; The Dirac delta line at &nbsp;$f = 0$ has the maximum weight &nbsp;$s_0^2/8$.&nbsp; In contrast,&nbsp; the Dirac delta lines at &nbsp;$\pm 2/T$&nbsp; and multiples thereof do not exist or have the weight &nbsp;$0$ in each case,&nbsp; since the continuous PSD component also has zeros here.<br>
<br>
+
 
<br><br>
+
 
[[File:||class=fit]]<br><br>
+
{{BlaueBox|TEXT=
 +
$\text{Note:}$&nbsp; 
 +
*Unipolar amplitude coefficients occur for example in optical transmission systems.&nbsp;
 +
*In later chapters, however, we mostly restrict ourselves to bipolar signaling.}}
  
  
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_2.1:_ACF_and_PSD_with_Coding|Exercise 2.1: ACF and PSD with Coding]]
  
 +
[[Aufgaben:Exercise_2.1Z:_About_the_Equivalent_Bitrate|Exercise 2.1Z: About the Equivalent Bitrate]]
  
 +
[[Aufgaben:Exercise_2.2:_Binary_Bipolar_Rectangles|Exercise 2.2: Binary Bipolar Rectangles]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:53, 23 March 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


The second main chapter deals with so-called  transmission coding,  which is sometimes also referred to as  "line coding"  in literature.  In this process,  an adaptation of the digital transmitted signal to the characteristics of the transmission channel is achieved through the targeted addition of redundancy.  In detail,  the following are dealt with:

  1.   Some basic concepts of information theory such as  »information content«  and  »entropy«,
  2.   the  »auto-correlation function«  and the  »power-spectral densities«  of digital signals,
  3.   the  »redundancy-free coding«  which leads to a non-binary transmitted signal,
  4.   the calculation of  »symbol and bit error probability«  for  »multilevel systems« ,
  5.   the so-called  »4B3T codes«  as an important example of  »block-wise coding«,  and
  6.   the  »pseudo-ternary codes«,  each of which realizes symbol-wise coding.


The description is in baseband throughout and some simplifying assumptions  (among others:  no intersymbol interfering)  are still made.

Information content – Entropy – Redundancy


We assume an  $M$–level digital source that outputs the following source signal:

$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)\hspace{0.3cm}{\rm with}\hspace{0.3cm}a_\nu \in \{ a_1, \text{...} \ , a_\mu , \text{...} \ , a_{ M}\}.$$
  • The source symbol sequence  $\langle q_\nu \rangle$  is thus mapped to the sequence  $\langle a_\nu \rangle$  of the dimensionless amplitude coefficients.
  • Simplifying,  first for the time indexing variable  $\nu = 1$, ... , $N$  is set,  while the ensemble indexing variable  $\mu$  can assume values between  $1$  and level number  $M$.


If the  $\nu$–th sequence element is equal to  $a_\mu$, its  information content  can be calculated with probability  $p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$  as follows:

$$I_\nu = \log_2 \ (1/p_{\nu \mu})= {\rm ld} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit: bit)}\hspace{0.05cm}.$$

The logarithm to the base 2   ⇒   $\log_2(x)$ is often also called  ${\rm ld}(x)$   ⇒   "logarithm dualis".  With the numerical evaluation the reference unit "bit" (from:  "binary digit" ) is added.  With the tens logarithm  $\lg(x)$  and the natural logarithm  $\ln(x)$  applies:

$${\rm log_2}(x) = \frac{{\rm lg}(x)}{{\rm lg}(2)}= \frac{{\rm ln}(x)}{{\rm ln}(2)}\hspace{0.05cm}.$$

According to this definition,  which goes back to  "Claude E. Shannon",  the smaller the probability of occurrence of a symbol,  the greater its information content.

$\text{Definition:}$  Entropy  is the  "average information content"  of a sequence element  ("symbol").

  • This important information-theoretical quantity can be determined as a time average as follows:
$$H = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N I_\nu = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{\nu = 1}^N \hspace{0.1cm}{\rm log_2}\hspace{0.05cm} \ (1/p_{\nu \mu}) \hspace{1cm}\text{(unit: bit)}\hspace{0.05cm}.$$
  • Of course,  the entropy can also be calculated by ensemble averaging  (over the symbol set).


