Difference between revisions of "Mobile Communications/Characteristics of UMTS"

From LNTwww
Line 8: Line 8:
 
== Requirements for third generation mobile radio systems ==
 
== Requirements for third generation mobile radio systems ==
 
<br>
 
<br>
The main motivation for the development of&nbsp; '''Third generation mobile radio systems'' &nbsp; was the realization that 2G&ndash;systems could not satisfy the bandwidth requirements for the use of multimedia services.  
+
The main motivation for the development of&nbsp; '''Third generation mobile radio systems''' &nbsp; was the realization that 2G&ndash;systems could not satisfy the bandwidth requirements for the use of multimedia services.  
  
 
[[File:EN_Mob_T_3_4_S1.png|right|frame|Development of the mobile radio systems|class=fit]]
 
[[File:EN_Mob_T_3_4_S1.png|right|frame|Development of the mobile radio systems|class=fit]]
Line 38: Line 38:
  
 
*in the ''medical field:'' &nbsp; &nbsp; telemedicine.<br><br>
 
*in the ''medical field:'' &nbsp; &nbsp; telemedicine.<br><br>
 
*** Translated with www.DeepL.com/Translator (free version) ***
 
  
  
Line 60: Line 58:
  
 
*<b>UTRA&ndash;TDD</b>&nbsp; &#8658; &nbsp; ''UMTS Terrestrial Radio Access &ndash; Time Division Duplex'':&nbsp; <br>Here, five bands of &nbsp;$\text{5 MHz}$&nbsp; bandwidth are provided in which both uplink  and downlink data are to be transmitted by means of time division multiplexing. For UTRA&ndash;TDD the frequencies between &nbsp;$\text{1900}$&nbsp; and &nbsp;$\text{1920 MHz}$&nbsp; (four channels) and between &nbsp;$\text{202020}$&nbsp; and &nbsp;$\text{2025 MHz}$&nbsp; (one channel) are reserved.<br>
 
*<b>UTRA&ndash;TDD</b>&nbsp; &#8658; &nbsp; ''UMTS Terrestrial Radio Access &ndash; Time Division Duplex'':&nbsp; <br>Here, five bands of &nbsp;$\text{5 MHz}$&nbsp; bandwidth are provided in which both uplink  and downlink data are to be transmitted by means of time division multiplexing. For UTRA&ndash;TDD the frequencies between &nbsp;$\text{1900}$&nbsp; and &nbsp;$\text{1920 MHz}$&nbsp; (four channels) and between &nbsp;$\text{202020}$&nbsp; and &nbsp;$\text{2025 MHz}$&nbsp; (one channel) are reserved.<br>
 
*** Translated with www.DeepL.com/Translator (free version) ***
 
  
  
Line 82: Line 78:
  
 
[[File:P ID2209 Mob T 3 4 S3 v1.png|right|frame|UMTS-access level (with line switching)|class=fit]]
 
[[File:P ID2209 Mob T 3 4 S3 v1.png|right|frame|UMTS-access level (with line switching)|class=fit]]
<The diagram shows the UMTS&ndash;architecture for circuit switching (&nbsp; <i>Circuit Switching</i> ), where the <i>Core Network</i>&nbsp; (CN) is organized similar to the GSM&ndash;architecture.
+
<br>The diagram shows the UMTS&ndash;architecture for circuit switching, where the <i>Core Network</i>&nbsp; (CN) is organized similarly to the GSM&ndash;architecture.
  
The&nbsp; [[Examples_of_Communication_Systems/UMTS%E2%80%93Netzarchitektur#Architektur_der_Zugangsebene|''' checkLink:_Buch_9 &rArr; '''  System Architecture for Packet Switching]]&nbsp; (english: &nbsp; <i>Packet Switching</i>&nbsp;) differs fundamentally from this:  
+
The&nbsp; [[Examples_of_Communication_Systems/UMTS%E2%80%93Netzarchitektur#Architektur_der_Zugangsebene|''' checkLink:_Buch_9 &rArr; '''  System Architecture for Packet Switching]]&nbsp; differs fundamentally in the following points:  
  
 
*Here, the communication partners do not use the channel assigned to them exclusively, but the packets are mixed with those of other users.  
 
*Here, the communication partners do not use the channel assigned to them exclusively, but the packets are mixed with those of other users.  
Line 96: Line 92:
 
[[File:EN Mob T 3 4 S4.png|center|frame|Principle and signal characteristics with "DS-CDMA" for two users|class=fit]]
 
[[File:EN Mob T 3 4 S4.png|center|frame|Principle and signal characteristics with "DS-CDMA" for two users|class=fit]]
 
The diagram shows the principle using a simplified model and exemplary signals for the "user 1". For simplification the noise signal&nbsp; $n(t) \equiv 0$&nbsp; is set for the displayed signals. It is valid:
 
The diagram shows the principle using a simplified model and exemplary signals for the "user 1". For simplification the noise signal&nbsp; $n(t) \equiv 0$&nbsp; is set for the displayed signals. It is valid:
*The two source signals&nbsp; $q_1(t)$&nbsp; and&nbsp; $q_2(t)$&nbsp; use the same AWGN&ndash;channel without interfering with each other. The bit duration of each data signal is&nbsp; $T_{\rm B}$.<br>.
+
*The two source signals&nbsp; $q_1(t)$&nbsp; and&nbsp; $q_2(t)$&nbsp; use the same AWGN&ndash;channel without interfering with each other. The bit duration of each data signal is&nbsp; $T_{\rm B}$.<br>
  
 
*Each of the data signals is multiplied by an assigned spreading code,&nbsp; $c_1(t)$&nbsp; or &nbsp; $c_2(t)$&nbsp;. The sum signal is transmitted;  
 
*Each of the data signals is multiplied by an assigned spreading code,&nbsp; $c_1(t)$&nbsp; or &nbsp; $c_2(t)$&nbsp;. The sum signal is transmitted;  
Line 125: Line 121:
 
*No predecessor or successor of a code may be used.  
 
