Difference between revisions of "Mobile Communications/General Description of Time Variant Systems"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Frequenzselektive Übertragungskanäle |Vorherige Seite=Nichtfrequenzselektives Fading mit Direktkomponente |Nächste Seite=Mehrwegeempf…“)
 
 
(73 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Frequenzselektive Übertragungskanäle
+
|Untermenü=Frequency-Selective Transmission Channels |Vorherige Seite=Non-Frequency Selective Fading With Direct Component
|Vorherige Seite=Nichtfrequenzselektives Fading mit Direktkomponente
+
|Nächste Seite=Multipath Reception in Mobile Communications}}
|Nächste Seite=Mehrwegeempfang beim Mobilfunk
 
}}
 
  
== Übertragungsfunktion und Impulsantwort ==
+
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 
<br>
 
<br>
Die Beschreibungsgrößen eines Nachrichtenübertragungssystems wurden bereits in Kapitel 1.1 bzw. Kapitel 1.2 des Buches &bdquo;Lineare zeitvariante Systeme&rdquo; eingeführt und eingehend diskutiert. Die wichtigsten Ergebnisse sollen hier nochmals kurz zusammengefasst werden.<br>
+
After the time variance, the term&nbsp; &raquo;'''frequency selectivity'''&laquo;&nbsp; is now introduced and illustrated with examples,&nbsp; a channel property which is also of great importance for mobile communications.&nbsp; As in the entire book,&nbsp; the description is given in the equivalent low-pass range.  
  
[[File:P ID2141 Mob T 2 1 S1 v1.png|Betrachtetes LZI–System|class=fit]]<br>
+
It is covered in detail:
  
Vorausgesetzt wird zunächst ein lineares und zeitinvariantes System &#8658; LZI&ndash;System mit dem Signal <i>s</i>(<i>t</i>) am Eingang und dem Ausgangssignal <i>r</i>(<i>t</i>). Der Einfachheit halber seien <i>s</i>(<i>t</i>) und <i>r</i>(<i>t</i>) reell. Dann gilt:
+
#The&nbsp; &raquo;difference between time-invariant and time-variant systems&laquo;,
*Das System lässt sich vollständig durch die <b>Übertragungsfunktion</b> <i>H</i>(<i>f</i>) charakterisieren. Man bezeichnet <i>H</i>(<i>f</i>) auch als den <i>Frequenzgang</i>. Definitionsgemäß gilt <i>H</i>(<i>f</i>) = <i>R</i>(<i>f</i>)/<i>S</i>(<i>f</i>).<br>
+
#the&nbsp; &raquo;time-variant impulse response&laquo;&nbsp; as an important descriptive function of time-variant systems,
 +
#&raquo;multi-way reception&laquo;&nbsp; as the cause of frequency-selective behaviour,
 +
#a detailed derivation and interpretation of the&nbsp; &raquo;GWSSUS channel model&laquo;,
 +
#the characteristics of the GWSSUS model: &nbsp; &raquo;coherence bandwidth,&nbsp; correlation duration&laquo;,&nbsp; etc.
  
*Ebenso ist das System durch die <b>Impulsantwort</b> <i>h</i>(<i>t</i>) als die Fourierrücktransformierte von <i>H</i>(<i>f</i>) vollständig gekennzeichnet. Das Ausgangssignal ergibt sich aus der Faltung:
 
  
::<math>r(t) = s(t) \star h(t) \hspace{0.4cm} {\rm mit} \hspace{0.4cm} h(t)
+
 
 +
== Transfer function and impulse response ==
 +
<br>
 +
The description parameters of a communication system have already been described in two chapters of the book "Linear Time Variant Systems":
 +
* [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain|"System Description in Frequency Domain"]],
 +
* [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain|"System Description in Time Domain"]].&nbsp;
 +
 
 +
[[File:EN_Mob_T_2_1_S1_neu.png|right|frame|Considered LTI system|class=fit]]
 +
 