Note:

  • If the sequence elements  $a_\nu$  are statistically independent of each other,  the probabilities  $p_{\nu\mu} = p_{\mu}$  are independent of  $\nu$  and we obtain in this special case:
$$H = \sum_{\mu = 1}^M p_{ \mu} \cdot {\rm log_2}\hspace{0.1cm} \ (1/p_{\mu})\hspace{0.05cm}.$$
  • If,  on the other hand,  there are statistical bindings between neighboring amplitude coefficients  $a_\nu$,  the more complicated equation according to the above definition must be used for entropy calculation.


$\text{Definitions:}$ 

  • The maximum value of entropy   ⇒   decision content  is obtained whenever the  $M$  occurrence probabilities  (of the statistically independent symbols)  are all equal  $(p_{\mu} = 1/M)$:
$$H_{\rm max} = \sum_{\mu = 1}^M \hspace{0.1cm}\frac{1}{M} \cdot {\rm log_2} (M) = {\rm log_2} (M) \cdot \sum_{\mu = 1}^M \hspace{0.1cm} \frac{1}{M} = {\rm log_2} (M) \hspace{1cm}\text{(unit: bit)}\hspace{0.05cm}.$$
  • The  relative redundancy  is then the following quotient:
$$r = \frac{H_{\rm max}-H}{H_{\rm max} }.$$
  • Since  $0 \le H \le H_{\rm max}$  always holds,  the relative redundancy can take values between  $0$  and  $1$  (including these limits).


From the derivation of these descriptive quantities,  it is obvious that a redundancy-free  $(r=0)$  digital signal must satisfy the following properties:

  1. The amplitude coefficients  $a_\nu$  are statistically independent   ⇒   $p_{\nu\mu} = {\rm Pr}(a_\nu = a_\mu)$  is identical for all  $\nu$. 
  2. The  $M$  possible coefficients  $a_\mu$  occur with equal probability  $p_\mu = 1/M$. 


$\text{Example 1:}$  If one analyzes a German text on the basis of  $M = 32$  characters:

$$\text{a, ... , z, ä, ö, ü, ß, spaces, punctuation, no distinction between upper and lower case},$$

the result is the decision content  $H_{\rm max} = 5 \ \rm bit/symbol$.  Due to

  • the different frequencies  $($for example,  "e"  occurs significantly more often than  "u"$)$,  and
  • statistical ties  $($for example  "q"  is followed by the letter  "u"  much more often than  "e"$)$,


according to  "Karl Küpfmüller",  the entropy of the German language is only  $H = 1.3 \ \rm bit/character$.  This results in a relative redundancy of  $r \approx (5 - 1.3)/5 = 74\%$.

For English texts,  "Claude Shannon" has given the entropy as  $H = 1 \ \rm bit/character$  and the relative redundancy as  $r \approx 80\%$.


Source coding – Channel coding – Line coding


"Coding"  is the conversion of the source symbol sequence  $\langle q_\nu \rangle$  with symbol set size  $M_q$  into an encoder symbol sequence  $\langle c_\nu \rangle$  with symbol set size  $M_c$.  Usually,  coding manipulates the redundancy contained in a digital signal.  Often – but not always –  $M_q$  and  $M_c$  are different.

A distinction is made between different types of coding depending on the target direction:

  • The task of  source coding  is redundancy reduction for data compression,  as applied for example in image coding.  By exploiting statistical ties between the individual points of an image or between the brightness values of a point at different times  (in the case of moving image sequences),  methods can be developed that lead to a noticeable reduction in the amount of data  (measured in  "bit"  or "byte"),  while maintaining virtually the same  (subjective)  image quality.  A simple example of this is "differential pulse code modulation"  $\rm (DPCM)$.
  • On the other hand,  with  channel coding  a noticeable improvement in the transmission behavior is achieved by using a redundancy specifically added at the transmitter to detect and correct transmission errors at the receiver end.  Such codes,  the most important of which are block codes,  convolutional codes and turbo codes,  are particularly important in the case of heavily disturbed channels.  The greater the relative redundancy of the encoded signal,  the better the correction properties of the code,  albeit at a reduced user data rate.
  • Line coding  is used to adapt the transmitted signal to the spectral characteristics of the transmission channel and the receiving equipment by recoding the source symbols.  For example,  in the case of a channel with the frequency response characteristic  $H_{\rm K}(f=0) = 0$,  over which consequently no DC signal can be transmitted,  transmission coding must ensure that the encoder symbol sequence contains neither a long  $\rm L$ sequence nor a long  $\rm H$ sequence.


