Difference between revisions of "Mobile Communications/The GWSSUS Channel Model"

From LNTwww
Line 213: Line 213:
 
*The Fourier connections to the neighboring GWSSUS–system description functions are also marked.
 
*The Fourier connections to the neighboring GWSSUS–system description functions are also marked.
  
*We refer here to the interactive applet  [[Applets:To_clarify_the_Doppler_effect_(Applet)|To_clarify_the_Doppler_effect]].
+
*We refer here to the interactive applet  [[Applets:Clarifying_the_Doppler_Effect|Clarifying_the_Doppler_Effect]].
 
<br clear=all>
 
<br clear=all>
 
== ACF and PSD of the delay Doppler function ==
 
== ACF and PSD of the delay Doppler function ==
Line 239: Line 239:
 
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math>
 
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math>
  
[[File:P ID2171 Mob T 2 3 S6 v1.png|right|frame|Eindimensionale Beschreibungsfunktionen des GWSSUS–Modells|class=fit]]
+
[[File:P ID2171 Mob T 2 3 S6 v1.png|right|frame|One-dimensional description functions of the GWSSUS model [class=fit]]
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Die Abbildung fasst die bisherigen Ergebnisse dieses Kapitels zusammen.  
+
$\text{Conclusion:}$&nbsp; The figure summarizes the results of this chapter so far.  
  
Festzuhalten ist:  
+
It should be noted that  
  
'''(1)''' &nbsp; Der Einfluss der Verzögerungszeit (Laufzeit)&nbsp; $\tau$&nbsp; und der Dopplerfrequenz&nbsp; $f_{\rm D}$&nbsp; lässt sich  separieren
+
'''(1)''' &nbsp; The influence of the delay time &nbsp; $\tau$&nbsp; and the Doppler frequency&nbsp; $f_{\rm D}$&nbsp; can be separated into
*in das blaue Leistungsdichtespektrum ${\it \Phi}_{\rm V}(\tau)$, und
+
*the blue power spectral density ${\it \Phi}_{\rm V}(\tau)$, and
*das rote Leistungsdichtespektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$.<br>
+
*the red power spectral density ${\it \Phi}_{\rm D}(f_{\rm D})$.<br>
  
  
'''(2)''' &nbsp; Das 2D&ndash;Verzögerungs&ndash;Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; ist gleich dem Produkt aus diesen beiden Anteilen.}}
+
'''(2)'' &nbsp; The 2D&ndash;Delay&ndash;Doppler&ndash;Power Spectral Density&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; is equal to the product of these two fractions.}}
 
<br clear=all>
 
<br clear=all>
== AKF und LDS der zeitvarianten Übertragungsfunktion ==
+
== ACF and PSD of the time variant transfer function ==
 
<br>
 
<br>
Die folgende Grafik zeigt alle Zusammenhänge zwischen den einzelnen Leistungsdichtespektren nochmals in kompakter Form.  
+
The following diagram shows all the relationships between the individual power spectral densities once again in compact form.  
[[File:P ID2176 Mob T 2 3 S7 v1.png|right|frame|Kompakte Zusammenstellung aller GWSSUS–Beschreibungsgrößen|class=fit]]
+
[[File:P ID2176 Mob T 2 3 S7 v1.png|right|frame|Compact summary of all GWSSUS description sizes [class=fit]]
Auf den letzten Seiten wurden dabei bereits behandelt:
+
This has already been discussed on the last pages:
*das&nbsp; [[Mobile_Communications/Das_GWSSUS–Kanalmodell#Autokorrelationsfunktion_der_zeitvarianten_Impulsantwort|Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum]]:
+
*the&nbsp; [[Mobile_Communications/The_GWSSUS channel model#Autocorrelation function_of_the time_variant_impulse_response|Delay&ndash;Time&ndash;Cross-Power Density Spectrum]]:
:$${\it \Phi}_{\rm VZ}(\tau, \Delta t)\hspace{0.55cm}\Rightarrow \hspace{0.3cm}\text{mit}  \hspace{0.2cm}\Delta t = 0\text{:}  \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau),$$
+
$${\it \Phi}_{\rm VZ}(\dew, \delta t)\hspace{0.55cm}\Rightarrow \hspace{0.3cm}\text{with}  \hspace{0.2cm}\delta t = 0\text{:}  \hspace{0.2cm} {\it \Phi}_{\rm V}(\dew),$$
*das&nbsp; [[Mobile_Communications/Das_GWSSUS%E2%80%93Kanalmodell#AKF_und_LDS_der_frequenzvarianten_.C3.9Cbertragungsfunktion |Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum]]:
+
*the&nbsp; [[Mobile_Communications/The_GWSSUS channel model#ACF_and_PSD_of_the_frequency_variant_transmission function|Frequency&ndash;Doppler&ndash;cross-power spectral density]]:
:$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{mit}  \hspace{0.2cm}\Delta f = 0\text{:}  \hspace{0.2cm} {\it \Phi}_{\rm D}( f_{\rm D}),$$
+
:$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{with}  \hspace{0.2cm}\Delta f = 0\text{:}  \hspace{0.2cm} {\it \Phi}_{\rm D}( f_{\rm D}),$$
*das&nbsp; [[Mobile_Communications/Das_GWSSUS%E2%80%93Kanalmodell#AKF_und_LDS_der_Verz.C3.B6gerungs.E2.80.93Doppler.E2.80.93Funktion |Verzögerungs&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum]]:
+
*the&nbsp; [[Mobile_Communications/The_GWSSUS%E2%80%93Channel model#ACF_and_PSD_of_the_delay Doppler function |Delay&ndash;Doppler&ndash;Cross-Power Spectral Density ]]:
 
:$${\it \Phi}_{\rm VD}(\tau, f_{\rm D})= {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.$$
 
:$${\it \Phi}_{\rm VD}(\tau, f_{\rm D})= {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.$$
  
  
Bisher noch nicht betrachtet wurde die&nbsp; '''Frequenz&ndash;Zeit&ndash;Korrelationsfunktion''' <br>(in nebenstehender Grafik  gelb markiert):
+
The&nbsp; '''Frequency&ndash;Time&ndash;Correlation function''' <br>(marked yellow in the adjacent graph) has not yet been considered:
  
 
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot  
 
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot  
 
  \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.</math>
 
  \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.</math>
  
Berücksichtigt man wieder die GWSSUS&ndash;Vereinfachungen sowie die Identität&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t) = H(f, \hspace{0.05cm}t)$, so lässt sich die AKF mit&nbsp; $\Delta f = f_2 - f_1$&nbsp; und&nbsp; $\Delta t = t_2 - t_1$&nbsp; auch wie folgt schreiben:
+
Considering again the GWSSUS simplifications and the identity&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t) = H(f, \hspace{0.05cm}t)$, the ACF can be also written with&nbsp; $\Delta f = f_2 - f_1$&nbsp; and&nbsp; $\Delta t = t_2 - t_1$&nbsp; as follows:
  
 
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t)
 
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t)
Line 276: Line 276:
 
  H^{\star}(f + \Delta f, t + \Delta t) \big ]\hspace{0.05cm}.</math>
 
  H^{\star}(f + \Delta f, t + \Delta t) \big ]\hspace{0.05cm}.</math>
  
Hierzu ist anzumerken:
+
It should be noted in this respect:
*Schon an der Namensgebung ist zu erkennen, dass&nbsp; $\varphi_{\rm FZ}(\Delta f, \Delta t)$&nbsp; eine Korrelationsfunktion ist und kein Leistungsdichtespektrum wie die Funktionen&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$,&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; und&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$.<br>
+
*You can see from the name that&nbsp; $\varphi_{\rm FZ}(\Delta f, \Delta t)$&nbsp; is a correlation function and not a power spectral density like the functions&nbsp; $\varphi_{\rm FZ}(\Delta f, \Delta t)$&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$,&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; and&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$. <br>
  
*Die Fourierzusammenhänge mit den benachbarten Funktionen lauten:
+
*The Fourier connections with the neighboring functions are:
  
 
::<math>{\it \Phi}_{\rm VZ}(\tau, \Delta t)  
 