 +
 
 +
The most important results are briefly explained again here.&nbsp; We assume a&nbsp; linear and time-invariant system &nbsp; &#8658; &nbsp; $\text{LTI system}$&nbsp; with the signal&nbsp; $s(t)$&nbsp; at the input and the output signal&nbsp; $r(t)$. &nbsp; For the sake of simplicity, let&nbsp; $s(t)$&nbsp; and&nbsp; $r(t)$&nbsp; be real.&nbsp; Then the following applies:
 +
*The system can be completely characterized by the&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_.E2.80.93_Transfer_function|$\text{transfer function}$]]&nbsp; $H(f)$&nbsp; which is also referred to as the&nbsp; "frequency response".&nbsp; By definition&nbsp;:$$H(f) = R(f)/S(f).$$
 +
 
 +
*Similarly, the system is defined by the&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Impulse_response|$\text{impulse response}$]]&nbsp; $h(t)$&nbsp;, which is the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|$\text{inverse Fourier transform}$]]&nbsp; of&nbsp; $H(f)$.&nbsp; &nbsp; The output signal results from the convolution:
 +
 
 +
::<math>r(t) = s(t) \star h(t) \hspace{0.4cm} {\rm with} \hspace{0.4cm} h(t)
 
  \hspace{0.2cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.2cm} H(f)   
 
  \hspace{0.2cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.2cm} H(f)   
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Um die durch <i>H</i>(<i>f</i>) bzw. <i>h</i>(<i>t</i>) entstehenden linearen Verzerrungen zu erkennen, eignen sich die folgenden Eingangssignale:
+
{{BlaueBox|TEXT=
*ein [http://en.lntwww.de/Signaldarstellung/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Diracimpuls Diracimpuls]: &nbsp;&nbsp;<i>s</i>(<i>t</i>) = <i>&delta;</i>(<i>t</i>)&nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>r</i>(<i>t</i>) = <i>h</i>(<i>t</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>Impulsantwort</i>,<br>
+
$\text{Definitions:}$&nbsp; &nbsp; The following input signals are suitable for detecting the linear distortions caused by&nbsp; $H(f)$&nbsp; or &nbsp; $h(t)$:&nbsp;
*eine [http://en.lntwww.de/Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Sprungantwort Sprungfunktion]: &nbsp;&nbsp;<i>s</i>(<i>t</i>) = <i>&gamma;</i>(<i>t</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>r</i>(<i>t</i>) = <i>&gamma;</i>(<i>t</i>) &#8727; <i>h</i>(<i>t</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>Sprungantwort</i>,<br>
+
*a&nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Dirac_delta_or_impulse|$\text{Dirac delta}$]]&nbsp; or&nbsp; "impulse":
*ein [http://en.lntwww.de/Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich Diracpuls]: &nbsp;&nbsp;<i>s</i>(<i>t</i>) = <i>p</i><sub>&delta;</sub>(<i>t</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>r</i>(<i>t</i>) = <i>p<sub>&delta;</sub></i>(<i>t</i>) &#8727; <i>h</i>(<i>t</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>Pulsantwort</i>.<br><br>
+
:$$s(t) = \delta(t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  &nbsp; r(t) = \delta(t) \star h(t)= h(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response,}$$ 
 +
*a&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Step_response|$\text{step function}$]]&nbsp; or&nbsp; "Heaviside step function":
 +
:$$s(t) = \gamma(t) \hspace{0.3cm}\Rightarrow \hspace{0.35cm}  &nbsp; r(t) = \gamma(t) \star h(t)\hspace{1.5cm}\Rightarrow \hspace{0.3cm} \text{step response,}$$
 +
*a&nbsp; [[Signal_Representation/Discrete-Time_Signal_Representation#Dirac_comb_in_time_and_frequency_domain|$\text{Dirac comb}$]]&nbsp; or&nbsp; "Dirac delta train":
 +
:$$s(t) = p_\delta(t) \hspace{0.25cm}\Rightarrow \hspace{0.3cm}  &nbsp; r(t) = p_\delta(t) \star h(t)\hspace{1.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response train.}$$}}
 +
 +
 