In the current book  "Digital Signal Transmission"  we deal exclusively with this last,  transmission-technical aspect.

  • "Channel Coding"  has its own book dedicated to it in our learning tutorial.
  • Source coding is covered in detail in the book  "Information Theory"  (main chapter 2).
  • "Speech coding"  – described in the book "Examples of Communication Systems" –  is a special form of source coding.


System model and description variables


In the following we always assume the block diagram sketched on the right and the following agreements:

Block diagram for the description of multilevel and coded transmission systems
  • Let the digital source signal  $q(t)$  be binary  $(M_q = 2)$  and redundancy-free  $(H_q = 1 \ \rm bit/symbol)$.
  • With the symbol duration  $T_q$  results for the symbol rate of the source:
$$R_q = {H_{q}}/{T_q}= {1}/{T_q}\hspace{0.05cm}.$$
  • Because of  $M_q = 2$,  in the following we also refer to  $T_q$  as the  "bit duration"  and  $R_q$  as the  "bit rate".
  • For the comparison of transmission systems with different coding,  $T_q$  and  $R_q$  are always assumed to be constant.  Note:  In later chapters we use  $T_{\rm B}=T_q$  and  $R_{\rm B}=R_q$ for this purpose.
  • The encoded signal  $c(t)$  and also the transmitted signal  $s(t)$  after pulse shaping with  $g_s(t)$  have the level number  $M_c$,  the symbol duration  $T_c$  and the symbol rate  $1/T_c$.  The equivalent bit rate is
$$R_c = {{\rm log_2} (M_c)}/{T_c} \ge R_q \hspace{0.05cm}.$$
  • The equal sign is only valid for the  "redundancy-free codes"  $(r_c = 0)$. 
    Otherwise, we obtain for the relative code redundancy:
$$r_c =({R_c - R_q})/{R_c} = 1 - R_q/{R_c} \hspace{0.05cm}.$$


Notes on nomenclature:

  1. In the context of transmission codes,  $R_c$  always indicates in our tutorial the equivalent bit rate of the encoded signal with unit  "bit/s". 
  2. In the literature on channel coding,  $R_c$  is often used to denote the dimensionless code rate  $1 - r_c$ .
  3. $R_c = 1 $  then indicates a redundancy-free code,  while  $R_c = 1/3 $  indicates a code with the relative redundancy  $r_c = 2/3 $. 


$\text{Example 2:}$  In the so-called  "4B3T codes",

  • four binary symbols  $(m_q = 4, \ M_q= 2)$  are each represented by
  • three ternary symbols  $(m_c = 3, \ M_c= 3)$. 


Because of  $4 \cdot T_q = 3 \cdot T_c$  holds:

$$R_q = {1}/{T_q}, \hspace{0.1cm} R_c = { {\rm log_2} (3)} \hspace{-0.05cm} /{T_c} = {3/4 \cdot {\rm log_2} (3)} \hspace{-0.05cm}/{T_q}$$
$$\Rightarrow \hspace{0.3cm}r_c =3/4\cdot {\rm log_2} (3) \hspace{-0.05cm}- \hspace{-0.05cm}1 \approx 15.9\, \% \hspace{0.05cm}.$$

Detailed information about the 4B3T codes can be found in the  "chapter of the same name".



ACF calculation of a digital signal


To simplify the notation,  $M_c = M$  and  $T_c = T$  is set in the following.  Thus,  for the transmitted signal  $s(t)$  in the case of an unlimited-time sybol sequence with  $a_\nu \in \{ a_1,$ ... , $a_M\}$  can be written:

Two different binary bipolar transmitted signals
$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$

This signal representation includes both the source statistics $($amplitude coefficients  $a_\nu$)  and the transmission pulse shape  $g_s(t)$.  The diagram shows two binary bipolar transmitted signals  $s_{\rm G}(t)$  and  $s_{\rm R}(t)$  with the same amplitude coefficients  $a_\nu$,  which thus differ only by the basic transmission pulse  $g_s(t)$. 