*No predecessor or successor of a code may be used.  
 
*In the example eight spreading codes with the spreading factor&nbsp; $J = 8$&nbsp; could be used.  
 
*In the example eight spreading codes with the spreading factor&nbsp; $J = 8$&nbsp; could be used.  
*Or the four codes highlighted in yellow &ndash; &nbsp; $J = 2$ once,&nbsp;  $J = 4$&nbsp; once and the&nbsp; $J = 8$ twice.  
+
*Or the four codes highlighted in yellow &nbsp; $J = 2$ once,&nbsp;  $J = 4$&nbsp; once and the&nbsp; $J = 8$ twice.  
 
*The lower four codes with the spreading factor&nbsp; $J = 8$&nbsp; cannot be used here, since they all start with "$+1 \ -1$ " which is already occupied by the OVSF&ndash;codes with spreading factor&nbsp; $J = 2$&nbsp;.}}
 
*The lower four codes with the spreading factor&nbsp; $J = 8$&nbsp; cannot be used here, since they all start with "$+1 \ -1$ " which is already occupied by the OVSF&ndash;codes with spreading factor&nbsp; $J = 2$&nbsp;.}}
  
Line 132: Line 128:
 
   
 
   
  
== Zusätzliche Verwürfelung bei UMTS ==
+
== Additional scrambling in UMTS ==
 
<br>
 
<br>
[[File:EN_Mob_T_3_4_S5.png|right|frame|Verwürfelung bei UMTS|class=fit]]
+
[[File:EN_Mob_T_3_4_S5. png|right|frame|Scrambling in UMTS|class=fit]]
Um mehr Spreizcodes zu erhalten und damit mehr Teilnehmer versorgen zu können, wird nach der Bandspreizung mit&nbsp; $c(t)$&nbsp; die Folge mit&nbsp; $w(t)$&nbsp; chipweise nochmals verwürfelt, ohne dass eine weitere Spreizung stattfindet.  
+
In order to get more spreading codes and to be able to serve more participants, after the band spreading using&nbsp; $c(t)$&nbsp; the sequence is again scrambled chip by chip using&nbsp; $w(t)$&nbsp; without further spreading.  
  
Die Verwendung quasi&ndash;orthogonaler Codes macht Sinn, da die Menge an orthogonalen Codes begrenzt ist und durch die Verwürfelung verschiedene Teilnehmer auch gleiche Spreizcodes verwenden können.
+
The use of quasi&ndash;orthogonal codes makes sense, because the amount of orthogonal codes is limited and different participants can use the same spreading codes due to the scrambling.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
*Der Verwürfelungscode&nbsp; $w(t)$&nbsp; hat die gleiche Länge und dieselbe Rate wie&nbsp; $c(t)$.<br>
+
*The scrambling code&nbsp; $w(t)$&nbsp; has the same length and rate as&nbsp; $c(t)$.<br>
*Durch die Verwürfelung (englisch: &nbsp; <i>Scrambling</i> ) verlieren die Codes ihre vollständige Orthogonalität; man nennt sie <i>quasi&ndash;othogonal</i>.
+
*Due to the scrambling, the codes lose their complete orthogonality; they are called <i>quasi&ndash;othogonal</i>.
* Bei diesen Codes ist zwar die&nbsp; [[Theory_of_Stochastic_Signals/Kreuzkorrelationsfunktion_und_Kreuzleistungsdichte#Definition_der_Kreuzkorrelationsfunktion |Kreuzkorrelationsfunktion]]&nbsp; (KKF) zwischen unterschiedlichen Spreizcodes ungleich Null.  
+
* In these codes, the&nbsp; [[Theory_of_Stochastic_Signals/Kreuzkorrelationsfunktion_und_Kreuzleistungsdichte#Definition_der_Kreuzkorrelationsfunktion |''' checkLink:_Buch_3 &rArr; ''' Cross-Correlation Function]]&nbsp; (CCF) between different spreading codes is not equal to zero.  
*Sie zeichnen sich aber durch einen ausgeprägten&nbsp; [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)#Zufallsprozesse_.281.29| AKF&ndash;Wert]]&nbsp; um den Nullpunkt aus, was die Detektion am Empfänger erleichtert.}}
+
*But they are characterized by a distinct&nbsp; [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)#Zufallsprozesse_.281.29| ''' checkLink:_Buch_3 &rArr; ''' ACF&ndash;Value]]&nbsp; around zero, which facilitates detection at the receiver.}}
  