 +
 
 +
On the other hand, a DC signal&nbsp; $s(t) = A$&nbsp; is not suitable to make the frequency dependence of the LTI system visible: &nbsp; <br>&nbsp; &rArr; &nbsp; With a low-pass system the output signal would then be always constant, independent of&nbsp; $H(f)$:&nbsp; &nbsp; &nbsp; $r(t) = A \cdot H(f= 0)$.<br>
 +
 
 +
In the next section we consider a Dirac delta train&nbsp; $p_\delta(t)$&nbsp; as an input signal&nbsp; $s(t)$: &nbsp;  <br>&nbsp; &rArr; &nbsp; Hereby the similarities and differences between time-invariant and time-variant systems can be shown clearly.<br>
 +
 
 +
<i>Note:</i>&nbsp; The properties of&nbsp; $H(f)$&nbsp; and&nbsp; $h(t)$&nbsp; are covered in detail in the&nbsp; $\text{LNTwww learning video}$&nbsp; (in German language):<br> &nbsp; &nbsp;
 +
[https://www.lntwww.de/Eigenschaften_des_%C3%9Cbertragungskanals_(Lernvideo) "Eigenschaften des Übertragungskanals"] &nbsp; &rArr; &nbsp; "Some remarks on the transfer function".<br>
 +
 
 +
 
 +
 
 +
== Time&ndash;invariant vs. time&ndash;variant channels ==
 +
<br>
 +
The graphic is intended to illustrate the difference between a linear time&ndash;invariant channel&nbsp; $\rm (LTI)$&nbsp; and a linear  time&ndash;variant channel &nbsp; $\rm (LTV)$&nbsp;.<br>
 +
 
 +
[[File:EN_Mob_T_2_1_S2.png|right|frame|Time&ndash;invariant and time&ndash;variant channel|class=fit]]
 +
 
 +
One can see from this illustration:
 +
*The transmitted signal&nbsp; $s(t)$&nbsp; is a Dirac delta train&nbsp; $p_\delta(t)$, i.e. an infinite sequence of Dirac deltas in equidistant intervals&nbsp; $T$,&nbsp; all with the weight&nbsp; $1$&nbsp; (see upper graph):
 +
 
 +
::<math>s(t) = p_{\rm \delta} (t) = \sum_{n = -\infty}^{+\infty} {\rm \delta} (t - n \cdot T)
 +
\hspace{0.05cm}.</math>
 +
 
 +
*The Dirac delta at&nbsp; $t = 0$&nbsp; is marked in green. The signal at the channel output is equal to&nbsp; $r(t) = h(t)$&nbsp;, with&nbsp; $s(t) = {\rm \delta}(t)$&nbsp;, also indicated in green. &nbsp; As a condition, it is assumed that the extension of the impulse response&nbsp; $h(t)$&nbsp; is smaller than $T$.<br>.
 +
 
 +
*The entire received signal after the LTI channel, according to the middle graph, can then be written as:
 +
 
 +
::<math>r(t) = p_{\rm \delta} (t) \star h(t) = \sum_{n = -\infty}^{+\infty} h (t - n \cdot T)
 +
\hspace{0.05cm}.</math>
 +
 
 +
*For a time-variant channel (lower graph) this equation is not applicable.&nbsp; In each time interval, a (slightly) different signal shape is obtained.
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; With a &nbsp; &raquo;'''time-variant channel'''&laquo; &nbsp; you cannot specify neither a one-parameter impulse response&nbsp; $h(t)$&nbsp; nor a transfer function&nbsp; $H(f)$&nbsp;.}}<br>
 +
 
 +
<i>Note:</i>&nbsp; The differences between LTI and LTV systems are clarified with the&nbsp; $\text{LNTwww learning video}$&nbsp; (in German language):<br> &nbsp; &nbsp;
 +
[https://www.lntwww.de/Eigenschaften_des_%C3%9Cbertragungskanals_(Lernvideo) "Eigenschaften des Übertragungskanals"] &nbsp; &rArr; &nbsp; "Some remarks on the transfer function".<br>
 +
 