It can be seen from this figure that a digital signal is generally non-stationary:

  • For the transmitted signal  $s_{\rm G}(t)$  with narrow Gaussian pulses,  the  "non-stationarity"  is obvious,  since,  for example,  at multiples of  $T$  the variance is  $\sigma_s^2 = s_0^2$,  while exactly in between   $\sigma_s^2 \approx 0$  holds.
  • Also the signal  $s_{\rm R}(t)$  with NRZ rectangular pulses is non–stationary in a strict sense,  because here the moments at the bit boundaries differ with respect to all other instants.  For example,  $s_{\rm R}(t = \pm T/2)=0$.


$\text{Definition:}$ 

  • A random process whose moments  $m_k(t) = m_k(t+ \nu \cdot T)$  repeat periodically with  $T$  is called  cyclostationary.
  • In this implicit definition,  $k$  and  $\nu$  have integer values .


Many of the rules valid for  "ergodic processes"  can also be applied to  "cycloergodic"  (and hence to  "cyclostationary")  processes with only minor restrictions.

$$\varphi_s(\tau) = {\rm E}\big [s(t) \cdot s(t + \tau)\big ] \hspace{0.05cm}.$$
  • With the above equation of the transmitted signal,  the ACF as a time average can also be written as follows:
$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}\frac{1}{T} \cdot \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu = -N}^{+N} a_\nu \cdot a_{\nu + \lambda} \cdot \int_{-\infty}^{+\infty} g_s ( t ) \cdot g_s ( t + \tau - \lambda \cdot T)\,{\rm d} t \hspace{0.05cm}.$$
  • Since the limit,  integral and sum may be interchanged,  with the substitutions
$$N = T_{\rm M}/(2T), \hspace{0.5cm}\lambda = \kappa- \nu,\hspace{0.5cm}t - \nu \cdot T \to T$$
for this can also be written:
$$\varphi_s(\tau) = \lim_{T_{\rm M} \to \infty}\frac{1}{T_{\rm M}} \cdot \int_{-T_{\rm M}/2}^{+T_{\rm M}/2} \sum_{\nu = -\infty}^{+\infty} \sum_{\kappa = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T ) \cdot a_\kappa \cdot g_s ( t + \tau - \kappa \cdot T ) \,{\rm d} t \hspace{0.05cm}.$$

Now the following quantities are introduced for abbreviation:

$\text{Definitions:}$ 

  • The  discrete ACF of the amplitude coefficients  provides statements about the linear statistical bonds of the amplitude coefficients  $a_{\nu}$  and  $a_{\nu + \lambda}$  and has no unit:
$$\varphi_a(\lambda) = \lim_{N \to \infty} \frac{1}{2N +1} \cdot \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot a_{\nu + \lambda} \hspace{0.05cm}.$$
  • The  energy ACF  of the basic transmission pulse is defined similarly to the general  (power)  auto-correlation function.  It is marked with a dot:
$$\varphi^{^{\bullet} }_{gs}(\tau) = \int_{-\infty}^{+\infty} g_s ( t ) \cdot g_s ( t + \tau)\,{\rm d} t \hspace{0.05cm}.$$
⇒   Since  $g_s(t)$ is   "energy-limited",  the division by  $T_{\rm M}$  and the boundary transition can be omitted.
  • For the  auto-correlation function of a digital signal  $s(t)$  holds in general:
$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet} }_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
⇒   $s(t)$  can be binary or multilevel,  unipolar or bipolar,  redundancy-free or redundant (line-coded). The pulse shape is taken into account by the energy ACF.


Note:
  • If the digital signal  $s(t)$  describes a voltage waveform,
  • the energy ACF of the basic transmission pulse  $g_s(t)$  has the unit  $\rm V^2s$,
  • the auto-correlation function  $\varphi_s(\tau)$  of the digital signal  $s(t)$  has the unit  $\rm V^2$  $($each related to the resistor  $1 \ \rm \Omega)$.
  • In the strict sense of system theory,  one would have to define the ACF of the amplitude coefficients as follows:
$$\varphi_{a , \hspace{0.08cm}\delta}(\tau) = \sum_{\lambda = -\infty}^{+\infty} \varphi_a(\lambda)\cdot \delta(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
⇒   Thus,  the above equation would be as follows:
$$\varphi_s(\tau) ={1}/{T} \cdot \varphi_{a , \hspace{0.08cm} \delta}(\tau)\star \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
⇒   For simplicity,  the discrete ACF of amplitude coefficients   ⇒   $\varphi_a(\lambda)$  is written  without these Dirac delta functions in the following.