  
[[File:P ID1537 Bei T 4 3 S3b v2.png|right|frame|Beispielhafter Generator für Goldcodes mit &nbsp;$N = 18$|class=fit]]
+
[[File:P ID1537 Bei T 4 3 S3b v2.png|right|frame|Example generator for gold codes with &nbsp;$N = 18$|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Bei UMTS verwendet man zur Verwürfelung so genannte [https://en.wikipedia.org/wiki/Gold_code Goldcodes]:  
+
$\text{Example 2:}$&nbsp; In UMTS, so-called [https://en.wikipedia.org/wiki/Gold_code Gold codes] are used for scrambling:  
*Die Grafik aus [3gpp]<ref name='3gpp'>3gpp Group: ''UMTS Release 6 Technical Specification 25.213 V6.4.0.'', Sept. 2005.</ref> zeigt das Blockschaltbild zur schaltungstechnischen Erzeugung solcher Codes.  
+
*The graphic from [3gpp]<ref name='3gpp'>3gpp Group: ''UMTS Release 6 - Technical Specification 25.213 V6.4.0.'', Sept. 2005.</ref> shows the block diagram for the generation of such codes.  
*Dabei werden zunächst zwei unterschiedliche&nbsp; [[Theory_of_Stochastic_Signals/Erzeugung_von_diskreten_Zufallsgr%C3%B6%C3%9Fen#Pseudozufallsgr.C3.B6.C3.9Fen |Pseudonoise&ndash;Folgen]]&nbsp; gleicher Länge $($hier: &nbsp;$N = 18)$&nbsp; mit Hilfe von Schieberegistern parallel erzeugt und dann mit <i>Exklusiv&ndash;Oder&ndash;Gatter</i>&nbsp; bitweise addiert.}}
+
*At first two different&nbsp; [[Theory_of_Stochastic_Signals/Erzeugung_von_diskreten_Zufallsgr%C3%B6%C3%9Fen#Pseudozufallsgr.C3.B6.C3.9Fen|Pseudonoise&ndash; sequences]]&nbsp; of the same length $($here: &nbsp;$N = 18)$&nbsp; aregenerated in parallel by means of shift registers and then added bitwise with <i>XOR&ndash;gates</i>&nbsp;.}}
 
<br clear =all>
 
<br clear =all>
  
[[File:EN_Mob_T_3_4_S5b.png|left|frame|Einige Beispiele und Eigenschaften geeigneter Spreiz– und Verwürfelungscodes|class=fit]]
+
[[File:EN_Mob_T_3_4_S5b.png|left|frame|Some examples and properties of suitable spreading and scrambling codes|class=fit]]
 
<br><br><br>
 
<br><br><br>
*Im Uplink hat jede Mobilstation einen eigenen Verwürfelungscode und die Trennung der einzelnen Kanäle erfolgt über den jeweils gleichen Code.  
+
*In the uplink, each mobile station has its own scrambling code and the separation of the individual channels is done using the same code.  
  
*Dagegen hat im Downlink jedes Versorgungsgebiet eines &bdquo;Node B&rdquo; einen gemeinsamen Verwürfelungscode.<br>
+
*In the downlink, on the other hand, each service area of a "Node B" has a common scrambling code.<br>
  
*Die nebenstehende Tabelle fasst einige Daten der Spreiz&ndash; und Verwürfelungscodes zusammen.<br>
+
*The table on the right summarizes some data of the spreading and scrambling codes.<br>
 
<br clear =all>
 
<br clear =all>
== Modulation und Pulsformung bei UMTS ==
+
== Modulation and pulse shaping for UMTS ==
 
<br>
 
<br>
Bei UMTS kommen im FDD&ndash;Modus folgende  Modulationsverfahren zum Einsatz:
+
In UMTS the following modulation methods are used in FDD&ndash;mode:
*Im Downlink findet&nbsp; [[Modulation_Methods/Quadratur%E2%80%93Amplitudenmodulation#Weitere_Signalraumkonstellationen| Quaternary Phase Shift Keying]]&nbsp; (QPSK) Anwendung. Dabei werden Nutzdaten&nbsp; (DPDCH&ndash;Kanal)&nbsp; und&nbsp; Kontrolldaten (DPCCH&ndash;Kanal)&nbsp; zeitlich gemultiplext.<br>
+
*In the downlink&nbsp; [[Modulation_Methods/Quadratur%E2%80%93Amplitudenmodulation#Weitere_Signalraumkonstellationen| ''' checkLink:_Buch_5 &rArr; '''  Quaternary Phase Shift Keying]]&nbsp; (QPSK) is used. User data&nbsp; (DPDCH&ndash;channel)&nbsp; and&nbsp; control data (DPCCH&ndash;channel)&nbsp; are multiplexed in time.<br>
 +
 
 +
*A &nbsp; [https://en.wikipedia.org/wiki/Phase-shift_keying Dual&ndash;Channel&ndash;BPSK] is used in the uplink. This has the same signal space as QPSK, but the &nbsp;$I$ and &nbsp;$Q$ components transmit the information of different channels.<br><br>
  
*Im Uplink wird eine&nbsp; [https://en.wikipedia.org/wiki/Phase-shift_keying zweifache binäre PSK]&nbsp; (englisch: &nbsp; <i>Dual&ndash;Channel&ndash;BPSK</i>) verwendet. Diese besitzt zwar den gleichen Signalraum wie QPSK, aber die &nbsp;$I$&ndash; und &nbsp;$Q$&ndash;Komponenten übertragen hier die Informationen unterschiedlicher Kanäle.<br><br>
+
[[File:EN_Mob_T_3_4_S6.png|right|frame|Modulation and pulse shaping for UMTS|class=fit]]
 +
The diagram shows the &nbsp;$I/Q$&ndash;Multiplexing method</i>, another name for the Dual&ndash;Channel&ndash;BPSK, in the equivalent low-pass range. <br>
  
[[File:EN_Mob_T_3_4_S6.png|right|frame|Modulation und Pulsformung bei UMTS|class=fit]]
+
*The spread user data of the DPDCH&ndash;channel is modulated and transmitted on the inphase component&nbsp; $I$&nbsp; (real part) and the control data of the DPCCH&ndash;channel, also spread, is modulated on the quadrature component&nbsp; $Q$&nbsp; (imaginary part).<br>
Die Grafik zeigt das &nbsp;$I/Q$&ndash;Multiplexing&ndash;Verfahren</i>, wie Dual&ndash;Channel&ndash;BPSK auch genannt wird, im äquivalenten Tiefpassbereich.<br>
 
