Difference between revisions of "Aufgaben:Exercise 4.12: Root-Nyquist Systems"

From LNTwww
 
(35 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1722__Mod_A_4_11.png|right|]]
+
[[File:P_ID1722__Mod_A_4_11.png|right|frame|Spectra of transmission pulse (above)  and detection pulse (below)]]
Bei den Quadraturamplitudenmodulationssystemen wird häufig anstelle eines rechteckigen Sendegrundimpulses die Wurzel–Nyquist–Variante gewählt, wobei dieser Name aus dem Spektralbereich abgeleitet ist. Der Grund hierfür ist die signifikant kleinere Bandbreite.
+
In  "quadrature amplitude modulation"  $\rm (QAM)$  systems,  the  "root-Nyquist variant"  is often chosen  (which gets its name from the spectral range)  instead of a rectangular basic transmission pulse.  The reason for this is the significantly smaller bandwidth.
  
In diesem Fall erfüllt der Detektionsgrundimpuls $g_d(t)$ die erste Nyquistbedingung, da $G_d(f)$ punktsymmetrisch um die so genannte Nyquistfrequenz $f_{Nyq} = 1/T$ ist. $G_d(f)$ ist ein Cosinus–Rolloff–Spektrum, wobei der Rolloff–Faktor r Werte zwischen 0 und 1 (einschließlich dieser Grenzen) annehmen kann.
+
*In this case,  the basic detection pulse  $g_d(t)$  satisfies the  [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_time_domain|first Nyquist criterion]],  since  $G_d(f)$  is point-symmetric about the so-called  "Nyquist frequency"  $f_{\rm Nyq} = 1/T$ .  
 +
*$G_d(f)$  is a  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Raised-cosine_low-pass_filter|raised-cosine spectrum]],  where the rolloff factor  $r$  can take values from $0$  to  $1$  (including these limits).
  
Weiterhin gilt für den Nyquist–Frequenzgang:
 
:* Für $|f| < f_1 = f_{Nyq} · (1 – r)$ ist $G_d(f)$ konstant gleich $g_0 · T$.
 
:* Bei Frequenzen größer als $f_2 = f_{Nyq} · (1 + r)$ hat $G_d(f)$ keine Anteile.
 
:* Dazwischen verläuft die Flanke cosinusförmig.
 
  
Die Optimierung digitaler Nachrichtenübertragungssysteme ergibt, dass der Empfängerfrequenzgang $H_E(f)$ formgleich mit dem Sendespektrum $G_s(f)$ sein sollte. Um dimensionsrichtige Spektralfunktionen zu erhalten, wird für diese Aufgabe und die Grafik vorausgesetzt:
+
Furthermore,&nbsp; the following holds for the Nyquist frequency response:
$$G_s(f) = \sqrt{g_0 \cdot T \cdot G_d(f)},\hspace{0.4cm} H_{\rm E}(f) = \frac{1}{g_0 \cdot T}\cdot G_s(f)\hspace{0.05cm}.$$
+
* When &nbsp;$|f| < f_1 = f_{\rm Nyq} · (1 – r)$ &nbsp; &rArr; &nbsp; $G_d(f)$&nbsp; is constant and equal to &nbsp;$g_0 · T$.
 +
* At frequencies greater than &nbsp;$f_2 = f_{\rm Nyq} · (1 + r)$ &nbsp; &rArr; &nbsp; $G_d(f)$&nbsp; has no components.
 +
* In between,&nbsp; the slope is cosine.
  
Die obere Grafik zeigt das Sendespektrum $G_s(f)$ für die Rolloff–Faktoren r = 0, r = 0.5 und r = 1. Unten ist das Spektrum $G_d(f)$ vor dem Entscheider dargestellt. Der dazugehörige Impuls $g_d(t)$ ist für alle gültigen Rolloff–Faktoren (0 ≤ r ≤ 1) ein Nyquistimpuls im Gegensatz zum Sendegrundimpuls $g_s(t)$. Für diesen wird in der Literatur – zum Beispiel in '''[Kam04]''' – folgende Gleichung angegeben:
 
$$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$
 
'''Hinweis:''' Die Aufgabe bezieht sich auf die vorletzte Seite von [http://en.lntwww.de/Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation Kapitel 4.3] dieses Buches. Alle Details über Nyquistsysteme erfahren Sie im Kapitel 1.3 des Buches „Digitalsignalübertragung”.
 