PSD calculation of a digital signal


The corresponding quantity to the auto-correlation function  $\rm (ACF)$  of a random signal   ⇒   $\varphi_s(\tau)$  in the frequency domain is the  "power-spectral density"  $\rm (PSD)$   ⇒   ${\it \Phi}_s(f)$,  which is in a fixed relation with the ACF via the Fourier integral:

$$\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} {\it \Phi}_s(f) = \int_{-\infty}^{+\infty} \varphi_s(\tau) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \tau} \,{\rm d} \tau \hspace{0.05cm}.$$
  • Considering the relation between energy ACF and energy spectrum,
$$\varphi^{^{\hspace{0.05cm}\bullet}}_{gs}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{gs}(f) = |G_s(f)|^2 \hspace{0.05cm},$$
and the   "shifting theorem",  the  power-spectral density of the digital signal  $s(t)$  can be represented in the following way:
$${\it \Phi}_s(f) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot {\it \Phi}^{^{\hspace{0.05cm}\bullet}}_{gs}(f) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} = {1}/{T} \cdot |G_s(f)|^2 \cdot \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot \cos ( 2 \pi f \lambda T)\hspace{0.05cm}.$$
Here it is considered that  ${\it \Phi}_s(f)$  and  $|G_s(f)|^2$  are real-valued and at the same time  $\varphi_a(-\lambda) =\varphi_a(+\lambda)$  holds.

  • If we now define the  spectral power density of the amplitude coefficients  to be
$${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda \hspace{0.02cm}T} = \varphi_a(0) + 2 \cdot \sum_{\lambda = 1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi f \lambda T) \hspace{0.05cm},$$
then the following expression is obtained:
$${\it \Phi}_s(f) = {\it \Phi}_a(f) \cdot {1}/{T} \cdot |G_s(f)|^2 \hspace{0.05cm}.$$

$\text{Conclusion:}$  The power-spectral density  ${\it \Phi}_s(f)$  of a digital signal  $s(t)$  can be represented as the product of two functions:

  1. The first term  ${\it \Phi}_a(f)$  is dimensionless and describes the spectral shaping of the transmitted signal by  the statistical constraints of the source.
  2. In contrast,  $\vert G_s(f) \vert^2$  takes into account the  spectral shaping by the basic transmission pulse  $g_s(t)$.
  3. The narrower  $g_s(t)$  is,  the broader is the energy spectrum  $\vert G_s(f) \vert^2$  and thus the larger is the bandwidth requirement.
  4. The energy spectrum  $\vert G_s(f) \vert^2$  has the unit  $\rm V^2s/Hz$  and the power-spectral density ${\it \Phi}_s(f)$  – due to the division by symbol duration  $T$  – the unit  $\rm V^2/Hz$.
  5. Both specifications are again only valid for the resistor  $1 \ \rm \Omega$.


ACF and PSD for bipolar binary signals


The previous results are now illustrated by examples.  Starting from binary bipolar amplitude coefficients  $a_\nu \in \{-1, +1\}$,  if there are no bonds between the individual amplitude coefficients  $a_\nu$,  we obtain:

Signal section  ACF and PSD for binary bipolar signaling
$$\varphi_a(\lambda) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \\ \end{array} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varphi_s(\tau)= {1}/{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau)\hspace{0.05cm}.$$

The graph shows two signal sections each with rectangular pulses  $g_s(t)$,  which accordingly lead to a triangular auto-correlation function  $\rm (ACF)$  and to a  $\rm sinc^2$–shaped power-spectral density  $\rm (PSD)$.

  • The left pictures describe NRZ signaling   ⇒   the width  $T_{\rm S}$  of the basic pulse is equal to the distance  $T$  of two transmitted pulses  (source symbols).
  • In contrast,  the right pictures apply to an RZ pulse with the duty cycle  $T_{\rm S}/T = 0.5$.