::<math>{\it \Phi}_{\rm VZ}(\tau, \Delta t)  
Line 286: Line 286:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Setzt man in dieser 2D&ndash; Funktion die Parameter&nbsp; $\Delta t = 0$&nbsp; bzw.&nbsp; $\Delta f = 0$, so ergeben sich die separaten Korrelationsfunktionen für den Frequenz&ndash; bzw. den Zeitbereich:
+
*If you set the parameters&nbsp; $\Delta t = 0$&nbsp; or &nbsp; $\Delta f = 0$ in this 2D&ndash; function, the separate correlation functions for the frequency domain or the time domain result:
  
 
::<math>\varphi_{\rm F}(\Delta f) =  \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},</math>
 
::<math>\varphi_{\rm F}(\Delta f) =  \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},</math>
 
::<math>\varphi_{\rm Z}(\Delta t) =  \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.</math>
 
::<math>\varphi_{\rm Z}(\Delta t) =  \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.</math>
  
*Aus obiger Grafik wird auch deutlich, dass diese Korrelationsfunktionen mit den hergeleiteten Leistungsdichtespektren über die Fouriertransformation korrespondieren:
+
*From the above graph it is also clear that these correlation functions correspond to the derived power spectral densities via Fourier transformation:
  
 
::<math>\varphi_{\rm F}(\Delta f) \hspace{0.2cm}  {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm},  
 
::<math>\varphi_{\rm F}(\Delta f) \hspace{0.2cm}  {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm},  
 
\hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm}  {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math><br>
 
\hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm}  {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math><br>
  
== Kenngrößen des GWSSUS–Modells==
+
== Parameters of the GWSSUS model==
 
<br>
 
<br>
Entsprechend den Ergebnissen der letzten Seite wird der Mobilfunkkanal durch
+
According to the results on the last page, the mobile channel is replaced by
*das Verzögerungs&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; und<br>
+
*the delay&ndash;power spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; and<br>
  
*das Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$<br><br>
+
*the Doppler&ndash;power spectral density&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$<br><br>
  
vollständig beschrieben.&nbsp; Durch geeignete Normierung auf die jeweilige Fläche&nbsp; $1$&nbsp; ergeben sich daraus die Dichtefunktionen bezüglich der Verzögerungszeit&nbsp; $\tau$&nbsp; bzw. der Dopplerfrequenz&nbsp; $f_{\rm D}$.<br>
+
By suitable normalization to the respective area&nbsp; $1$&nbsp; the density functions result with respect to the delay time&nbsp; $\tau$&nbsp; or the Doppler frequency&nbsp; $f_{\rm D}$.<br>
  
Aus den Leistungsdichtespektren bzw. den zugehörigen Korrelationsfunktionen können Kenngrößen abgeleitet werden.&nbsp; Die wichtigsten sind hier zusammengestellt:
+
Characteristic values can be derived from the power spectral densities or the corresponding correlation functions.&nbsp; The most important ones are listed here:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die&nbsp; '''Mehrwegeverbreiterung'''&nbsp; (englisch: &nbsp;<i>Time Delay Spread</i>&nbsp; oder&nbsp; <i>Multipath Spread</i>&nbsp;)&nbsp; $T_{\rm V}$&nbsp; gibt die Verbreiterung an, die ein Diracimpuls durch den Kanal im statistischen Mittel erfährt.&nbsp; $T_{\rm V}$&nbsp; ist definiert als die Standardabweichung&nbsp; $(\sigma_{\rm V})$&nbsp; der Zufallsgröße&nbsp; $\tau$:
+
$\text{Definition:}$&nbsp; The&nbsp; '''Multipath Spread''' &nbsp; or &nbsp; '''Time Delay Spread''' &nbsp; &nbsp; $T_{\rm V}$&nbsp; specifies the widening that a Dirac impulse experiences through the channel on statistical average. &nbsp; $T_{\rm V}$&nbsp; is defined as the standard deviation&nbsp; $(\sigma_{\rm V})$&nbsp; the random variable&nbsp; $\tau$:
 +
 
 +
 
  
 
::<math>T_{\rm V} = \sigma_{\rm V} = \sqrt{ {\rm E} \big [ \tau^2 \big ] - m_{\rm V}^2}
 
::<math>T_{\rm V} = \sigma_{\rm V} = \sqrt{ {\rm E} \big [ \tau^2 \big ] - m_{\rm V}^2}
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
*Der  Mittelwert&nbsp; $m_{\rm V} = {\rm E}\big[\tau \big]$&nbsp; ist eine für alle Signalanteile &bdquo;gleiche mittlere Laufzeit&rdquo; (englisch: &nbsp; <i>Average Excess Delay</i>).  
+
*The mean value&nbsp; $m_{\rm V} = {\rm E}\big[\tau \big]$&nbsp; is a "Average Excess Delay" for all signal components.  
*${\rm E} \big [ \tau^2 \big ] $&nbsp; ist als quadratischer Mittelwert zu berechnen.}}
+
*${\rm E} \big [ \tau^2 \big ] $&nbsp; is to be calculated as the root mean square value.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die&nbsp; '''Kohärenzbandbreite'''&nbsp; $B_{\rm K}$&nbsp; (englisch: &nbsp; <i>Coherence Bandwidth</i>&nbsp;)&nbsp; ist derjenige&nbsp; $\Delta f$&ndash;Wert, bei dem der Frequenz&ndash;Korrelationsfunktion betragsmäßig erstmals auf die Hälfte abgesunken ist.
+
$\text{Definition:}$&nbsp; The&nbsp; '''Coherence Bandwidth'''&nbsp; $B_{\rm K}$&nbsp; &nbsp; is the&nbsp; $\Delta f$&ndash;value at which the frequency's correlation function has dropped to half of its value for the first time.
  
 
::<math>\vert \varphi_{\rm F}(\Delta f = B_{\rm K})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm F}(\Delta f = 0)\vert \hspace{0.05cm}.</math>
 
::<math>\vert \varphi_{\rm F}(\Delta f = B_{\rm K})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm F}(\Delta f = 0)\vert \hspace{0.05cm}.</math>
  
*$B_{\rm K}$&nbsp; ist ein Maß für die Frequenzdifferenz, um die sich zwei harmonische Schwingungen mindestens unterscheiden müssen, damit sie völlig andere Kanalübertragungseigenschaften vorfinden.  
+
*$B_{\rm K}$&nbsp; is a measure of the minimum frequency difference by which two harmonic oscillations must differ in order to have completely different channel transmission characteristics.  
*Ist die Signalbandbreite&nbsp; $B_{\rm S} <B_{\rm K}$, so werden alle Spektralanteile durch den Kanal annähernd gleich verändert. <br>Das heißt: &nbsp; Genau dann liegt nichtfrequenzselektives Fading vor.}}
+
*If the signal bandwidth is&nbsp; $B_{\rm S} <B_{\rm K}$, then all spectral components are changed in approximately the same way by the channel. <br>This means: &nbsp; Precisely then there is a non-frequency selective fading.}}
  
  
{{GraueBox|TEXT=   
+
{{GrayBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; In der Grafik links dargestellt ist die Verzögerungsleistungsdichte&nbsp; ${\it \Phi}_{\rm V}(\tau)$
+
$\text{Example 2:}$&nbsp; The graphic on the left side shows the delay power density&nbsp; ${\it \Phi}_{\rm V}(\tau)$
[[File:P ID2177 Mob T 2 3 S8 v3.png|right|frame|Mehrwegeverbreiterung und Kohärenzbandbreite|class=fit]]
+
[[File:P ID2177 Mob T 2 3 S8 v3.png|right|frame|Multiplexing and coherence bandwidth|class=fit]]
*mit&nbsp; $T_{\rm V} = 1 \ \rm &micro;s$&nbsp; (rote Kurve),  
+
*with&nbsp; $T_{\rm V} = 1 \ \rm &micro;s$&nbsp; (red curve),  
*mit&nbsp; $T_{\rm V} = 2 \ \rm &micro; s$&nbsp; (blaue Kurve).  
+
*with&nbsp; $T_{\rm V} = 2 \ \rm &micro;s$&nbsp; (blue curve).  
  