  
'''[Kam04]''' : Kammeyer, K.D.: Nachrichtenübertragung. Stuttgart: B.G. Teubner, 4. Auflage, 2004.
+
The optimization of digital communication systems requires that the receiver frequency response &nbsp;$H_{\rm E}(f)$&nbsp; should be of the same shape as the transmission spectrum&nbsp;$G_s(f)$&nbsp;.
  
 +
To obtain dimensionally correct spectral functions for this task and the graph,&nbsp; it is assumed that
 +
:$$G_s(f) = \sqrt{g_0 \cdot T \cdot G_d(f)},$$
 +
:$$ H_{\rm E}(f) = \frac{1}{g_0 \cdot T}\cdot G_s(f)\hspace{0.05cm}.$$
  
===Fragebogen===
+
The top graph shows the transmission spectrum &nbsp;$G_s(f)$&nbsp; for the rolloff factors
 +
*$r = 0$ &nbsp; (green dotted rectangle),
 +
*$r = 0.5$ &nbsp; (blue solid curve),
 +
*$r = 1$ &nbsp; (red dashed curve).
 +
 
 +
 
 +
Below,&nbsp; the spectrum&nbsp; $G_d(f)$&nbsp; of the basic detection pulse before the decider is shown in the same colors.
 +
*The associated pulse &nbsp; $g_d(t)$&nbsp; is a [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_time_domain|Nyquist pulse]]&nbsp; for all valid rolloff factors &nbsp; $(0 ≤ r ≤ 1)$&nbsp; as opposed to the basic transmission pulse &nbsp; $g_s(t)$.
 +
*For this,&nbsp; the following equation is given in the literature - for example in&nbsp; '''[Kam04]''' :
 +
:$$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]].
 +
*Particular reference is made to the page &nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#Nyquist_and_Root-Nyquist_QAM_systems|"Nyquist and Root-Nyquist systems"]]&nbsp; in this chapter.
 +
*Further useful informations can be found in the chapter&nbsp; [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems|Properties of Nyquist Systems]]&nbsp; in the book&nbsp; "Digital Signal Transmission".
 +
* '''[Kam04]'''&nbsp; refers to the textbook&nbsp; "Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4. Auflage, 2004".
 +
*Energies are to be specified in&nbsp; $\rm V^2s$;&nbsp; they thus refer to the reference resistance &nbsp;$R = 1 \ \rm \Omega$.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet der Sendegrundimpuls $g_s(t)$ für den Rolloff–Faktor r = 0? Welcher Signalwert ergibt sich zum Zeitpunkt t = 0?
+
{What is the basic transmission pulse &nbsp;$g_s(t)$&nbsp; for the rolloff factor &nbsp;$r = 0$?&nbsp;  What is the signal value at time &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
$r = 0:  g_s(t = 0)$ = { 1 3% } $\cdot g_0$
+
$g_s(t = 0) \ = \ $ { 1 3% } $\ \cdot g_0$
  
{Wie lautet der Sendegrundimpuls $g_s(t)$ für den Rolloff–Faktor r = 1? Welcher Signalwert ergibt sich zum Zeitpunkt t = 0?
+
{What is the basic transmission pulse &nbsp;$g_s(t)$&nbsp; for the rolloff factor&nbsp;$r = 1$?&nbsp; What is the signal value at time &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
$r = 1:  g_s(t = 0)$ = { 1.273 3% }  $\cdot g_0$
+
$g_s(t = 0) \ = \ $ { 1.273 3% }  $\ \cdot g_0$
  