  
*Die gespreizten Nutzdaten des DPDCH&ndash;Kanals werden auf die Inphase&ndash;Komponente&nbsp; $I$&nbsp; (Realteil) und die Kontrolldaten des DPCCH&ndash;Kanals &ndash; ebenfalls mit einem Spreizcode beaufschlagt &ndash; auf die Quadratur&ndash;Komponente&nbsp; $Q$&nbsp; (Imaginärteil) moduliert und übertragen.<br>
+
*The quadrature component is weighted with the square root of the power ratio&nbsp; $G$&nbsp; between&nbsp; $I$&nbsp; and&nbsp; $Q$&nbsp; to compensate for power differences. Then the sum signal&nbsp; $(I + {\rm j} \cdot Q)$&nbsp; is multiplied by a complex scrambling code.<br>
  
*Die Quadratur&ndash;Komponente wird mit der Wurzel des Leistungsverhältnisses&nbsp; $G$&nbsp; zwischen&nbsp; $I$&nbsp; und&nbsp; $Q$&nbsp; gewichtet, um Leistungsunterschiede auszugleichen. Anschließend wird das Summensignal&nbsp; $(I + {\rm j} \cdot Q)$&nbsp; mit einem komplexen Verwürfelungscode multipliziert.<br>
+
*Finally the pulse shaping is done with&nbsp; $g_s(t)$&nbsp; corresponding to the&nbsp; [[Digital_Signal_Transmission/Optimierung_der_Basisband%C3%BCbertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme|''' checkLink:_Buch_6 &rArr; ''' Root Raised Cosine]]. Since the receive filter is adapted to&nbsp; $G_s(f)$&nbsp; the overall frequency response thus fulfills the&nbsp; [[Digital_Signal_Transmission/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|''' checkLink:_Buch_6 &rArr; ''' first Nyquist criterion]].<br><br>
  
*Abschließend erfolgt die Impulsformung mit&nbsp; $g_s(t)$&nbsp; entsprechend der&nbsp; [[Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme| Wurzel&ndash;Cosinus&ndash;Rolloff&ndash;Charakteristik]]&nbsp; (englisch: &nbsp; <i>Root Raised Cosine</i>). Da das Empfangsfilter an&nbsp; $G_s(f)$&nbsp; angepasst ist, erfüllt somit der Gesamtfrequenzgang das&nbsp; [[Digitalsignal%C3%BCbertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich| erste Nyquistkriterium]].<br><br>
+
Further information on this topic can be found in the section&nbsp; [[Examples_of_Communication_Systems/Nachrichtentechnische_Aspekte_von_UMTS#Pulsformung_und_Modulation_in_UMTS|''' checkLink:_Buch_9 &rArr; '''
 +
Pulse_forming and modulation in UMTS]]&nbsp; of the book "Examples of communication systems". There you will also find a graphic with the Nyquist frequency response&nbsp; $H(f)$. It is a&nbsp; [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|''' checkLink:_Buch_2 &rArr; ''' Raised Cosine]] with the following dimensioning:
 +
*The UMTS&ndash;chip rate is&nbsp; $R_{\rm C} = 3.84 \ \rm Mbit/s$. The center of the slope must be at&nbsp; $f_{\rm N} =R_{\rm C}/2 = 1.92 \ \rm MHz$&nbsp; to avoid pulse interference. For $f_{\rm N}$ is then &nbsp;  
 +
$$H(f = \pm f_{\rm N}) = 0.5.$$
  
Weitere Informationen zu diesem Thema gibt es im Abschnitt&nbsp; [[Examples_of_Communication_Systems/Nachrichtentechnische_Aspekte_von_UMTS#Pulsformung_und_Modulation_in_UMTS|Pulsformung und Modulation in UMTS]]&nbsp; des Buches &bdquo;Beispiele von Nachrichtensystemen&rdquo;. Dort finden Sie auch eine Grafik mit dem Nyquistfrequenzgang&nbsp; $H(f)$. Es handelt sich um einen&nbsp; [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus&ndash;Rolloff&ndash;Tiefpass]]&nbsp; (englisch: &nbsp; <i>Raised Cosine</i>) mit folgender Dimensionierung:
+
*For UMTS the rolloff&ndash;factor&nbsp; $r = 0.22$&nbsp; has been defined.
*Die UMTS&ndash;Chiprate beträgt&nbsp; $R_{\rm C} = 3.84 \ \rm Mbit/s$.  Die Flankenmitte muss bei&nbsp; $f_{\rm N} =R_{\rm C}/2 = 1.92 \ \rm MHz$&nbsp; liegen, um Impulsinterferenzen zu vermeiden. Dann gilt&nbsp;  
+
*This results in the two cutoff frequencies for&nbsp; $f_1 = 0.78 \cdot f_{\rm N} \approx 1.498 \ \rm MHz$&nbsp; and&nbsp; $f_2 = 1.22 \cdot f_{\rm N} \approx 2.342 \ \rm MHz$.<br>
:$$H(f = \pm f_{\rm N}) = 0.5.$$
 
  
*Für UMTS wurde der Rolloff&ndash;Faktor&nbsp; $r = 0.22$&nbsp; festgelegt.
+
*The required absolute frequency bandwidth is thus&nbsp; $B = 2 \cdot f_2 = 1.22 \cdot f_{\rm N} \approx 4.684 \ \rm MHz$, so that for each UMTS&ndash;channel with&nbsp; $5 \ \rm MHz$&nbsp; sufficient bandwidth is available.<br><br>
*Somit ergeben sich die beiden Eckfrequenzen zu&nbsp; $f_1  = 0.78 \cdot f_{\rm N} \approx 1.498 \ \rm MHz$&nbsp; und&nbsp; $f_2  = 1.22 \cdot f_{\rm N} \approx 2.342 \ \rm MHz$.<br>
 