  
In der rechten&nbsp; $\varphi_{\rm F}(\Delta f)$&ndash;Darstellung sind die Kohärenzbandbreiten  eingezeichnet:
+
In the right-hand&nbsp; $\varphi_{\rm F}(\delta f)$&ndash;representation, the coherence bandwidths are drawn in:
*$B_{\rm K} = 276 \ \rm kHz$&nbsp; (rote Kurve),  
+
*$B_{\rm K} = 276 \ \rm kHz$&nbsp; (red curve),  
*$B_{\rm K} = 138 \ \rm kHz$&nbsp; (blaue Kurve).
+
*$B_{\rm K} = 138 \ \rm kHz$&nbsp; (blue curve).
  
  
Man erkennt aus diesen Zahlenwerten:
+
You can see from these numerical values
*Die aus&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; berechenbare Mehrwegeverbreiterung&nbsp; $T_{\rm V}$&nbsp; steht mit der durch&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; festgelegten Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; in einem festen Verhältnis zueinander: &nbsp; $B_{\rm K} \approx 0.276/T_{\rm V}$.  
+
*The multipath spread &nbsp; $T_{\rm V}$&nbsp;,obtainable from &nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp;, and the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp;,determined by &nbsp; $\varphi_{\rm F}(\delta f)$&nbsp;, stand in a fixed relation to each other: &nbsp; $B_{\rm K} \approx 0.276/T_{\rm V}$.  
*Die oft&nbsp; [[Mobile_Communications/Mehrwegeempfang_beim_Mobilfunk#Koh.C3.A4renzbandbreite_in_Abh.C3.A4ngigkeit_von_M|benutzte Näherung]]&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 1/T_{\rm V}$&nbsp; ist hingegen bei exponentiellem&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; sehr ungenau.}}
+
*The often&nbsp; [[Mobile_Communications/Multipath reception in mobile communications#Coherence bandwidth as a function of M|used approximation]]&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 1/T_{\rm V}$&nbsp; is, however, very inaccurate at exponential&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp;.}}
  
  
Betrachten wir nun die Zeitvarianz&ndash;Kenngrößen, die von der Zeit&ndash;Korrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; bzw. vom Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; abgeleitet werden:
+
Let us now consider the time variance characteristics derived from the time correlation function&nbsp; $\varphi_{\rm Z}(\delta t)$&nbsp; or from the Doppler power spectral density&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp;:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die&nbsp; '''Korrelationsdauer''' $T_{\rm D}$&nbsp; (englisch: &nbsp; <i>Coherence Time</i>&nbsp;)&nbsp; gibt die Zeit an, die im Mittel vergehen muss, bis der Kanal seine Übertragungseigenschaften aufgrund der Zeitvarianz völlig geändert hat.&nbsp; Deren Definition ist ähnlich wie die Definition der Kohärenzbandbreite:
+
$\text{Definition:}$&nbsp; The&nbsp; '''Correlation Time''' $T_{\rm D}$&nbsp; specifies the average time that must elapse until the channel has completely changed its transmission properties due to the time variance.&nbsp; Its definition is similar to the definition of the coherence bandwidth:
  
 
::<math>\vert \varphi_{\rm Z}(\Delta t = T_{\rm D})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm Z}(\Delta t = 0)\vert  \hspace{0.05cm}.</math>}}
 
::<math>\vert \varphi_{\rm Z}(\Delta t = T_{\rm D})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm Z}(\Delta t = 0)\vert  \hspace{0.05cm}.</math>}}
Line 352: Line 354:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die&nbsp; '''Dopplerverbreiterung'''&nbsp; $B_{\rm D}$&nbsp; (oder &bdquo;Fading&ndash;Bandbreite&rdquo;, englisch: &nbsp; <i>Doppler Spread</i>&nbsp;)&nbsp; ist die mittlere Frequenzverbreiterung, die die einzelnen spektralen Signalanteile erfahren.&nbsp;  Bei der Berechnung geht man ähnlich vor wie bei der Mehrwegeverbreiterung, indem man die Dopplerverbreiterung&nbsp; $B_{\rm D}$&nbsp; als die Standardabweichung der Zufallsgröße&nbsp; $f_{\rm D}$&nbsp; berechnet:
+
$\text{Definition:}$&nbsp; The&nbsp; '''Doppler Spread''' &nbsp; $B_{\rm D}$&nbsp; is the average frequency broadening that the individual spectral signal components experience. &nbsp; The calculation is similar to multipath broadening in that the Doppler spread&nbsp; $B_{\rm D}$&nbsp; is calculated as the standard deviation of the random quantity&nbsp; $f_{\rm D}$&nbsp;:
  
 
::<math>B_{\rm D} = \sigma_{\rm D} = \sqrt{ {\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2}
 
::<math>B_{\rm D} = \sigma_{\rm D} = \sqrt{ {\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2}
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
*Zunächst ist aus&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; durch Flächennormierung auf&nbsp; $1$&nbsp; die Doppler&ndash;WDF zu ermitteln.
+
*First of all, the Doppler&ndash;PDF is to be determined from&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; through area normalization to&nbsp; $1$&nbsp;
*Daraus ergeben sich die mittlere Dopplerverschiebung&nbsp; $m_{\rm D} = {\rm E}[f_{\rm D}]$&nbsp; und die Standardabweichung&nbsp; $\sigma_{\rm D}$.}}<br>
+
*This results in the mean Doppler shift&nbsp; $m_{\rm D} = {\rm E}[f_{\rm D}]$&nbsp; and the standard deviation&nbsp; $\sigma_{\rm D}$.}}<br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Die Grafik gilt für einen zeitvarianten Kanal ohne Direktkomponente. Links dargestellt ist das&nbsp; [[Mobile_Communications/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading|Jakes&ndash;Spektrum]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$.  
+
$\text{Example 3:}$&nbsp; The diagram is valid for a time variant channel without direct component. Shown on the left is the&nbsp; [[Mobile_Communications/Statistical_bonds_within_the Rayleigh process#ACF_and_PSD_with_Rayleigh_fading|Jakes&ndash;Spectrum]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$.  
[[File:P ID2181 Mob T 2 3 S8b v1.png|right|frame|Dopplerverbreiterung und Korrelationsdauer|class=fit]]  
+
[[File:P ID2181 Mob T 2 3 S8b v1.png|right|frame|Doppler spread and correlation time|class=fit]]  
Die Dopplerverbreiterung&nbsp; $B_{\rm D}$&nbsp; lässt sich daraus ermitteln:
+
The Doppler spread&nbsp; $B_{\rm D}$&nbsp; can be determined from this:
 +
 
 
::<math>f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz}  \hspace{0.05cm},</math>
 
::<math>f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz}  \hspace{0.05cm},</math>
 
::<math>f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz}  \hspace{0.05cm}.</math>
 
::<math>f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz}  \hspace{0.05cm}.</math>
  
Die Zeitkorrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; als die Fourierrücktransformierte von&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; ist rechts skizziert.  
+
The time correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; is sketched on the right, as the Fourier transform of&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp;.  
  
Bei den gegebenen Randbedingungen lautet diese mit der Besselfunktion:
+
This can be expressed given boundary conditions and with the Bessel function as:
 
::<math>\varphi_{\rm Z}(\Delta t \hspace{-0.05cm} = \hspace{-0.05cm}T_{\rm D}) \hspace{-0.05cm}= \hspace{-0.05cm} {\rm J}_0(2 \pi \hspace{-0.05cm} \cdot \hspace{-0.05cm} f_{\rm D,\hspace{0.05cm}max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\Delta t ).</math>
 
::<math>\varphi_{\rm Z}(\Delta t \hspace{-0.05cm} = \hspace{-0.05cm}T_{\rm D}) \hspace{-0.05cm}= \hspace{-0.05cm} {\rm J}_0(2 \pi \hspace{-0.05cm} \cdot \hspace{-0.05cm} f_{\rm D,\hspace{0.05cm}max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\Delta t ).</math>
 
   
 
   
*Die Korrelationsdauer der blauen Kurve ist&nbsp; $T_{\rm D} = 4.84 \ \rm ms$.  
+
*The correlation duration of the blue curve is&nbsp; $T_{\rm D} = 4.84 \ \rm ms$.  
*Für&nbsp; $f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}$&nbsp; ist die Korrelationsdauer nur halb so groß.  
+
*For&nbsp; $f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}$&nbsp; the correlation duration is only half.  
*Allgemein gilt im vorliegenden Fall: &nbsp; $B_{\rm D} \cdot T_{\rm D}\approx 0.17$.}}
+
*In this case, it geneally applies: &nbsp; $B_{\rm D} \cdot T_{\rm D}\approx 0.17$.}}
 