One can see from the left representation  $\rm (NRZ)$:

  1. For NRZ rectangular pulses,  the transmit power  (reference:  $1 \ \rm \Omega$  resistor)  is  $P_{\rm S} = \varphi_s(\tau = 0) = s_0^2$.
  2. The triangular ACF is limited to the range  $|\tau| \le T_{\rm S}= T$. 
  3. The PSD  ${\it \Phi}_s(f)$  as the Fourier transform of  $\varphi_s(\tau)$  is  $\rm sinc^2$–shaped with equidistant zeros at distance  $1/T$.
  4. The area under the PSD curve again gives the transmit power  $P_{\rm S} = s_0^2$.


In the case of RZ signaling  (right column),  the triangular ACF is smaller in height and width by a factor of  $T_{\rm S}/T = 0.5$,  resp.,  compared to the left image.

$\text{Conclusion:}$  If one compares the two power-spectral densities  $($lower pictures$)$,  one recognizes for  $T_{\rm S}/T = 0.5$  $($RZ pulse$)$  compared to  $T_{\rm S}/T = 1$  $($NRZ pulse$)$ 

  • a reduction in height by a factor of  $4$, 
  • a broadening by a factor of  $2$. 
⇒   The area  $($power$)$  in the right sketch is thus half as large,  since in half the time  $s(t) = 0$. 


ACF and PSD for unipolar binary signals


We continue to assume NRZ or RZ rectangular pulses. But let the binary amplitude coefficients now be unipolar:   $a_\nu \in \{0, 1\}$.  Then for the discrete ACF of the amplitude coefficients holds:

Signal section,  ACF and PSD with binary unipolar signaling
$$\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 = 0.5 \\ \\ m_1^2 = 0.25 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ \\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}$$

Assumed here are equal probability amplitude coefficients   ⇒   ${\rm Pr}(a_\nu =0) = {\rm Pr}(a_\nu =1) = 0.5$  with no statistical ties, so that both the  "power"  $m_2$ and the  "linear mean"  $m_1$  $($DC component$)$  are  $0.5$,  respectively.

The graph shows a signal section, the ACF and the PSD with unipolar amplitude coefficients,

  • left for rectangular NRZ pulses  $(T_{\rm S}/T = 1)$,  and
  • right for RZ pulses with duty cycle  $T_{\rm S}/T = 0.5$.


There are the following differences compared to  "bipolar signaling":

  • Adding the infinite number of triangular functions at distance  $T$  (all with the same height)  results in a constant DC component  $s_0^2/4$  for the ACF in the left graph  (NRZ).
  • In addition,  a single triangle also with height  $s_0^2/4$ remains in the region  $|\tau| \le T_{\rm S}$,  which leads to the  $\rm sinc^2$–shaped blue curve in the power-spectral density (PSD).
  • The DC component in the ACF results in a Dirac delta function at frequency  $f = 0$  with weight  $s_0^2/4$ in the PSD. Thus the PSD value  ${\it \Phi}_s(f=0)$  becomes infinitely large.


From the right graph – valid for  $T_{\rm S}/T = 0.5$ – it can be seen that now the ACF is composed of a periodic triangular function  (drawn dashed in the middle region)  and additionally of a unique triangle in the region  $|\tau| \le T_{\rm S} = T/2$  with height  $s_0^2/8$. 

  • This unique triangle function leads to the continuous  $\rm sinc^2$–shaped component (blue curve) of  ${\it \Phi}_s(f)$  with the first zero at  $1/T_{\rm S} = 2/T$.
  • In contrast,  the periodic triangular function leads to an infinite sum of Dirac delta functions with different weights at the distance  $1/T$  (drawn in red)  according to the laws of the  "Fourier series"
  • The weights of the Dirac delta functions are proportional to the continuous (blue) PSD component.  The Dirac delta line at  $f = 0$ has the maximum weight  $s_0^2/8$.  In contrast,  the Dirac delta lines at  $\pm 2/T$  and multiples thereof do not exist or have the weight  $0$ in each case,  since the continuous PSD component also has zeros here.


$\text{Note:}$ 

  • Unipolar amplitude coefficients occur for example in optical transmission systems. 
  • In later chapters, however, we mostly restrict ourselves to bipolar signaling.


Exercises for the chapter


Exercise 2.1: ACF and PSD with Coding

Exercise 2.1Z: About the Equivalent Bitrate

Exercise 2.2: Binary Bipolar Rectangles