  
*Die erforderliche absolute Frequenzbandbreite beträgt somit&nbsp; $B = 2 \cdot f_2  = 1.22 \cdot f_{\rm N} \approx 4.684 \ \rm  MHz$, so dass für jeden UMTS&ndash;Kanal mit&nbsp; $5  \ \rm  MHz$&nbsp; ausreichend Bandbreite zur Verfügung steht.<br><br>
 
  
== UMTS–Erweiterungen HSDPA und HSUPA ==
+
 
 +
 
 +
== UMTS extensions HSDPA and HSUPA ==
 
<br>
 
<br>
Um dem ständig steigenden Bedarf an höheren Datenraten im Mobilfunk gerecht zu werden, wurde der UMTS&ndash;Standard stetig weiterentwickelt. Die wichtigsten Änderungen ergaben sich innerhalb der dritten Generation durch die Einführung von
+
In order to meet the ever-increasing demand for higher data rates in mobile communications, the UMTS&ndash;standard has been continuously developed. The most important changes within the third generation resulted from the introduction of
*[[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Downlink_Packet_Access| '''HSDPA''']]: &nbsp; <i>High Speed Downlink Packet Access</i>&nbsp; (Release 5, 2002, Markteinführung 2006) und <br>
+
*[[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Downlink_Packet_Access| ''' checkLink:_Buch_9 &rArr; ''' '''HSDPA''']]: &nbsp; <i>High Speed Downlink Packet Access</i>&nbsp; (Release 5, 2002, market launch 2006) and <br>
 +
 
 +
*[[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Uplink_Packet_Access| ''' checkLink:_Buch_9 &rArr; ''' '''HSUPA''']]: &nbsp; <i>High Speed Uplink Packet Access</i>&nbsp; (Release 6, 2005, market launch 2007).<br><br>
 +
 
 +
Together, HSDPA and HSDUPA result in the&nbsp; '''HSPA&ndash;Standard'''.<br>
  
*[[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Uplink_Packet_Access| '''HSUPA''']]: &nbsp; <i>High Speed Uplink Packet Access</i>&nbsp; (Release 6, 2005, Markteinführung 2007).<br><br>
+
The main motivation for these further developments was to increase data rate/throughput and minimize response times in packet-switched transmission.
 +
*For the downlink, data rates up to&nbsp; $\text{7 Mbit/s}$&nbsp; were quite feasible with HSDPA since 2011.
 +
*But also (more theoretical) <i>best&ndash;Case</i>&ndash;rates of up to&nbsp; $\text{28.8 Mbit/s}$&nbsp; (with 64&ndash;QAM and MIMO) were given.  
  
Zusammen ergeben HSDPA und HSDUPA den&nbsp; '''HSPA&ndash;Standard'''.<br>
 
  
Hauptmotivation dieser Weiterentwicklungen war die Steigerung von Datenrate/ Durchsatz sowie die Minimierung der Antwortzeiten bei paketvermittelter Übertragung.
+
These increases were achieved by
*Für die Abwärtsstrecke waren seit 2011 mit HSDPA Datenraten bis&nbsp; $\text{7 Mbit/s}$&nbsp; durchaus machbar.  
+
*the introduction of additional&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#Zus.C3.A4tzliche_Kan.C3.A4le_in_HSDPA | ''' checkLink:_Buch_9 &rArr; ''' shared channels]]&nbsp; (for example &nbsp;'''HS&ndash;DSCH'''),<br>
*Angegeben wurden aber auch (eher theoretische) <i>Best&ndash;Case</i>&ndash;Raten von bis zu&nbsp; $\text{28.8 Mbit/s}$&nbsp; (bei 64&ndash;QAM und MIMO).
 
  
 +
*the&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#HARQ.E2.80.93Verfahren_und_Node_B_Scheduling| ''' checkLink:_Buch_9 &rArr; ''' Hybrid&ndash;ARQ Procedure]]&nbsp; ('''HARQ''') and&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#HARQ.E2.80.93Verfahren_und_Node_B_Scheduling| ''' checkLink:_Buch_9 &rArr; ''' Node B&ndash;Scheduling]],<br>.
  
Erreicht wurden diese Steigerungen durch
+
*the use of&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#Adaptive_Modulation.2C_Codierung_und_.C3.9Cbertragungsrate| adaptive $M$&ndash;QAM, coding and transmission rate]].<br><br>
*die Einführung zusätzlicher&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#Zus.C3.A4tzliche_Kan.C3.A4le_in_HSDPA| gemeinsam genutzter Kanäle]]&nbsp; (zum Beispiel &nbsp;'''HS&ndash;DSCH'''),<br>
 
  
*das&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#HARQ.E2.80.93Verfahren_und_Node_B_Scheduling |Hybrid&ndash;ARQ&ndash;Verfahren]]&nbsp; ('''HARQ''') und&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#HARQ.E2.80.93Verfahren_und_Node_B_Scheduling| Node B&ndash;Scheduling]],<br>
+
In addition to the use of HARQ and Node&ndash;B&ndash;Scheduling, the significant improvement through HSUPA is due to the introduction of the additional upstream channel &nbsp;'''E&ndash;DCH'''&nbsp; (<i>Enhanced Dedicated Channel</i>).
 +
*Among other things, this minimizes the influence of applications with very different and sometimes very intensive data volumes (&nbsp; <i>Bursty Traffic</i> ). However, unlike UMTS&ndash;R99, HSUPA does not guarantee a fixed bandwidth in the upward direction.<br>
  