<br clear=all>
 
<br clear=all>
== Simulation gemäß dem GWSSUS–Modell ==
+
== Simulation according to the GWSSUS model ==
 
<br>
 
<br>
Das abschließend nur kurz dargelegte <i>Monte&ndash;Carlo&ndash;Verfahren</i> zur Simulation eines GWSSUS&ndash;Mobilfunkkanals basiert auf Arbeiten von Rice [Ric44]<ref name='Ric44'>Rice, S.O.: ''Mathematical Analysis of Random Noise.'' BSTJ–23, pp. 282–232 und BSTJ–24, pp. 45–156, 1945.</ref> und Höher [Höh90]<ref name='Höh90'>Höher, P.: ''Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung.'' Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.</ref>.
+
The <i>Monte&ndash;Carlo&ndash;method</i>, shortly described for the simulation of a GWSSUS mobile communication channel is based on work by Rice [Ric44]<ref name='Ric44'>Rice, S.O.: ''Mathematical Analysis of Random Noise.'' BSTJ–23, pp. 282–232 und BSTJ–24, pp. 45–156, 1945.</ref> and Höher [Höh90]<ref name='Höh90'>Höher, P.: ''Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung.'' Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.</ref>.
  
*Die 2D&ndash;Impulsantwort wird durch eine Summe aus $M$ komplexen Exponentialfunktionen dargestellt.&nbsp; $M$&nbsp; ist als die Anzahl unterschiedlicher Pfade interpretierbar:
+
*The 2D&ndash;impulse response is represented by a sum of $M$ complex exponential functions.&nbsp; $M$&nbsp; can be interpreted as the number of different paths:
  
 
::<math>h(\tau,\ t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M}  \alpha_m  \cdot \delta (t - \tau_m) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}  \phi_{m} }\cdot {\rm e}^{ {\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m}      t}  
 
::<math>h(\tau,\ t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M}  \alpha_m  \cdot \delta (t - \tau_m) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}  \phi_{m} }\cdot {\rm e}^{ {\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m}      t}  
 
  \hspace{0.05cm}. </math>
 
  \hspace{0.05cm}. </math>
  
*Vor Beginn werden die Verzögerungen&nbsp; $\tau_m$,&nbsp; die Dämpfungsfaktoren&nbsp; $\alpha_m$,&nbsp; die gleichverteilten Phasen&nbsp; $\phi_m$&nbsp; und die Dopplerfrequenzen&nbsp; $f_{{\rm D},\hspace{0.05cm} m}$&nbsp; nach den GWSSUS&ndash;Vorgaben &bdquo;ausgewürfelt&rdquo;.&nbsp; Grundlage für das Auswürfeln der Dopplerfrequenzen&nbsp; $f_{{\rm D},\hspace{0.05cm} m}$&nbsp; ist das&nbsp; [[Mobile_Communications/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading |Jakes&ndash;Spektrum]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$,&nbsp; das&nbsp; &ndash; geeignet normiert &ndash;&nbsp; gleichzeitig die WDF der Dopplerfrequenzen angibt.<br>
+
*First, the delays&nbsp; $\tau_m$,&nbsp; the attenuation factors&nbsp; $\alpha_m$,&nbsp; the equally distributed phases&nbsp; $\phi_m$&nbsp; and the Doppler frequencies&nbsp; $f_{{\rm D},\hspace{0. 05cm} m}$&nbsp; will be randomly generated according to the GWSSUS specifications. The base for the random generation of the Doppler frequencies&nbsp; $f_{{\rm D},\hspace{0. 05cm} m}$&nbsp; is the&nbsp; [[Mobile_Communications/Statistical_bonds_within_the Rayleigh process#ACF_and_PSD_with_Rayleigh fading |Jakes&ndash;Spectrum]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$,&nbsp;which, appropiately normalized, simultaneously indicates the PDF of the Doppler frequencies.<br>
  
*Wegen&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; ist für alle&nbsp; $m$&nbsp; die Verzögerungszeit&nbsp; $\tau_m$&nbsp; unabhängig von der Dopplerfrequenz&nbsp; $f_{{\rm D},\hspace{0.05cm} m}$.&nbsp; Für den terrestrischen Landmobilfunk gilt dies mit guter Näherung.&nbsp; Für das Auswürfeln der Parameter&nbsp; $\alpha_m$&nbsp; und&nbsp; $\tau_m$,&nbsp; die das Verzögerungs&ndash;Leistungsdichtespektrum &nbsp;$ {\it \Phi}_{\rm V}(\tau)$&nbsp; bestimmen,  stehen die&nbsp; [[Mobile_Communications/Das_GWSSUS–Kanalmodell#AKF_und_LDS_der_zeitvarianten_Impulsantwort|COST&ndash;Profile]]&nbsp; $\rm RA$&nbsp; (<i>Rural Area</i>),&nbsp; $\rm TU$&nbsp; (<i>Typical Urban</i>),&nbsp; $\rm BU$&nbsp; (<i>Bad Urban</i>)&nbsp; und&nbsp; $\rm HT$&nbsp; (<i>Hilly Terrain</i>) zur Verfügung.<br>
+
*Because of&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})$&nbsp the delay time&nbsp; $\tau_m$&nbsp; is independent of the Doppler frequency&nbsp; $f_{{\rm D},\hspace{0. 05cm} m}$&nbsp; for all&nbsp; $m$&nbsp;.&nbsp; This is valid with good approximation, for terrestrial land mobile communication. &nbsp; For the random generation of the parameters&nbsp; $\alpha_m$&nbsp; and&nbsp; $\tau_m$,&nbsp; which determine the delay&ndash;power spectral density &nbsp;$ {\it \Phi}_{\rm V}(\tau)$&nbsp; the following &nbsp; [[Mobile_Communications/The_GWSSUS channel model#ACF_and_PSD_of_the_time_variant_impulse_response|COST profiles]]&nbsp; are available: $\rm RA$&nbsp; (<i>Rural Area</i>),&nbsp; $\rm TU$&nbsp; (<i>Typical Urban</i>),&nbsp; $\rm BU$&nbsp; (<i>Bad Urban</i>)&nbsp; and&nbsp; $\rm HT$&nbsp; (<i>Hilly Terrain</i>). <br>
  
*Je größer bei der Simulation die Anzahl&nbsp; $M$&nbsp; unterschiedlicher Pfade gewählt wird, um so besser wird eine reale Impulsantwort durch obige Gleichung angenähert.&nbsp; Die höhere Simulationsgenauigkeit geht allerdings auf Kosten der Simulationsdauer.&nbsp; In der Literatur werden für&nbsp; $M$&nbsp; günstige Werte zwischen&nbsp; $100$&nbsp; und&nbsp; $600$&nbsp; angegeben.<br>
+
*The greater the number  of different paths &nbsp; $M$&nbsp; is chosen for the simulation, the better a real impulse response is approximated by the above equation.&nbsp; However, the higher accuracy of the siulation is at the expense of its duration.&nbsp; In the literature, favorable values are given for&nbsp; $M$&nbsp; between&nbsp; $100$&nbsp; and&nbsp; $600$&nbsp; <br>
  