{Es gelte weiter r = 1. Zu welchen Zeiten hat $g_s(t)$ Nulldurchgänge?
+
{Let &nbsp;$r = 1$.&nbsp; At what times does &nbsp;$g_s(t)$&nbsp; cross the axis?
|type="[]"}
+
|type="()"}
- Bei allen Vielfachen der Symboldauer T,
+
- At all multiples of the symbol duration &nbsp;$T$.
- Bei t = ±0.25 T, ±0.75 T, ±1.25 T, ±1.75 T, ...
+
- At &nbsp;$t = ±0.25 T, \ ±0.75 T, \ ±1.25 T, \ ±1.75 T$, ...
+ Bei t = ±0.75 T, ±1.25 T, ±1.75 T, ...
+
+ At &nbsp;$t = ±0.75 T, \ ±1.25 T,±1.75 T$, ...
  
{Welche Impulsamplitude $g_s(t = 0)$ ergibt sich für r = 0.5? Welcher Signalwert ergibt sich zum Zeitpunkt t = 0?
+
{What is the basic transmission pulse &nbsp;$g_s(t)$&nbsp; for the rolloff factor &nbsp;$r = 0.5$?&nbsp; What is the signal value at time &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
$r = 0.5:  g_s(t = 0)$ = { 1.137 3% } $\cdot g_0$
+
$g_s(t = 0) \ = \ $ { 1.137 3% } $\ \cdot g_0$
  
{Welche Aussagen sind für die Signalamplitude unabhängig von r gültig? Lösen Sie diese Aufgabe im Frequenzbereich.
+
{Which statements are valid for the pulse amplitude, independent of &nbsp;$r$&nbsp;?&nbsp; Solve using the frequency domain.
|type="[]"}
+
|type="()"}
- Es gilt $0 ≤ g_s(t = 0) ≤ g_0,$
+
- The pulse amplitude can take any value in the range &nbsp; $0 ≤ g_s(t = 0) ≤ g_0$ &nbsp;.
- Es gilt $g_0 ≤ g_s(t = 0) ≤ 2 g_0,$
+
- The pulse amplitude can take any value in the range &nbsp; $g_0 ≤ g_s(t = 0) ≤ 2 g_0$ &nbsp;.
+ Es gilt $g_0 ≤ g_s(t = 0) ≤ 4 g_0/π.$
+
+ The pulse amplitude can take any value in the range &nbsp; $g_0 ≤ g_s(t = 0) ≤ 4 g_0/π$ &nbsp;.
  
{Wie groß ist die Energie des Sendegrundimpulses $g_s(t)$ für r = 0 und r = 1?
+
{What is the energy&nbsp; $E_{g_s}$&nbsp; of the basic transmission pulse &nbsp;$g_s(t)$&nbsp; when &nbsp;$r = 0$&nbsp; and &nbsp;$r = 1$?
 
|type="{}"}
 
|type="{}"}
$ r = 0:   E_{gs}$ = { 1 3% } $\cdot g_0^2 T$
+
$r = 0\text{:} \ \ \ \  E_{g_s} \ = \ $ { 1 3% } $\ \cdot g_0^2 \cdot T$
$ r = 1:   E_{gs}$ = { 1 3% } $\cdot g_0^2 T$
+
$r = 1\text{:} \ \ \ \  E_{g_s} \ = \ $ { 1 3% } $\ \cdot g_0^2 \cdot T$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Setzt man in die gegebene Gleichung r = 0 ein, so verschwinden im Zähler und Nenner die jeweils ersten Terme und man erhält:
+
'''(1)'''&nbsp; If we substitute&nbsp; $r = 0$&nbsp; into the given equation,&nbsp; the first terms in the numerator and denominator disappear and we get:
$$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm si} \left (\pi \cdot {t}/{T} \right )\hspace{0.05cm}.$$
+
: $$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm sinc} \left ( {t}/{T} \right )\hspace{0.05cm}.$$
Zum Zeitpunkt t = 0 ist der si–Impuls gleich 1 (mal $g_0$):
+
*At time&nbsp; $t = 0$,&nbsp;  ${\rm sinc} \left ( {t}/{T} \right ) =g_0$: &nbsp;
$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$
+
:$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; When&nbsp; $r = 1$,&nbsp; the given equation simplies as follows:
 +
:$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The&nbsp; <u>last answer</u>&nbsp; is correct:
 +
*Zero intercepts are only possible for&nbsp; $r = 1$&nbsp; if the cosine function in the numerator is zero,&nbsp; that is,&nbsp; for all integer values of &nbsp; $k$:
 +
:$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
 +
*However,&nbsp; only the last answer is correct,&nbsp; since the zero values at &nbsp; $±0.25T$&nbsp; are cancelled by the zero in the denominator.
 +
*Applying de l'Hospital's rule yields &nbsp; $g_s(t = ± 0.25T) = g_0$.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp;  With&nbsp; $r = 0.5$&nbsp; and the shortcut&nbsp; $x = t/T$,&nbsp; one gets:
 +
:$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
 +
 