*die Verwendung von&nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#Adaptive_Modulation.2C_Codierung_und_.C3.9Cbertragungsrate| adaptiver $M$&ndash;QAM, Codierung und Übertragungsrate]].<br><br>
+
*This flexible and efficient bandwidth allocation depending on channel conditions increased the cell capacity enormously. In practice, transmission rates of up to&nbsp; $\text{3 Mbit/s}$&nbsp; were achieved from 2011, even when taking into account the large number of users. The values specified by developers for best conditions were significantly higher.<br>
  
Die wesentliche Verbesserung durch HSUPA ist neben der Verwendung von HARQ und Node&ndash;B&ndash;Scheduling durch die Einführung des zusätzlichen Aufwärtskanals &nbsp;'''E&ndash;DCH'''&nbsp; (<i>Enhanced Dedicated Channel</i>) zurückzuführen.
+
==Exercises for chapter==
*Dieser minimiert unter anderem den Einfluss von Anwendungen mit stark unterschiedlichen und teilweise sehr intensivem Datenaufkommen (englisch: &nbsp; <i>Bursty Traffic</i> ). Allerdings wird bei HSUPA im Gegensatz zu UMTS&ndash;R99 in Aufwärtsrichtung keine feste Bandbreite garantiert.<br>
 
  
*Diese flexible und effiziente Bandbreitenzuteilung abhängig von den Kanalbedingungen steigerte die Zellenkapazität enorm. In der Praxis wurden ab 2011 auch bei Berücksichtigung vieler Nutzer Übertragungsraten bis zu&nbsp; $\text{3 Mbit/s}$&nbsp; erreicht. Die von Entwicklern für beste Bedingungen angegebenen Werte lagen deutlich darüber.<br>
 
  
==Aufgaben zum Kapitel==
 
 
<br>
 
<br>
 
[[Aufgaben:Exercise 3.6: FDMA, TDMA and CDMA]]
 
[[Aufgaben:Exercise 3.6: FDMA, TDMA and CDMA]]
  
[[Aufgaben:Aufgabe 3.6Z: Begriffe der 3G–Mobilfunksysteme]]
+
[[Aufgaben:Exercise 3.6Z: Concepts of 3G Mobile Communications Systems]]
  
[[Aufgaben:Aufgabe 3.7: PN–Modulation]]
+
[[Aufgaben:Exercise 3.7: PN Modulation]]
  
[[Aufgaben:Aufgabe 3.7Z: Zur Bandspreizung bei UMTS]]
+
[[Aufgaben:Exercise 3.7Z: Spread Spectrum in UMTS]]
  
[[Aufgaben:Aufgabe 3.8: OVSF–Codes]]
+
[[Aufgaben:Exercise 3.8: OVSF Codes]]
  
[[Aufgaben:Aufgabe 3.9: GSM/UMTS–Weiterentwicklungen]]
+
[[Aufgaben:Exercise 3.9: Further Developments of UMTS]]
  
==Quellenverzeichnis==
+
==List of sources==
  
 
{{Display}}
 
{{Display}}

Revision as of 19:17, 30 August 2020

Requirements for third generation mobile radio systems


The main motivation for the development of  Third generation mobile radio systems   was the realization that 2G–systems could not satisfy the bandwidth requirements for the use of multimedia services.

Development of the mobile radio systems

The graph shows the development of mobile radio systems from 1995 to 2006 in terms of performance. The specified data rates were still realistic for 2011 with no more than two active users in one cell. The maximum values often stated by providers were mostly not reached in practice.

Third-generation mobile communications systems should have a greater bandwidth and sufficient reserve capacity to ensure a high quality of service (QoS) even with growing requirements.


Prior to the development of the 3G–systems, the International Telecommunication Union  (ITU) created a catalog of requirements which includes the following general conditions:

  • High data rates from  $\text{144 kbit/s}$  (Standard) to  $\text{2 Mbit/s}$  (In-door),
  • symmetric and asymmetric data transmission (IP–services),
  • high speech quality and high spectral efficiency,
  • global accessibility and distribution,
  • seamless transition from and to second generation systems,
  • Applicability independent of the network used (Virtual Home Environment ),
  • Provision of circuit-switched and packet-switched transmission.

During the introduction of UMTS (Universal Mobile Telecommunication System) as the best known 3G–standard, the expansion and diversification of the services offered was a decisive motive. A UMTS–capable terminal device must support a number of complex and multimedia applications in addition to the classic services (voice transmission, messaging, etc.), including >br>

  • with regard to Information:   Internet surfing (Info–on–demand), online print media,
  • regarding Communication:     video and audio conference, fax, ISDN, messaging,
  • regarding Entertainment:     Mobile TV, Video–on–Demand, Online–Gaming,
  • in the business area:     Interactive shopping, E–Commerce,
  • in the technical area:     Online–support, distribution service (language and data),
  • in the medical field:     telemedicine.


The IMT-2000 standard


Around 1990, the  International Telecommuncation Union  (ITU) created the  Standard IMT-2000  (International Mobile Telecommunications at the year 2000), which was to make the above-mentioned requirements possible. IMT–2000 comprises a number of third-generation mobile communications systems that have been brought closer together in the course of standardization to enable the development of common terminals for all these standards.

In order to take into account different preliminary work and to give network operators the possibility to continue to use existing network architectures in part, IMT–2000 contains several individual standards. These can be roughly divided into four categories:

The IMT Family
  • W–CDMA:   This includes the FDD component of the European UMTS–standard and the American cdma2000–system.
  • CDMA:   This group includes the TDD–component of UMTS as well as the Chinese TD–SCDMA.
    integrated in it.
  • TDMA:   A further development of the GSM–derived EDGE and its American counterpart UWC–136, also known as D–AMPS.
  • FD–TDMA:nbsp; further development of the European cordless–telephony–DECT standard (Digital Enhanced Cordless Telecommunication).