  
[[File:P ID2183 Mob T 2 3 S9a.png|right|frame|Zeitvariante Übertragungsfunktion<br>$($Betragsquadrat,&nbsp; simuliert$)$]]
+
[[File:P ID2183 Mob T 2 3 S9a.png|right|frame|Time variant transfer function<br>$($The absolute value squared is&nbsp; simulated$)$]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp; Die Grafik aus  [Hin08]<ref name='Hin08'>Hindelang, T.: ''Mobile Communications''.
+
$\text{Example 4:}$&nbsp; The graphic from [Hin08]<ref name='Hin08'>Hindelang, T.: ''Mobile Communications''.
Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, TU München, 2008.</ref> zeigt ein Simulationsergebnis: &nbsp; Als 2D&ndash;Plot ist&nbsp; $20 \cdot \lg \vert H(f, \hspace{0.1cm}t)\vert$&nbsp; dargestellt, wobei die zeitvariante Übertragungsfunktion&nbsp; $H(f, \hspace{0.1cm}t)$&nbsp; in diesem Tutorial auch mit&nbsp; $\eta_{\rm FZ}(f, \hspace{0.1cm}t)$&nbsp; bezeichnet wird.<br>
+
Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, TU München, 2008.</ref> shows a simulation result: &nbsp; &nbsp; $20 \cdot \lg \vert H(f, \hspace{0. 1cm}t)}t)\vert$&nbsp; is shown as a 2D&ndash;plot, where the time-variant transfer function&nbsp; $H(f, \hspace{0.1cm}t)$&nbsp; is also referred to as&nbsp; $\eta_{\rm FZ}(f, \hspace{0.1cm}t)$&nbsp; in this tutorial&nbsp.<br>
  
Der Simulation liegen folgende Parameter zugrunde:
+
The simulation is based on the following parameters:
*Die Zeitvarianz entsteht durch eine Bewegung mit&nbsp; $v = 3 \ \rm km/h$.  
+
*The time variance results from a movement with&nbsp; $v = 3 \ \rm km/h$.  
*Die Trägerfrequenz ist&nbsp; $f_{\rm T} = 2 \ \rm GHz$.<br>
+
*The carrier frequency is&nbsp; $f_{\rm T} = 2 \ \rm GHz$.<br>
  
*Die maximale Verzögerungszeit beträgt&nbsp; $\tau_{\rm max} \approx 0.4 \ \rm &micro; s$.
+
*The maximum delay time is&nbsp; $\tau_{\rm max} \approx 0.4 \ \rm &micro; s$.
* Daraus ergibt sich nach der Näherung für die Kohärenzbandbreite&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 2.5 \ \rm MHz$.<br>
+
* According to the approximation we obtain the coherence bandwidth&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 2.5 \ \rm MHz$.<br>
  
*Die maximale Dopplerfrequenz ist&nbsp; $f_\text{D, max} \approx 5.5 \ \rm Hz$.
+
*The maximum Doppler frequency is&nbsp; $f_\text{D, max} \approx 5.5 \ \rm Hz$.
* Die Dopplerverbreiterung ergibt sich zu&nbsp; $B_{\rm D} \approx 4 \ \rm Hz$.}}
+
* The Doppler spread results in&nbsp; $B_{\rm D} \approx 4 \ \rm Hz$.}}
 
<br clear=all>
 
<br clear=all>
  
==Aufgaben zum Kapitel==
+
==Excercises to the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_2.5:_Scatter-Funktion|Aufgabe 2.5: Scatter-Funktion]]
+
[[Aufgaben:Exercise 2.5: Scatter Function]]
  
[[Aufgaben:Aufgabe_2.5Z:_Mehrwege-Szenario|Aufgabe 2.5Z: Mehrwege-Szenario]]
+
[[Aufgaben:Exercise 2.5Z: Multi-Path Scenario]]
  
[[Aufgaben:Aufgabe_2.6:_Einheiten_bei_GWSSUS|Aufgabe 2.6: Einheiten bei GWSSUS]]
+
[[Aufgaben:Exercise 2.6: Dimensions in GWSSUS]]
  
[[Aufgaben:Aufgabe_2.7:_Kohärenzbandbreite|Aufgabe 2.7: Kohärenzbandbreite]]
+
[[Aufgaben:Exercise 2.7: Coherence Bandwidth]]
  
[[Aufgaben:Aufgabe_2.7Z:_Kohärenzbandbreite_des_LZI–Zweiwegekanals|Aufgabe 2.7Z: Kohärenzbandbreite des LZI–Zweiwegekanals]]
+
[[Aufgaben:Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel]]
  
[[Aufgaben:Aufgabe_2.8:_COST-Verzögerungsmodelle|Aufgabe 2.8: COST-Verzögerungsmodelle]]
+
[[Aufgaben:Exercise 2.8: COST Delay Models]]
  
[[Aufgaben:Aufgabe_2.9:_Korrelationsdauer|Aufgabe 2.9: Korrelationsdauer]]
+
[[Aufgaben:Exercise 2.9: Coherence Time]]
  
==Quellenverzeichnis==
+
==List of sources==
  
 
<references/>
 
<references/>

Revision as of 14:40, 19 July 2020

Generalized system functions of time variant systems


Linear time-invariant systems  $\rm (LTI)$  can be completely described with only two system functions, the transfer function  $H(f)$  and the impulse response  $h(t)$ – $h(\tau)$ after renaming  –, in contrast, four different functions are possible with time-variant systems  $\rm (LTV)$ .   There is no formal differentiation of these functions with regard to time and frequency domain representation by a lowercase and uppercase letters.

Therefore a nomenclature change will be made, which can be formalized as follows:

  • The four possible system functions are uniformly denoted by  $\boldsymbol{\eta}_{12}$ .
  • The first subindex is either a  $\boldsymbol{\rm V}$  $($delay time  $\tau)$  or a  $\boldsymbol{\rm F}$  $($frequency  $f)$.
  • Either a  $\boldsymbol{\rm Z}$  $($Time  $t)$  or a  $\boldsymbol{\rm D}$  $($Doppler frequency  $f_{\rm D})$  is possible as the second subindex.
Relation between the four system functions


Since, in contrast to line-based transmission, the system functions of mobile communications cannot be described deterministically, but are statistical variables, the corresponding correlation functions must be considered later on. 

In the following, we will refer to these as  $\boldsymbol{\varphi}_{12}$,  and use the same indices as for the system functions  $\boldsymbol{\eta}_{12}$.

These formalized designations are inscribed in the graphic in blue letters.

  • Additionally, the designations used in other chapters or literature are given  (grey letters).
  • In the other chapters these are also partly used.


  • At the top you can see the  time variant impulse response   ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t) \equiv h(\tau,\hspace{0.05cm} t)$  in the delay–time range.  The associated autocorrelation function (ACF) is
\[\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \big[ \eta_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \big]\hspace{0.05cm}. \]
  • For the  frequency–time representation  you get the  time-variant transfer function   ${\eta}_{\rm FZ}(f,\hspace{0.05cm} t) \equiv H(f,\hspace{0.05cm} t)$.  The Fourier transform with respect to  $\tau$  is represented in the graph by  ${\rm F}_\tau\hspace{0.05cm}[ \cdot ]$ .  The Fourier integral is written out in full:
\[\eta_{\rm FZ}(f, \hspace{0.05cm} t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau,\hspace{0.05cm} t) \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}, \hspace{0.3cm} \text{kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t) \hspace{0.05cm}.\]

The ACF of this time variant transfer function is general:

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \big [ \eta_{\rm FZ}(f_1, t_1) \cdot \eta_{\rm FZ}^{\star}(f_2, t_2) \big ]\hspace{0.05cm}.\]
  • The  Scatter–Function  ${\eta}_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) \equiv s(\tau,\hspace{0.05cm} f_{\rm D})$  corresponding to the left block describes the mobile communications channel in the  Delay–Doppler Area.   The function parameter  $f_{\rm D}$  describes the  Doppler frequency.   The scatter function results from the time variant impulse response  ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t)$  through Fourier transformation with respect to the second parameter  $t$:
\[ \eta_{\rm VD}(\tau, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ] \hspace{0.05cm}.\]
  • Finally, we consider the so-called  frequency-variant transfer function, i.e. the  frequency–Doppler representation.  According to the graph, this can be reached in two ways:
\[\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},\]
\[\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.\]

$\text{Hints:}$ 

  • The specified Fourier correlations between the system functions in the graph are illustrated by the outer, dark green arrows and are marked with   ${\rm F}_p\hspace{0.05cm}[\hspace{0.05cm} \cdot \hspace{0.05cm}]$   .  $p$  indicates to which parameter  $\tau$,  $f$,  $t$  or  $f_{\rm D}$  does the Fourier transformation refer.
  • The inner  (lighter)  arrows indicate the links via the  inverse Fourier transform  (inverse Fourier transform).   For this we use the notation  ${ {\rm F}_p}^{-1}\hspace{0.05cm}[ \hspace{0.05cm} \cdot \hspace{0.05cm} ]$.
  • The applet  Impulses and Spectra illustrates the connection between the time and frequency domain, which can be described by formulas using Fourier transformation and Fourier inverse transformation.