 +
*For the calculation at time&nbsp; $t = 0$,&nbsp; de l'Hospital's rule must be applied.
 +
*The derivatives of the numerator and denominator give:
 +
:$$Z'(x)  =  2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
 +
[[File:P_ID1723__Mod_A_4_11b.png|right|frame|Basic transmission pulse&nbsp; (root-Nyquist)&nbsp; and basic detection pulse&nbsp; (Nyquist)]]
 +
 +
:$$N'(x)  =  \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
 +
*The two boundary transitions for&nbsp; $x → 0$&nbsp; yield:
 +
:$$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$
 +
*Thus, for the signal amplitude at time &nbsp; $t = 0$:
 +
:$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$
 +
 
 +
Here,&nbsp; the graph illustrates the results calculated again:
 +
*$g_d(t)$&nbsp; is a Nyquist pulse,&nbsp; meaning that it has zero crossings at least at all multiples of the symbol duration&nbsp; $T$&nbsp; (and possibly others depending on the rolloff factor).
 +
*On the other hand,&nbsp; the  pulse&nbsp; $g_s(t)$&nbsp; does not satisfy the Nyquist criterion.&nbsp; Moreover,&nbsp; from this plot one can once again see that for &nbsp; $r ≠ 0$&nbsp; the pulse amplitude $g_s(t = 0)$&nbsp; is always larger than $g_0$.
  
'''2.'''  Für r = 1 lässt sich die angegebene Gleichung wie folgt vereinfachen:
 
$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$
 
  
'''3.''' Nulldurchgänge sind für r = 1 nur dann möglich, wenn die Cosinusfunktion im Zähler den Wert 0 liefert, also für alle ganzzahligen Werte von k:
 
$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
 
Richtig ist aber nur der letzte Lösungsvorschlag, da die Nullstellen bei ± T/4 durch die Nullstelle im Nenner aufgehoben wird. Die Anwendung der Regel von de l'Hospital liefert $g_s(t = ± T/4) = g_0$.
 
  
'''4.''' Mit r = 0.5 und der Abkürzung x = t/T erhält man:
+
'''(5)'''&nbsp; The&nbsp; <u>last answer</u>&nbsp; is correct&nbsp; $($the first answer is ruled out from the results in questions&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp;$)$.&nbsp; The validity of the lower bound &nbsp; $g_0$&nbsp; and the upper bound &nbsp; $4g_0/π$&nbsp; can be proved as follows:
$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
+
* The pulse amplitude&nbsp; $g_s(t = 0)$&nbsp; is generally equal to the area under the spectral function&nbsp; $G_s(f)$.
 +
* The smallest area is obtained for&nbsp; $r = 0$.&nbsp; Here, &nbsp; $G_s(f) = g_0 · T$&nbsp; is in the range&nbsp; $|f| < ±1/(2T)$.&nbsp; Thus, the area is equal to&nbsp; $g_0$.
 +
* The largest area is obtained for&nbsp; $r = 1$. Here, &nbsp; $G_s(f)$&nbsp; extends to the range &nbsp; $±1/T$&nbsp; and has a cosine shape.
 +
*The result&nbsp; $g_s(t = 0) = 4g_0/π$&nbsp; was already calculated in question &nbsp; '''(3)'''&nbsp;.&nbsp; Though it still holds that:
 +
:$$g_s(t=0) = 2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$
  