We concentrate here on the mobile communications system UMTS developed in Europe, which supports the two standards W–CDMA and TD–CDMA of the system family IMT–2000, under the following designations:

  • UTRA–FDD   ⇒   UMTS Terrestrial Radio Access – Frequency Division Duplex
    This consists of twelve paired uplink and downlink frequency bands each  $\text{5 MHz}$  bandwidth. In Europe these are between  $\text{1920}$  and  $\text{1980 MHz}$  in the uplink and between  $\text{2110}$  and  $\text{2170 MHz}$  in the downlink. In the summer of 2000, the auction of the licenses for Germany with a 20-year term brought in approx. 50 billion Euro.
  • UTRA–TDD  ⇒   UMTS Terrestrial Radio Access – Time Division Duplex
    Here, five bands of  $\text{5 MHz}$  bandwidth are provided in which both uplink and downlink data are to be transmitted by means of time division multiplexing. For UTRA–TDD the frequencies between  $\text{1900}$  and  $\text{1920 MHz}$  (four channels) and between  $\text{202020}$  and  $\text{2025 MHz}$  (one channel) are reserved.


System architecture and basic units for UMTS


The network–architecture of UMTS can be divided into two main blocks.

The UMTS Terrestrial Radio Access Network  (UTRAN)  ensures the wireless transmission of data between the transport level and the radio network level. This includes the base stations and the control nodes, whose functions are described below:

  • A UMTS–base station is, also called  Node B , comprises the antenna system and the CDMA–receiver and is directly connected to the radio interfaces of all users in the cell. The tasks of a "Node B" include data rate matching, data and channel (de)coding, interleaving, and modulation or demodulation. Each base station can serve one or more cells (sectors).
  • The  Radio Network Controller  (RNC) is responsible for controlling the base stations. It is also responsible within the cells for call acceptance control, encryption and decryption, conversion to ATM (Asynchronous Tranfer Mode), channel assignment, handover and power control.

The Core Network  (CN)  takes over the switching of the data within the UMTS–network. For this purpose, it contains the following hardware and software components at   circuit switching :

  • The  Mobile Switching Center  (MSC) is responsible for localization/authentication, routing of calls, handover and encryption of user data.
  • The  Gateway Mobile Switching Center  (GMSC) organizes the connection to other networks, for example to the landline network.
UMTS-access level (with line switching)


The diagram shows the UMTS–architecture for circuit switching, where the Core Network  (CN) is organized similarly to the GSM–architecture.

The  checkLink:_Buch_9 ⇒ System Architecture for Packet Switching  differs fundamentally in the following points:

  • Here, the communication partners do not use the channel assigned to them exclusively, but the packets are mixed with those of other users.
  • One finds there similar components as with the GSM–Extension  checkLink:_Buch_9 ⇒ General Packet Radio Service  (GPRS).


CDMA - Multiple access with UMTS


UMTS uses the multiple access method  checkLink:_Buch_5 ⇒ Direct Sequence Code Division Multiple Access  (DS–CDMA). The procedure is sometimes also called "PN–Modulation".

Principle and signal characteristics with "DS-CDMA" for two users

The diagram shows the principle using a simplified model and exemplary signals for the "user 1". For simplification the noise signal  $n(t) \equiv 0$  is set for the displayed signals. It is valid:

  • The two source signals  $q_1(t)$  and  $q_2(t)$  use the same AWGN–channel without interfering with each other. The bit duration of each data signal is  $T_{\rm B}$.
  • Each of the data signals is multiplied by an assigned spreading code,  $c_1(t)$  or   $c_2(t)$ . The sum signal is transmitted;
$$s(t) = s_1(t) + s_2(t) = q_1(t) \cdot c_1(t) + q_2(t) \cdot c_2(t).$$
  • The bandwidths of the partial signals  $s_1(t)$  and  $s_2(t)$  as well as of the resulting transmitedt signal  $s(t)$  are larger than the bandwidths of  $q_1(t)$  and   $q_2(t)$ by the  'spreading factor   $ J = T_{\rm C}/T_{\rm B}$ . For the graphic  $J = 4$  was chosen.
  • The same spreading codes  $c_1(t)$  or   $c_2(t)$  are added multiplicatively to the receiver. In the case of orthogonal codes and small AWGN–noise  $n(t)$  the data signals can then be separated again. This means that  $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$.
  • If AWGN–noise is present, the digital output signals are different from the input signals, but the probability of error is not increased by the other users as long as the used spreading sequences are orthogonal.
  • In the example  $J =4$  one could thus transmit users over the same channel without interference, but only if there are   $J =4$  orthogonal spreading codes.

Requirements for the spreading codes


The spreading codes for UMTS should

  • be orthogonal to each other to avoid mutual influence of the users,
  • allow a flexible realization of different spreading factors $J$.

OVSF code family and possible spreading sequences

$\text{Example 1:}$  An example for spreading codes are the  Orthogonal Variable Spreading Factor, OVSF), which provide codes of length between  $J =4$  and  $J =512$ .

These can be created with the help of a code tree, as shown in the graphic. Thereby in each branching from a code  $C$  two new codes result  $(+C \ +\hspace{-0.05cm}C)$  and  $(+C \ -\hspace{-0.05cm}C)$.

To be noted:

  • No predecessor or successor of a code may be used.
  • In the example eight spreading codes with the spreading factor  $J = 8$  could be used.
  • Or the four codes highlighted in yellow   $J = 2$ once,  $J = 4$  once and the  $J = 8$ twice.
  • The lower four codes with the spreading factor  $J = 8$  cannot be used here, since they all start with "$+1 \ -1$ " which is already occupied by the OVSF–codes with spreading factor  $J = 2$ .