Simplifications due to the GWSSUS requirements


The general relationship between the four system functions is very complicated due to non-stationary effects.

Connections between the description functions of the GWSSUS model

Compared to the general model, some limitations have to be made in order to arrive at a suitable model for the mobile communications channel from which relevant statements for practical applications can be derived.

The following definitions lead to the  $\rm GWSSUS$ model 
$( \rm G$aussian  $\rm W$ide  $\rm S$ense  $\rm S$tationary  $\rm U$ncorrelated  $\rm S$cattering$)$:

  • The random process of the channel impulse response  $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$  is generally assumed to be complex  (i.e., description in the equivalent low-pass range),  Gaussian  $($identifier  $\rm G)$  and zero-mean  (Rayleigh, not Rice, that means, no line of sight)  .
  • The random process is weakly stationary  ⇒   its characteristics change only slightly with time, and the ACF  $ {\varphi}_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1,\hspace{0.05cm}\tau_2,\hspace{0.05cm} t_2)$  of the time variant impulse response does not depend on the absolute times  $t_1$  and  $t_2$  but only on the time difference  $\Delta t = t_2 - t_1$.   This is indicated by the identifier  $\rm WSS$    ⇒   $\rm W$ide $\rm S$ense $\rm S$tationary.
  • The individual echoes due to multipath propagation are uncorrelated, which is expressed by the identifier  $\rm US$   ⇒   $\rm U$ncorrelated $\rm S$cattering.


The mobile communications channel can be described in full according to this graph.  The individual power density spectra  (labeled blue)  and the correlation function  (labeled red)  is explained in detail in the following pages.


Autocorrelation function of the time variant impulse response


We now consider the  Autocorrelation Function  $\rm (ACF)$  of the time variant impulse response   ⇒   $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$  more closely.  It shows

  • Based on the  $\rm WSS$ property, the autocorrelation function can be written with  $\Delta t = t_2 - t_1$ :
\[\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = \varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t)\hspace{0.05cm}.\]
  • Since the echoes were assumed to be independent of each other  $\rm (US$ property$)$, the impulse response can be assumed to be uncorrelated with respect to the delays  $\tau_1$  and  $\tau_2$  Then:
\[\varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t) = 0 \hspace{0.35cm}{\rm f\ddot{u}r}\hspace{0.35cm} \tau_1 \ne \tau_2\hspace{0.05cm}. \]
  • If one now replaces  $\tau_1$  with  $\tau$  and  $\tau_2$  with  $\tau + \Delta \tau$, this autocorrelation function can be represented in the following way:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. \]
  • Because of the convolution property of the Dirac function, the ACF for  $\tau_1 \ne \tau_2$   ⇒   $\Delta \tau \ne 0$ disappears.


  • $ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.1cm}$  is the  delay–time–cross power spectrual density , which depends on the delay  $\tau \ (= \tau_1 =\tau_2)$  and on the time difference  $\Delta t = t_2 - t_1$ .



$\text{Please note:}$ 

  • With this approach, autocorrelation function  $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$  and power spectral density   ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  are not connected via the Fourier transform as usual, but are linked via a Dirac function:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. \]
  • Not all symmetry properties that follow from the  Wiener–Chintchine–Theorem  are thus given here. In particular it is quite possible and even very likely that such a power spectral density is an odd function.


In the overview on the last page, the  Delay–Time Cross power spectral density  ${\it \Phi}_{\rm VZ}(\tau, \delta t) $  can be seen in the top middle.

  • Since  $\eta_{\rm VZ}(\tau, t) $  ,like any  Impulse Response,  has the unit  $\rm [1/s]$ , the autocorrelation function has the unit  $\rm [1/s^2]$:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = {\rm E} \left [ \eta_{\rm VZ}(\tau, t) \cdot \eta_{\rm VZ}^{\star}(\tau + \Delta \tau, t + \Delta t) \right ].\]
  • But since the Dirac function with the time argument   $\delta(\Delta \tau)$ also has the unit  $\rm [1/s]$  the delay–time–cross power spectral density  ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  also has the unit $\rm [1/s]$:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.\]

Power spectral density of the time variant impulse response


Delay power spectral density

One obtains the   Delay–power spectral density   ${\it \Phi}_{\rm V}(\Delta \tau)$  by setting the second parameter  ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$  in the function  $\Delta t = 0$ .   The graphic on the right shows an exemplary curve.

The delay–power spectral density is a central quantity for the description of the mobile communications channel.  This has the following characteristics:

  • ${\it \Phi}_{\rm V}(\Delta \tau_0)$  is a measure for the "power" of those signal components which are delayed by  $\tau_0$ .  For this purpose, an implicit averaging over all Doppler frequencies  $(f_{\rm D})$  is carried out.
  • The delay–power spectral density  ${\it \Phi}_{\rm V}(\Delta \tau)$  has, like  ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$ , the unit  $\rm [1/s]$.   It characterizes the power distribution over all possible delay times  $\tau$.
  • In the above graphic, the power  $ P_0 \approx {\it \Phi}_{\rm V}(\Delta \tau_0)\cdot \Delta \tau$  of those signal components that arrive at the receiver via any path with a delay between  $\tau_0 \pm \Delta \tau/2$ 
  • Normalizing the power spectral density  ${\it \Phi}_{\rm V}(\Delta \tau)$  in such a way that the area is  $1$  results in the  probability density function  $\rm (PDF)$ of the delay time:
\[{\rm PDF}_{\rm V}(\tau) = \frac{{\it \Phi}_{\rm V}(\tau)}{\int_{0 }^{\infty}{\it \Phi}_{\rm V}(\tau)\hspace{0.15cm}{\rm d}\tau} \hspace{0.05cm}.\]

Note on nomenclature:

  • In the book "Stochastic Signal Theory" we would have denoted this  Probability Density Function  with  $f_\tau(\tau)$ .
  • To make the connection between  ${\it \Phi}_{\rm V}(\Delta \tau)$  and the PDF clear and to avoid confusion with the frequency  $f$  we use the nomenclature given here.


$\text{Example 1: Delay models according to COST 207}$

In the 1990s, the European Union founded the working group COST 207 with the aim to provide standardized channel models for cellular mobile communications.  where "COST" stands for  European Cooperation in Science and Technology.

In this international committee profiles for the delay time  $\tau$  have been developed, based on measurements and valid for different application scenarios.   In the following, four different delay–power spectral densities are given, where the normalization factor  ${\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0)$  is always used.  The graph shows the delay–power density of these profiles in logarithmic representation:

Delay power density according to COST

(1)  profile $\rm RA$ (Rural Area)   ⇒   rural area:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.3cm}{\rm in \hspace{0.15cm}range}\hspace{0.3cm} 0 < \tau < 0.7\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.109\,{\rm µ s}\hspace{0.05cm}.\]

(2)  profile $\rm TU$ (Typical Urban)   ⇒   cities and suburbs:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.3cm}{\rm in \hspace{0.15cm}range}\hspace{0.3cm} 0 < \tau < 7\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s}\hspace{0.05cm}.\]

(3)  profile $\rm BU$ (Bad Urban)   ⇒   unfavourable conditions in cities:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\ 0.5 \cdot {\rm e}^{ (5\,{\rm µ s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}l} \hspace{0.1cm} {\rm für}\hspace{0.3cm} 0 < \tau < 5\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s}\hspace{0.05cm}, \\ \hspace{0.1cm} {\rm für}\hspace{0.3cm} 5\,{\rm µ s} < \tau < 10\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \\ \end{array}\]

(4)  profile $\rm HT$ (Hilly Terrain)   ⇒   hilly and mountainous regions:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\ 0.04 \cdot {\rm e}^{ (15\,{\rm µ s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}l} \hspace{-0.25cm} {\rm für}\hspace{0.3cm} 0 < \tau < 2\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm µ s}\hspace{0.05cm}, \\ \hspace{-0.25cm} {\rm for}\hspace{0.3cm} 15\,{\rm µ s} < \tau < 20\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \\ \end{array}\]

One can tell from the graphics:

  • The exponential functions in linear representation now become straight lines.
  • For logarithmic display, you can read the PSD parameter  $\tau_0$  for  $\rm 10 \cdot lg \ (1/e) = -4.34 \ dB$  as shown in the graph for the  $\rm TU$ profile.
  • These four COST–profiles are described in the  Excercise 2.8  in more detail.