 +
 
 +
== Two-dimensional impulse response==
 +
<br>
 +
[[File:EN_Mob_T_2_1_S3.png|right|frame|Two-dimensional impulse response|class=fit]]
 +
 
 +
To identify a time-variant impulse response, a second parameter is used and the impulse response is preferably mapped in a three-dimensional coordinate system.<br>
 +
 
 +
The condition for this is that the channel is still linear.&nbsp; One speaks then of a&nbsp; $\text{LTV system}$&nbsp;&nbsp; ("linear time-variant").
 +
 
 +
The following relations apply:
 +
 
 +
::<math>\text{LTI:}\hspace{0.5cm}  r(t) = \int_{-\infty}^{+\infty} h(\tau)  \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau  \hspace{0.05cm},</math>
 +
::<math>\text{LTV:}\hspace{0.5cm}  r(t) \hspace{-0.1cm}  = \hspace{-0.1cm} \int_{-\infty}^{+\infty} h(\tau, \hspace{0.1cm}t)  \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau  \hspace{0.05cm}.</math>
 +
<br clear=all>
 +
Regarding the last equation and the above graph, it should be noted
 +
*The parameter&nbsp; $\tau$&nbsp; specifies the &nbsp; &raquo;'''delay time'''&laquo; &nbsp; to denote the time dispersion.&nbsp; By writing out the convolution operation, it was possible to make&nbsp; $\tau$&nbsp; also the parameter of the LTI impulse response.&nbsp; In the last sections we spoke about&nbsp; $h(t)$&nbsp;.<br>
 +
 
 +
*The second parameter of the impulse response or the second axis marks the &nbsp; &raquo;'''absolute time'''&laquo;&nbsp; $t$, which is used, among other things, to describe the time variance.&nbsp; At different times&nbsp; $t$&nbsp; the impulse response&nbsp; $h(\tau, \hspace{0.05cm}t)$&nbsp; has a different form.<br>
 +
 
 +
*A peculiarity of the 2D representation is that the&nbsp; $t$&ndash;axis is always plotted discrete-timely&nbsp; $($at multiples of&nbsp; $T)$&nbsp; while the&nbsp; $\tau$&ndash;axis can be continuous in time as in the example shown. &nbsp; However, in mobile communications, a discrete-time &nbsp; $h(\tau, \hspace{0.05cm}t_0)$&nbsp; with respect to&nbsp; $\tau$&nbsp; is assumed $($"echoes"$)$.
 +
 
 +
*The LTV equation is only applicable if the change of the channel&nbsp; $($marked in the figure by the parameter&nbsp; $T)$&nbsp; proceeds slowly in comparison to the maximum delay &nbsp; $\tau_{\rm max}$.&nbsp; In mobile communications this condition &nbsp; &#8658; &nbsp; $\tau_{\rm max} < T$ &nbsp; is almost always fulfilled.
 +
 
 +
*Selecting whether to apply the first Fourier integral to the parameter&nbsp; $\tau$&nbsp; or&nbsp; $t$&nbsp; leads to different spectral functions.&nbsp; In the&nbsp; [[Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations|"Exercise 2.1Z"]]&nbsp; for example, the time-variant  &nbsp; &raquo;'''two-dimensional transfer function'''&laquo;&nbsp; is considered:
 +
 
 +
::<math>H(f,\hspace{0.05cm} t)
 +
\hspace{0.2cm}  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) 
 +
\hspace{0.05cm}.</math>
 +
 
  
Dagegen ist ein Gleichsignal <i>s</i>(<i>t</i>) = <i>A</i> nicht geeignet, die Frequenzabhängigkeit des LZI&ndash;Systems sichtbar werden zu lassen. Bei einem Tiefpass&ndash;System wäre dann das Ausgangssignal unabhängig von <i>H</i>(<i>f</i>) stets konstant: <i>r</i>(<i>t</i>) = <i>A</i> &middot; <i>H</i>(<i>f</i> = 0).<br>
+
==Exercises for the chapter==
 +
[[Aufgaben:Exercise 2.1: Two-Dimensional Impulse Response]]
  