Für die Berechnung zum Zeitpunkt t = 0 muss die Regel von de l'Hospital angewandt werden. Die Ableitungen von Zähler und Nenner ergeben:
 
$$Z'(x)  =  2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
 
$$N'(x)  =  \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
 
Die beiden Grenzübergänge für x → 0 liefern:
 
$$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$
 
Damit gilt für die Signalamplitude zum Zeitpunkt t = 0:
 
$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$
 
Die Grafik verdeutlicht nochmals die hier berechneten Ergebnisse. Der Impuls $g_d(t)$ ist ein Nyquistimpuls, das heißt, dass $g_d(t)$ zumindest bei allen Vielfachen der Symboldauer T Nulldurchgänge besitzt (je nach Rolloff–Faktor noch andere Nullstellen). Der Sendegrundimpuls $g_s(t)$ erfüllt die Nyquistbedingung nicht. Außerdem erkennt man aus dieser Darstellung nochmals, dass für r ≠ 0 die Impulsamplitude $g_s(t = 0)$ stets größer als $g_0$ ist.
 
[[File:P_ID1723__Mod_A_4_11b.png|P_ID1723__Mod_A_4_11b.png]]
 
  
'''5.'''  Richtig ist nur der letzte Lösungsvorschlag. Der erste Lösungsvorschlag scheidet bereits nach den Ergebnissen der Teilaufgaben b) und d) aus. Die Gültigkeit der Schranken $g_0$ und $4g_0/π$ lässt sich wie folgt nachweisen:
 
:* Die Impulsamplitude $g_s(t = 0)$ ist gleich der Fläche unter $G_s(f)$.
 
:* Die kleinste Fläche ergibt sich für r = 0. Hier ist $G_s(f) = g_0 · T$ im Bereich $|f| < ±1/(2T)$. Die Fläche ist somit gleich $g_0$.
 
:* Die größtmögliche Fläche ergibt sich für r = 1. Hier ist $G_s(f)$ auf den Bereich ±1/T ausgedehnt und hat einen cosinusförmigen Verlauf. Das Ergebnis $g_s(t = 0) = 4g_0/π$ wurde bereits in Teilaufgabe c) berechnet. Es gilt aber auch:
 
$$g_s(t=0)  =  2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x =$$
 
$$ = {4 g_0}/{\pi} \cdot \left[\sin(\pi/2) - \sin(0) \right] = {4 g_0}/{\pi}\hspace{0.05cm}.$$
 
  
'''6.''' Die Energie des Sendegrundimpulses $g_s(t)$ kann nach dem Satz von Parseval sowohl im Zeit– als auch im Frequenzbereich ermittelt werden:
+
'''(6)'''&nbsp; The energy of the basic transmission pulse &nbsp; $g_s(t)$&nbsp; can be found in the time or frequency domain according to Parseval's theorem:
$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
+
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
Aus den Gleichungen und der Grafik auf der Angabenseite erkennt man, dass $|G_s(f)|^2$ formgleich mit $G_d(f)$ ist, mit dem Unterschied, dass die Höhe ($g_0 · T)^2$ anstelle von $g_0 · T$ ist:
+
*From the equations and graph on the exercise page,&nbsp; we can see that &nbsp; $|G_s(f)|^2$&nbsp; has the same shape as &nbsp; $G_d(f)$,&nbsp; but the height is now &nbsp; $(g_0 · T)^2$&nbsp; instead of &nbsp; $g_0 · T$:
$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
+
:$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
Aufgrund der Nyquistform von $G_d(f)$ gilt aber unabhängig von r:
+
*Due to the Nyquist form of&nbsp; $G_d(f)$,&nbsp; it holds independently of &nbsp; $r$:
$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
+
:$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
Damit ist die Impulsenergie unabhängig von r, also auch gültig für r = 0 und r = 1: $E_ {gs} = 1.0 · g_0^2 · T.$
+
*Thus,&nbsp; the pulse energy is also independent of&nbsp; $r$,&nbsp; so it is also valid for &nbsp; $r = 0$&nbsp; and&nbsp; $r = 1$.&nbsp; In&nbsp; <u>both cases</u>,&nbsp;  $E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 103: Line 145:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.3 Quadratur–Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.3 Quadrature Amplitude Modulation^]]