ACF and PSD of the frequency-variant transfer function


The system function   $\eta_{\rm FD}(f, f_{\rm D})$  described in the nbsp; overview on the first page of this chapter  is also known as the  frequency-variant transfer function  where the adjective "frequency-variant" refers to the Doppler frequency

The associated ACF is defined as follows:

\[\varphi_{\rm FD}(f_1, f_{\rm D_1}, f_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm FD}(f_1, f_{\rm D_1}) \cdot \eta_{\rm FZ}^{\star}(f_2, f_{\rm D_2}) \right ]\hspace{0.05cm}. \]

By similar considerations as on the  previous page  this autocorrelation function can be represented under GWSSUS–conditions as follows

\[\varphi_{\rm FD}(\Delta f, \Delta f_{\rm D}) = \delta(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \hspace{0.05cm}.\]

The following applies:

  • ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  is the so-called  frequency–Doppler–cross power spectral density, which is highlighted in the graphic at the end of the page by a yellow background.
  • The first argument  $\Delta f = f_2 - f_1$  takes into account that ACF and PSD depend only on the frequency difference due to the  stationarity .
  • The factor  $\delta (\Delta f_{\rm D})$  with  $\Delta f_{\rm D} = f_{\rm D_2} - f_{\rm D_1}$  expresses the uncorrelation of the PSD with respect to the Doppler shift.
  • You get from  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  to  Doppler–Power Spectral Density   ${\it \Phi}_{\rm D}(f_{\rm D})$ if you set  $\Delta f= 0$ 
  • The Doppler–power spectral density  ${\it \Phi}_{\rm D}(f_{\rm D})$  indicates the power with which individual Doppler frequencies occur.
  • The  probability density  of the Doppler frequency is obtained from  ${\it \Phi}_{\rm D}(f_{\rm D})$  by suitable surface normalization.   The PDF has like  ${\it \Phi}_{\rm D}(f_{\rm D})$  the unit  $\rm [1/Hz]$ 
To calculate the Doppler power spectral density
\[{\rm PDF}_{\rm D}(f_{\rm D}) = \frac{{\it \Phi}_{\rm D}(f_{\rm D})}{\int_{-\infty }^{+\infty}{\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.15cm}{\rm d}f_{\rm D}} \hspace{0.05cm}.\]
  • Often, for example for a vertical monopulse antenna in an isotropically scattered field, the  ${\it \Phi}_{\rm D}(f_{\rm D})$  given through the  Jakes–spectrum .


The frequency–Doppler–cross power spectral density   ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  is highlighted in yellow.

  • The Fourier connections to the neighboring GWSSUS–system description functions are also marked.


ACF and PSD of the delay Doppler function


The system function shown in the  Overview on the first page of this chapter  on the left hand side was named  $\eta_{\rm VD}(\tau, f_{\rm D})$ .   The ACF of this delay–Doppler–function can be written with  $\Delta \tau = \tau_2 - \tau_1$  and  $\Delta f_{\rm D} = f_{\rm D2} - f_{\rm D1}$  taking into account the GWSSUS properties with  $\Delta \tau = \tau_2 - \tau_1$  and  $\Delta f_{\rm D}{\rm D2} = f_{\rm D2} - f_{\rm D1}$  as follows

\[\varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = \varphi_{\rm VD}(\Delta \tau, \Delta f_{\rm D}) = \delta(\Delta \tau) \cdot {\rm \delta}(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{0.05cm}.\]

It should be noted about this equation:

  • The first Dirac function  $\delta (\delta \tau)$  takes into account that the delays are uncorrelated ("Uncorrelated Scattering").
  • The second Dirac function  $\delta (\Delta f_{\rm D})$  follows from the stationarity ("Wide Sense Stationary").
  • The delay–Doppler–power spectral density   ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  – also called  Scatter–LDS  – can be derived from  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$  or   ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$ :
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) ={\rm F}_{\Delta t} \big [ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \big ] = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VZ}(\tau, \Delta t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm D} \hspace{0.05cm}\cdot \hspace{0.05cm}\Delta t}\hspace{0.15cm}{\rm d}\Delta t \hspace{0.05cm},\]
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\rm F}_{f_{\rm D}}^{-1} \big [ {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \big ] = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \cdot {\rm e}^{+{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \tau \hspace{0.05cm}\cdot \hspace{0.05cm} \Delta f}\hspace{0.15cm}{\rm d}\Delta f \hspace{0.05cm}. \]
  • Both the system function  $\eta_{\rm VD}(\tau, f_{\rm D})$  and the derived functions  $\varphi _{\rm VD}(\delta \tau, \delta f_{\rm D})$  and  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  are dimensionless.   For more information on this, see the specification for  Excercise 2.6.
  • Furthermore, if the GWSSUS requirements are met, the scatter function is equal to the product of the delay's and Doppler's power spectral densities:
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.\]
One-dimensional description functions of the GWSSUS model [class=fit

$\text{Conclusion:}$  The figure summarizes the results of this chapter so far.

It should be noted that

(1)   The influence of the delay time   $\tau$  and the Doppler frequency  $f_{\rm D}$  can be separated into

  • the blue power spectral density ${\it \Phi}_{\rm V}(\tau)$, and
  • the red power spectral density ${\it \Phi}_{\rm D}(f_{\rm D})$.


'(2)   The 2D–Delay–Doppler–Power Spectral Density  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  is equal to the product of these two fractions.


ACF and PSD of the time variant transfer function


The following diagram shows all the relationships between the individual power spectral densities once again in compact form.

Compact summary of all GWSSUS description sizes [class=fit

This has already been discussed on the last pages:

$${\it \Phi}_{\rm VZ}(\dew, \delta t)\hspace{0.55cm}\Rightarrow \hspace{0.3cm}\text{with} \hspace{0.2cm}\delta t = 0\text{:} \hspace{0.2cm} {\it \Phi}_{\rm V}(\dew),$$

$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{with} \hspace{0.2cm}\Delta f = 0\text{:} \hspace{0.2cm} {\it \Phi}_{\rm D}( f_{\rm D}),$$
$${\it \Phi}_{\rm VD}(\tau, f_{\rm D})= {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.$$


The  Frequency–Time–Correlation function
(marked yellow in the adjacent graph) has not yet been considered:

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.\]

Considering again the GWSSUS simplifications and the identity  $\eta_{\rm FZ}(f, \hspace{0.05cm}t) = H(f, \hspace{0.05cm}t)$, the ACF can be also written with  $\Delta f = f_2 - f_1$  and  $\Delta t = t_2 - t_1$  as follows:

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t) = {\rm E} \big [ H(f, t) \cdot H^{\star}(f + \Delta f, t + \Delta t) \big ]\hspace{0.05cm}.\]

It should be noted in this respect:

  • You can see from the name that  $\varphi_{\rm FZ}(\Delta f, \Delta t)$  is a correlation function and not a power spectral density like the functions  $\varphi_{\rm FZ}(\Delta f, \Delta t)$  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$,  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  and  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$.
  • The Fourier connections with the neighboring functions are:
\[{\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.2cm} \stackrel{\tau, \hspace{0.05cm}\Delta f}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \varphi_{\rm FZ}(\Delta f, \hspace{0.05cm}\Delta t) \hspace{0.2cm} \stackrel{\Delta t,\hspace{0.05cm} f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm FD}(\Delta f,\hspace{0.05cm} f_{\rm D}) \hspace{0.05cm}.\]
  • If you set the parameters  $\Delta t = 0$  or   $\Delta f = 0$ in this 2D– function, the separate correlation functions for the frequency domain or the time domain result:
\[\varphi_{\rm F}(\Delta f) = \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},\]
\[\varphi_{\rm Z}(\Delta t) = \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.\]
  • From the above graph it is also clear that these correlation functions correspond to the derived power spectral densities via Fourier transformation:
\[\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}, \hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm} {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.\]

Parameters of the GWSSUS model


According to the results on the last page, the mobile channel is replaced by

  • the delay–power spectral density  ${\it \Phi}_{\rm V}(\tau)$  and
  • the Doppler–power spectral density  ${\it \Phi}_{\rm D}(f_{\rm D})$

By suitable normalization to the respective area  $1$  the density functions result with respect to the delay time  $\tau$  or the Doppler frequency  $f_{\rm D}$.