The situation described here is also clarified by the applet  OVSF–Codes .


Additional scrambling in UMTS


File:EN Mob T 3 4 S5. png
Scrambling in UMTS

In order to get more spreading codes and to be able to serve more participants, after the band spreading using  $c(t)$  the sequence is again scrambled chip by chip using  $w(t)$  without further spreading.

The use of quasi–orthogonal codes makes sense, because the amount of orthogonal codes is limited and different participants can use the same spreading codes due to the scrambling.

$\text{Conclusion:}$ 

  • The scrambling code  $w(t)$  has the same length and rate as  $c(t)$.
  • Due to the scrambling, the codes lose their complete orthogonality; they are called quasi–othogonal.
  • In these codes, the  checkLink:_Buch_3 ⇒ Cross-Correlation Function  (CCF) between different spreading codes is not equal to zero.
  • But they are characterized by a distinct  checkLink:_Buch_3 ⇒ ACF–Value  around zero, which facilitates detection at the receiver.


Example generator for gold codes with  $N = 18$

$\text{Example 2:}$  In UMTS, so-called Gold codes are used for scrambling:

  • The graphic from [3gpp][1] shows the block diagram for the generation of such codes.
  • At first two different  Pseudonoise– sequences  of the same length $($here:  $N = 18)$  aregenerated in parallel by means of shift registers and then added bitwise with XOR–gates .


Some examples and properties of suitable spreading and scrambling codes




  • In the uplink, each mobile station has its own scrambling code and the separation of the individual channels is done using the same code.
  • In the downlink, on the other hand, each service area of a "Node B" has a common scrambling code.
  • The table on the right summarizes some data of the spreading and scrambling codes.


Modulation and pulse shaping for UMTS


In UMTS the following modulation methods are used in FDD–mode:

  • A   Dual–Channel–BPSK is used in the uplink. This has the same signal space as QPSK, but the  $I$ and  $Q$ components transmit the information of different channels.

Modulation and pulse shaping for UMTS

The diagram shows the  $I/Q$–Multiplexing method, another name for the Dual–Channel–BPSK, in the equivalent low-pass range.

  • The spread user data of the DPDCH–channel is modulated and transmitted on the inphase component  $I$  (real part) and the control data of the DPCCH–channel, also spread, is modulated on the quadrature component  $Q$  (imaginary part).
  • The quadrature component is weighted with the square root of the power ratio  $G$  between  $I$  and  $Q$  to compensate for power differences. Then the sum signal  $(I + {\rm j} \cdot Q)$  is multiplied by a complex scrambling code.

Further information on this topic can be found in the section  checkLink:_Buch_9 ⇒ Pulse_forming and modulation in UMTS  of the book "Examples of communication systems". There you will also find a graphic with the Nyquist frequency response  $H(f)$. It is a  checkLink:_Buch_2 ⇒ Raised Cosine with the following dimensioning:

  • The UMTS–chip rate is  $R_{\rm C} = 3.84 \ \rm Mbit/s$. The center of the slope must be at  $f_{\rm N} =R_{\rm C}/2 = 1.92 \ \rm MHz$  to avoid pulse interference. For $f_{\rm N}$ is then  

$$H(f = \pm f_{\rm N}) = 0.5.$$

  • For UMTS the rolloff–factor  $r = 0.22$  has been defined.
  • This results in the two cutoff frequencies for  $f_1 = 0.78 \cdot f_{\rm N} \approx 1.498 \ \rm MHz$  and  $f_2 = 1.22 \cdot f_{\rm N} \approx 2.342 \ \rm MHz$.
  • The required absolute frequency bandwidth is thus  $B = 2 \cdot f_2 = 1.22 \cdot f_{\rm N} \approx 4.684 \ \rm MHz$, so that for each UMTS–channel with  $5 \ \rm MHz$  sufficient bandwidth is available.



UMTS extensions HSDPA and HSUPA


In order to meet the ever-increasing demand for higher data rates in mobile communications, the UMTS–standard has been continuously developed. The most important changes within the third generation resulted from the introduction of

Together, HSDPA and HSDUPA result in the  HSPA–Standard.

The main motivation for these further developments was to increase data rate/throughput and minimize response times in packet-switched transmission.

  • For the downlink, data rates up to  $\text{7 Mbit/s}$  were quite feasible with HSDPA since 2011.
  • But also (more theoretical) best–Case–rates of up to  $\text{28.8 Mbit/s}$  (with 64–QAM and MIMO) were given.


These increases were achieved by

In addition to the use of HARQ and Node–B–Scheduling, the significant improvement through HSUPA is due to the introduction of the additional upstream channel  E–DCH  (Enhanced Dedicated Channel).

  • Among other things, this minimizes the influence of applications with very different and sometimes very intensive data volumes (  Bursty Traffic ). However, unlike UMTS–R99, HSUPA does not guarantee a fixed bandwidth in the upward direction.
  • This flexible and efficient bandwidth allocation depending on channel conditions increased the cell capacity enormously. In practice, transmission rates of up to  $\text{3 Mbit/s}$  were achieved from 2011, even when taking into account the large number of users. The values specified by developers for best conditions were significantly higher.

Exercises for chapter


Exercise 3.6: FDMA, TDMA and CDMA

Exercise 3.6Z: Concepts of 3G Mobile Communications Systems

Exercise 3.7: PN Modulation

Exercise 3.7Z: Spread Spectrum in UMTS

Exercise 3.8: OVSF Codes

Exercise 3.9: Further Developments of UMTS

List of sources

  1. 3gpp Group: UMTS Release 6 - Technical Specification 25.213 V6.4.0., Sept. 2005.