Auf der nächsten Seite betrachten wir als Eingangssignal <i>s</i>(<i>t</i>) einen Diracpuls <i>p</i><sub>&delta;</sub>(<i>t</i>). Hiermit lassen sich die Gemeinsamkeiten und Unterschiede zwischen zeitinvarianten und zeitvarianten Systemen sehr anschaulich darstellen.<br>
+
[[Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations]]
  
<b>Hinweis:</b> Die Eigenschaften von <i>H</i>(<i>f</i>) und <i>h</i>(<i>t</i>) werden in einem Lernvideo behandelt:<br>
 
  
[[Anmerkungen zur Übertragungsfunktion Please add link and do not upload flash videos]] (Dauer 9:08)
 
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:41, 29 January 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


After the time variance, the term  »frequency selectivity«  is now introduced and illustrated with examples,  a channel property which is also of great importance for mobile communications.  As in the entire book,  the description is given in the equivalent low-pass range.

It is covered in detail:

  1. The  »difference between time-invariant and time-variant systems«,
  2. the  »time-variant impulse response«  as an important descriptive function of time-variant systems,
  3. »multi-way reception«  as the cause of frequency-selective behaviour,
  4. a detailed derivation and interpretation of the  »GWSSUS channel model«,
  5. the characteristics of the GWSSUS model:   »coherence bandwidth,  correlation duration«,  etc.


Transfer function and impulse response


The description parameters of a communication system have already been described in two chapters of the book "Linear Time Variant Systems":

Considered LTI system


The most important results are briefly explained again here.  We assume a  linear and time-invariant system   ⇒   $\text{LTI system}$  with the signal  $s(t)$  at the input and the output signal  $r(t)$.   For the sake of simplicity, let  $s(t)$  and  $r(t)$  be real.  Then the following applies:

  • The system can be completely characterized by the  $\text{transfer function}$  $H(f)$  which is also referred to as the  "frequency response".  By definition :$$H(f) = R(f)/S(f).$$
\[r(t) = s(t) \star h(t) \hspace{0.4cm} {\rm with} \hspace{0.4cm} h(t) \hspace{0.2cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.2cm} H(f) \hspace{0.05cm}.\]

$\text{Definitions:}$    The following input signals are suitable for detecting the linear distortions caused by  $H(f)$  or   $h(t)$: 

$$s(t) = \delta(t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}   r(t) = \delta(t) \star h(t)= h(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response,}$$
$$s(t) = \gamma(t) \hspace{0.3cm}\Rightarrow \hspace{0.35cm}   r(t) = \gamma(t) \star h(t)\hspace{1.5cm}\Rightarrow \hspace{0.3cm} \text{step response,}$$
$$s(t) = p_\delta(t) \hspace{0.25cm}\Rightarrow \hspace{0.3cm}   r(t) = p_\delta(t) \star h(t)\hspace{1.3cm}\Rightarrow \hspace{0.3cm} \text{impulse response train.}$$


On the other hand, a DC signal  $s(t) = A$  is not suitable to make the frequency dependence of the LTI system visible:  
  ⇒   With a low-pass system the output signal would then be always constant, independent of  $H(f)$:      $r(t) = A \cdot H(f= 0)$.

In the next section we consider a Dirac delta train  $p_\delta(t)$  as an input signal  $s(t)$:  
  ⇒   Hereby the similarities and differences between time-invariant and time-variant systems can be shown clearly.

Note:  The properties of  $H(f)$  and  $h(t)$  are covered in detail in the  $\text{LNTwww learning video}$  (in German language):
    "Eigenschaften des Übertragungskanals"   ⇒   "Some remarks on the transfer function".


Time–invariant vs. time–variant channels


The graphic is intended to illustrate the difference between a linear time–invariant channel  $\rm (LTI)$  and a linear time–variant channel   $\rm (LTV)$ .