Characteristic values can be derived from the power spectral densities or the corresponding correlation functions.  The most important ones are listed here:

$\text{Definition:}$  The  Multipath Spread   or   Time Delay Spread     $T_{\rm V}$  specifies the widening that a Dirac impulse experiences through the channel on statistical average.   $T_{\rm V}$  is defined as the standard deviation  $(\sigma_{\rm V})$  the random variable  $\tau$:


\[T_{\rm V} = \sigma_{\rm V} = \sqrt{ {\rm E} \big [ \tau^2 \big ] - m_{\rm V}^2} \hspace{0.05cm}.\]
  • The mean value  $m_{\rm V} = {\rm E}\big[\tau \big]$  is a "Average Excess Delay" for all signal components.
  • ${\rm E} \big [ \tau^2 \big ] $  is to be calculated as the root mean square value.


$\text{Definition:}$  The  Coherence Bandwidth  $B_{\rm K}$    is the  $\Delta f$–value at which the frequency's correlation function has dropped to half of its value for the first time.

\[\vert \varphi_{\rm F}(\Delta f = B_{\rm K})\vert \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm F}(\Delta f = 0)\vert \hspace{0.05cm}.\]
  • $B_{\rm K}$  is a measure of the minimum frequency difference by which two harmonic oscillations must differ in order to have completely different channel transmission characteristics.
  • If the signal bandwidth is  $B_{\rm S} <B_{\rm K}$, then all spectral components are changed in approximately the same way by the channel.
    This means:   Precisely then there is a non-frequency selective fading.


GrayBox


Let us now consider the time variance characteristics derived from the time correlation function  $\varphi_{\rm Z}(\delta t)$  or from the Doppler power spectral density  ${\it \Phi}_{\rm D}(f_{\rm D})$ :

$\text{Definition:}$  The  Correlation Time $T_{\rm D}$  specifies the average time that must elapse until the channel has completely changed its transmission properties due to the time variance.  Its definition is similar to the definition of the coherence bandwidth:

\[\vert \varphi_{\rm Z}(\Delta t = T_{\rm D})\vert \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm Z}(\Delta t = 0)\vert \hspace{0.05cm}.\]


$\text{Definition:}$  The  Doppler Spread   $B_{\rm D}$  is the average frequency broadening that the individual spectral signal components experience.   The calculation is similar to multipath broadening in that the Doppler spread  $B_{\rm D}$  is calculated as the standard deviation of the random quantity  $f_{\rm D}$ :

\[B_{\rm D} = \sigma_{\rm D} = \sqrt{ {\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2} \hspace{0.05cm}.\]
  • First of all, the Doppler–PDF is to be determined from  ${\it \Phi}_{\rm D}(f_{\rm D})$  through area normalization to  $1$ 
  • This results in the mean Doppler shift  $m_{\rm D} = {\rm E}[f_{\rm D}]$  and the standard deviation  $\sigma_{\rm D}$.


$\text{Example 3:}$  The diagram is valid for a time variant channel without direct component. Shown on the left is the  Jakes–Spectrum  ${\it \Phi}_{\rm D}(f_{\rm D})$.

Doppler spread and correlation time

The Doppler spread  $B_{\rm D}$  can be determined from this:

\[f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz} \hspace{0.05cm},\]
\[f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz} \hspace{0.05cm}.\]

The time correlation function  $\varphi_{\rm Z}(\Delta t)$  is sketched on the right, as the Fourier transform of  ${\it \Phi}_{\rm D}(f_{\rm D})$ .

This can be expressed given boundary conditions and with the Bessel function as:

\[\varphi_{\rm Z}(\Delta t \hspace{-0.05cm} = \hspace{-0.05cm}T_{\rm D}) \hspace{-0.05cm}= \hspace{-0.05cm} {\rm J}_0(2 \pi \hspace{-0.05cm} \cdot \hspace{-0.05cm} f_{\rm D,\hspace{0.05cm}max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\Delta t ).\]
  • The correlation duration of the blue curve is  $T_{\rm D} = 4.84 \ \rm ms$.
  • For  $f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}$  the correlation duration is only half.
  • In this case, it geneally applies:   $B_{\rm D} \cdot T_{\rm D}\approx 0.17$.


Simulation according to the GWSSUS model


The Monte–Carlo–method, shortly described for the simulation of a GWSSUS mobile communication channel is based on work by Rice [Ric44][1] and Höher [Höh90][2].

  • The 2D–impulse response is represented by a sum of $M$ complex exponential functions.  $M$  can be interpreted as the number of different paths:
\[h(\tau,\ t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M} \alpha_m \cdot \delta (t - \tau_m) \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \phi_{m} }\cdot {\rm e}^{ {\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m} t} \hspace{0.05cm}. \]
  • First, the delays  $\tau_m$,  the attenuation factors  $\alpha_m$,  the equally distributed phases  $\phi_m$  and the Doppler frequencies  $f_{{\rm D},\hspace{0. 05cm} m}$  will be randomly generated according to the GWSSUS specifications. The base for the random generation of the Doppler frequencies  $f_{{\rm D},\hspace{0. 05cm} m}$  is the  Jakes–Spectrum  ${\it \Phi}_{\rm D}(f_{\rm D})$, which, appropiately normalized, simultaneously indicates the PDF of the Doppler frequencies.
  • Because of  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})$&nbsp the delay time  $\tau_m$  is independent of the Doppler frequency  $f_{{\rm D},\hspace{0. 05cm} m}$  for all  $m$ .  This is valid with good approximation, for terrestrial land mobile communication.   For the random generation of the parameters  $\alpha_m$  and  $\tau_m$,  which determine the delay–power spectral density  $ {\it \Phi}_{\rm V}(\tau)$  the following   COST profiles  are available: $\rm RA$  (Rural Area),  $\rm TU$  (Typical Urban),  $\rm BU$  (Bad Urban)  and  $\rm HT$  (Hilly Terrain).
  • The greater the number of different paths   $M$  is chosen for the simulation, the better a real impulse response is approximated by the above equation.  However, the higher accuracy of the siulation is at the expense of its duration.  In the literature, favorable values are given for  $M$  between  $100$  and  $600$ 


Time variant transfer function
$($The absolute value squared is  simulated$)$

$\text{Example 4:}$  The graphic from [Hin08][3] shows a simulation result:     $20 \cdot \lg \vert H(f, \hspace{0. 1cm}t)}t)\vert$  is shown as a 2D–plot, where the time-variant transfer function  $H(f, \hspace{0.1cm}t)$  is also referred to as  $\eta_{\rm FZ}(f, \hspace{0.1cm}t)$  in this tutorial&nbsp.

The simulation is based on the following parameters:

  • The time variance results from a movement with  $v = 3 \ \rm km/h$.
  • The carrier frequency is  $f_{\rm T} = 2 \ \rm GHz$.
  • The maximum delay time is  $\tau_{\rm max} \approx 0.4 \ \rm µ s$.
  • According to the approximation we obtain the coherence bandwidth  $B_{\rm K}\hspace{0.02cm}' \approx 2.5 \ \rm MHz$.
  • The maximum Doppler frequency is  $f_\text{D, max} \approx 5.5 \ \rm Hz$.
  • The Doppler spread results in  $B_{\rm D} \approx 4 \ \rm Hz$.


Excercises to the chapter


Exercise 2.5: Scatter Function

Exercise 2.5Z: Multi-Path Scenario

Exercise 2.6: Dimensions in GWSSUS

Exercise 2.7: Coherence Bandwidth

Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel

Exercise 2.8: COST Delay Models

Exercise 2.9: Coherence Time

List of sources

  1. Rice, S.O.: Mathematical Analysis of Random Noise. BSTJ–23, pp. 282–232 und BSTJ–24, pp. 45–156, 1945.
  2. Höher, P.: Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung. Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.
  3. Hindelang, T.: Mobile Communications. Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, TU München, 2008.