Latest revision as of 13:07, 19 April 2022

Spectra of transmission pulse (above) and detection pulse (below)

In  "quadrature amplitude modulation"  $\rm (QAM)$  systems,  the  "root-Nyquist variant"  is often chosen  (which gets its name from the spectral range)  instead of a rectangular basic transmission pulse.  The reason for this is the significantly smaller bandwidth.

  • In this case,  the basic detection pulse  $g_d(t)$  satisfies the  first Nyquist criterion,  since  $G_d(f)$  is point-symmetric about the so-called  "Nyquist frequency"  $f_{\rm Nyq} = 1/T$ .
  • $G_d(f)$  is a  raised-cosine spectrum,  where the rolloff factor  $r$  can take values from $0$  to  $1$  (including these limits).


Furthermore,  the following holds for the Nyquist frequency response:

  • When  $|f| < f_1 = f_{\rm Nyq} · (1 – r)$   ⇒   $G_d(f)$  is constant and equal to  $g_0 · T$.
  • At frequencies greater than  $f_2 = f_{\rm Nyq} · (1 + r)$   ⇒   $G_d(f)$  has no components.
  • In between,  the slope is cosine.


The optimization of digital communication systems requires that the receiver frequency response  $H_{\rm E}(f)$  should be of the same shape as the transmission spectrum $G_s(f)$ .

To obtain dimensionally correct spectral functions for this task and the graph,  it is assumed that

$$G_s(f) = \sqrt{g_0 \cdot T \cdot G_d(f)},$$
$$ H_{\rm E}(f) = \frac{1}{g_0 \cdot T}\cdot G_s(f)\hspace{0.05cm}.$$

The top graph shows the transmission spectrum  $G_s(f)$  for the rolloff factors

  • $r = 0$   (green dotted rectangle),
  • $r = 0.5$   (blue solid curve),
  • $r = 1$   (red dashed curve).


Below,  the spectrum  $G_d(f)$  of the basic detection pulse before the decider is shown in the same colors.

  • The associated pulse   $g_d(t)$  is a Nyquist pulse  for all valid rolloff factors   $(0 ≤ r ≤ 1)$  as opposed to the basic transmission pulse   $g_s(t)$.
  • For this,  the following equation is given in the literature - for example in  [Kam04] :
$$g_s(t) = g_0 \cdot \frac{4 r t/T \cdot \cos \left [\pi \cdot (1+r) \cdot t/T \right ]+ \sin \left [\pi \cdot (1-r) \cdot t/T \right ]}{\left [1- (4 r t/T)^2 \right ] \cdot \pi \cdot t/T}\hspace{0.05cm}.$$



Hints:

  • This exercise belongs to the chapter  "Quadrature Amplitude Modulation".
  • Particular reference is made to the page   "Nyquist and Root-Nyquist systems"  in this chapter.
  • Further useful informations can be found in the chapter  Properties of Nyquist Systems  in the book  "Digital Signal Transmission".
  • [Kam04]  refers to the textbook  "Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4. Auflage, 2004".
  • Energies are to be specified in  $\rm V^2s$;  they thus refer to the reference resistance  $R = 1 \ \rm \Omega$.



Questions

1

What is the basic transmission pulse  $g_s(t)$  for the rolloff factor  $r = 0$?  What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

2

What is the basic transmission pulse  $g_s(t)$  for the rolloff factor $r = 1$?  What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

3

Let  $r = 1$.  At what times does  $g_s(t)$  cross the axis?