Time–invariant and time–variant channel

One can see from this illustration:

  • The transmitted signal  $s(t)$  is a Dirac delta train  $p_\delta(t)$, i.e. an infinite sequence of Dirac deltas in equidistant intervals  $T$,  all with the weight  $1$  (see upper graph):
\[s(t) = p_{\rm \delta} (t) = \sum_{n = -\infty}^{+\infty} {\rm \delta} (t - n \cdot T) \hspace{0.05cm}.\]
  • The Dirac delta at  $t = 0$  is marked in green. The signal at the channel output is equal to  $r(t) = h(t)$ , with  $s(t) = {\rm \delta}(t)$ , also indicated in green.   As a condition, it is assumed that the extension of the impulse response  $h(t)$  is smaller than $T$.
    .
  • The entire received signal after the LTI channel, according to the middle graph, can then be written as:
\[r(t) = p_{\rm \delta} (t) \star h(t) = \sum_{n = -\infty}^{+\infty} h (t - n \cdot T) \hspace{0.05cm}.\]
  • For a time-variant channel (lower graph) this equation is not applicable.  In each time interval, a (slightly) different signal shape is obtained.


$\text{Conclusion:}$  With a   »time-variant channel«   you cannot specify neither a one-parameter impulse response  $h(t)$  nor a transfer function  $H(f)$ .


Note:  The differences between LTI and LTV systems are clarified with the  $\text{LNTwww learning video}$  (in German language):
    "Eigenschaften des Übertragungskanals"   ⇒   "Some remarks on the transfer function".


Two-dimensional impulse response


Two-dimensional impulse response

To identify a time-variant impulse response, a second parameter is used and the impulse response is preferably mapped in a three-dimensional coordinate system.

The condition for this is that the channel is still linear.  One speaks then of a  $\text{LTV system}$   ("linear time-variant").

The following relations apply:

\[\text{LTI:}\hspace{0.5cm} r(t) = \int_{-\infty}^{+\infty} h(\tau) \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau \hspace{0.05cm},\]
\[\text{LTV:}\hspace{0.5cm} r(t) \hspace{-0.1cm} = \hspace{-0.1cm} \int_{-\infty}^{+\infty} h(\tau, \hspace{0.1cm}t) \cdot s(t-\tau) \hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}.\]


Regarding the last equation and the above graph, it should be noted

  • The parameter  $\tau$  specifies the   »delay time«   to denote the time dispersion.  By writing out the convolution operation, it was possible to make  $\tau$  also the parameter of the LTI impulse response.  In the last sections we spoke about  $h(t)$ .
  • The second parameter of the impulse response or the second axis marks the   »absolute time«  $t$, which is used, among other things, to describe the time variance.  At different times  $t$  the impulse response  $h(\tau, \hspace{0.05cm}t)$  has a different form.
  • A peculiarity of the 2D representation is that the  $t$–axis is always plotted discrete-timely  $($at multiples of  $T)$  while the  $\tau$–axis can be continuous in time as in the example shown.   However, in mobile communications, a discrete-time   $h(\tau, \hspace{0.05cm}t_0)$  with respect to  $\tau$  is assumed $($"echoes"$)$.
  • The LTV equation is only applicable if the change of the channel  $($marked in the figure by the parameter  $T)$  proceeds slowly in comparison to the maximum delay   $\tau_{\rm max}$.  In mobile communications this condition   ⇒   $\tau_{\rm max} < T$   is almost always fulfilled.
  • Selecting whether to apply the first Fourier integral to the parameter  $\tau$  or  $t$  leads to different spectral functions.  In the  "Exercise 2.1Z"  for example, the time-variant   »two-dimensional transfer function«  is considered:
\[H(f,\hspace{0.05cm} t) \hspace{0.2cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) \hspace{0.05cm}.\]


Exercises for the chapter

Exercise 2.1: Two-Dimensional Impulse Response

Exercise 2.1Z: 2D-Frequency and 2D-Time Representations