At all multiples of the symbol duration  $T$.
At  $t = ±0.25 T, \ ±0.75 T, \ ±1.25 T, \ ±1.75 T$, ...
At  $t = ±0.75 T, \ ±1.25 T,\ ±1.75 T$, ...

4

What is the basic transmission pulse  $g_s(t)$  for the rolloff factor  $r = 0.5$?  What is the signal value at time  $t = 0$?

$g_s(t = 0) \ = \ $

$\ \cdot g_0$

5

Which statements are valid for the pulse amplitude, independent of  $r$ ?  Solve using the frequency domain.

The pulse amplitude can take any value in the range   $0 ≤ g_s(t = 0) ≤ g_0$  .
The pulse amplitude can take any value in the range   $g_0 ≤ g_s(t = 0) ≤ 2 g_0$  .
The pulse amplitude can take any value in the range   $g_0 ≤ g_s(t = 0) ≤ 4 g_0/π$  .

6

What is the energy  $E_{g_s}$  of the basic transmission pulse  $g_s(t)$  when  $r = 0$  and  $r = 1$?

$r = 0\text{:} \ \ \ \ E_{g_s} \ = \ $

$\ \cdot g_0^2 \cdot T$
$r = 1\text{:} \ \ \ \ E_{g_s} \ = \ $

$\ \cdot g_0^2 \cdot T$


Solution

(1)  If we substitute  $r = 0$  into the given equation,  the first terms in the numerator and denominator disappear and we get:

$$g_s(t) = g_0 \cdot \frac{\sin \left (\pi \cdot t/T \right )}{\pi \cdot t/T} = g_0 \cdot {\rm sinc} \left ( {t}/{T} \right )\hspace{0.05cm}.$$
  • At time  $t = 0$,  ${\rm sinc} \left ( {t}/{T} \right ) =g_0$:  
$$ g_s(t) \hspace{0.15cm}\underline { = 1.0 } \cdot g_0 \hspace{0.05cm}.$$


(2)  When  $r = 1$,  the given equation simplies as follows:

$$g_s(t) = \frac{4 \cdot g_0}{\pi} \cdot \frac{ \cos \left (2 \pi \cdot t/T \right )}{\left [1- (4 t/T)^2 \right ] }\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g_s(t = 0) = \frac{4 \cdot g_0}{\pi} \hspace{0.15cm}\underline {= 1.273 }\cdot g_0 \hspace{0.05cm}.$$


(3)  The  last answer  is correct:

  • Zero intercepts are only possible for  $r = 1$  if the cosine function in the numerator is zero,  that is,  for all integer values of   $k$:
$$2 \pi \cdot t/T = {\pi}/{2} + k \cdot \pi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} t = \pm 0.25T, \hspace{0.15cm} \pm 0.75T, \hspace{0.15cm}\pm 1.25T, \hspace{0.15cm} ...$$
  • However,  only the last answer is correct,  since the zero values at   $±0.25T$  are cancelled by the zero in the denominator.
  • Applying de l'Hospital's rule yields   $g_s(t = ± 0.25T) = g_0$.



(4)  With  $r = 0.5$  and the shortcut  $x = t/T$,  one gets:

$$g_s(x) = \frac{g_0}{\pi} \cdot \frac{2 \cdot x \cdot \cos \left (1.5\pi \cdot x \right )+ \sin \left (0.5\pi \cdot x \right )}{\left (1- 4 \cdot x^2 \right ) \cdot x}\hspace{0.05cm}.$$
  • For the calculation at time  $t = 0$,  de l'Hospital's rule must be applied.
  • The derivatives of the numerator and denominator give:
$$Z'(x) = 2 \cdot \cos \left (1.5\pi \cdot x \right ) - 3 \pi \cdot x \cdot \sin \left (1.5\pi \cdot x \right ) + 0.5 \pi \cdot \cos \left (0.5\pi \cdot x \right ),$$
Basic transmission pulse  (root-Nyquist)  and basic detection pulse  (Nyquist)
$$N'(x) = \left (1- 4 \cdot x^2 \right ) - 8 \cdot x^2 \hspace{0.05cm}.$$
  • The two boundary transitions for  $x → 0$  yield:
$$\lim_{x \rightarrow 0} Z'(x) = 2 +{\pi }/{2},\hspace{0.2cm} \lim_{x \rightarrow 0} N'(x) = 1 \hspace{0.05cm}.$$
  • Thus, for the signal amplitude at time   $t = 0$:
$$g_s(t=0) = \frac{g_0}{\pi} \cdot \left ( 2 +{\pi }/{2} \right ) = {g_0} \cdot \left ( 0.5 + {2}/{\pi } \right )\hspace{0.15cm}\underline {= 1.137} \cdot g_0 \hspace{0.05cm}.$$

Here,  the graph illustrates the results calculated again:

  • $g_d(t)$  is a Nyquist pulse,  meaning that it has zero crossings at least at all multiples of the symbol duration  $T$  (and possibly others depending on the rolloff factor).
  • On the other hand,  the pulse  $g_s(t)$  does not satisfy the Nyquist criterion.  Moreover,  from this plot one can once again see that for   $r ≠ 0$  the pulse amplitude $g_s(t = 0)$  is always larger than $g_0$.


(5)  The  last answer  is correct  $($the first answer is ruled out from the results in questions  (2)  and  (4) $)$.  The validity of the lower bound   $g_0$  and the upper bound   $4g_0/π$  can be proved as follows:

  • The pulse amplitude  $g_s(t = 0)$  is generally equal to the area under the spectral function  $G_s(f)$.
  • The smallest area is obtained for  $r = 0$.  Here,   $G_s(f) = g_0 · T$  is in the range  $|f| < ±1/(2T)$.  Thus, the area is equal to  $g_0$.
  • The largest area is obtained for  $r = 1$. Here,   $G_s(f)$  extends to the range   $±1/T$  and has a cosine shape.
  • The result  $g_s(t = 0) = 4g_0/π$  was already calculated in question   (3) .  Though it still holds that:
$$g_s(t=0) = 2 \cdot {g_0} \cdot \int_{ 0 }^{1/T} {\cos\left(\frac{\pi }{2}\cdot f \cdot T \right)}\hspace{0.1cm} {\rm d}f = \frac{4 g_0}{\pi} \cdot \int_{ 0 }^{\pi/2} {\cos\left(x \right)}\hspace{0.1cm} {\rm d}x = {4 g_0}/{\pi} \cdot \big[\sin(\pi/2) - \sin(0) \big] = {4 g_0}/{\pi}\hspace{0.05cm}.$$


(6)  The energy of the basic transmission pulse   $g_s(t)$  can be found in the time or frequency domain according to Parseval's theorem:

$$E_{g_s} = \int_{ -\infty }^{+\infty} {[g_s(t)]^2}\hspace{0.1cm} {\rm d}t = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
  • From the equations and graph on the exercise page,  we can see that   $|G_s(f)|^2$  has the same shape as   $G_d(f)$,  but the height is now   $(g_0 · T)^2$  instead of   $g_0 · T$:
$$E_{g_s} = \int_{ -\infty }^{+\infty} {|G_s(f)|^2}\hspace{0.1cm} {\rm d}f = \frac{g_0^2 \cdot T^2}{g_0 \cdot T} \cdot \int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f \hspace{0.05cm}.$$
  • Due to the Nyquist form of  $G_d(f)$,  it holds independently of   $r$:
$$\int_{ -\infty }^{+\infty} {G_d(f)}\hspace{0.1cm} {\rm d}f = g_0 \hspace{0.05cm}.$$
  • Thus,  the pulse energy is also independent of  $r$,  so it is also valid for   $r = 0$  and  $r = 1$.  In  both cases,  $E_ {g_s}\hspace{0.15cm}\underline { = 1.0} · g_0^2 · T.$