Difference between revisions of "Aufgaben:Exercise 3.5: GSM Full Rate Vocoder"

From LNTwww
Line 30: Line 30:
 
The further tasks of preprocessing will not be discussed in detail here.
 
The further tasks of preprocessing will not be discussed in detail here.
  
Auch Fragen und Lösungen kannst Du (fast vollständig?) übernehmen aus
+
You can also take questions and solutions (almost completely?) from
https://en.lntwww.de/Aufgaben:Exercise_3.4Z:_GSM_Full-Rate_Voice_Codec
+
[https://en.lntwww.de/Aufgaben:Exercise_3.4Z:_GSM_Full-Rate_Voice_Codec " Exercise 3.4Z"]
  
  
''Hinweis:''
+
Hint:  
  
*Diese Aufgabe gehört zum Kapitel  [[Examples_of_Communication_Systems/Sprachcodierung|Sprachcodierung]].
+
*Diese Aufgabe gehört zum Kapitel  [[Examples_of_Communication_Systems/Voice_Coding|"Voice Coding"]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Auf welche Bandbreite muss das Sprachsignal begrenzt werden?
+
{To what bandwidth must the speech signal be limited?
 
|type="{}"}
 
|type="{}"}
 
$B \ = \ $ { 4 3% } $ \ \rm kHz$
 
$B \ = \ $ { 4 3% } $ \ \rm kHz$
  
{Aus wievielen Abtastwerten&nbsp; $(N_{\rm R})$&nbsp; besteht ein Sprachrahmen? Wie groß ist die Eingangsdatenrate&nbsp; $R_{\rm In}$?
+
{How many samples&nbsp; $(N_{\rm R})$&nbsp; does a speech frame consist of? What is the input data rate&nbsp; $R_{\rm In}$?
 
|type="{}"}
 
|type="{}"}
 
$N_{\rm R} \hspace{0.25cm} = \ $ { 160 3% }  
 
$N_{\rm R} \hspace{0.25cm} = \ $ { 160 3% }  
 
$R_{\rm In} \hspace{0.22cm} = \ $ { 104 3% } $\ \rm kbit/s$
 
$R_{\rm In} \hspace{0.22cm} = \ $ { 104 3% } $\ \rm kbit/s$
  
{Wie groß ist die Ausgangsdatenrate&nbsp; $R_{\rm Out}$&nbsp; des GSM-Vollraten-Codecs?
+
{What is the output data rate&nbsp; $R_{\rm Out}$&nbsp; of the GSM full rate codec?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm Out} \hspace{0.09cm} = \ $ { 13 3% } $ \ \rm kbit/s$
 
$R_{\rm Out} \hspace{0.09cm} = \ $ { 13 3% } $ \ \rm kbit/s$
  
  
{Welche Aussagen treffen hinsichtlich des Blocks „LPC” zu?
+
{Which statements are true regarding the block "LPC"?
 
|type="[]"}
 
|type="[]"}
+ LPC macht eine Kurzzeitprädiktion über eine Millisekunde.
+
+ LPC makes a short-term prediction over one millisecond.
+ Die&nbsp; $36$&nbsp; LPC–Bits sind Filterkoeffizienten, die beim Empfänger genutzt werden, um die LPC–Filterung rückgängig zu machen.
+
+ The&nbsp; $36$&nbsp; LPC bits are filter coefficients used at the receiver to undo the LPC filtering.
- Das Filter zur Langzeitprädiktion ist rekursiv.
+
- The filter for long-term prediction is recursive.
- Der LPC–Ausgang ist identisch mit seinem Eingang&nbsp; $s_{\rm R}(t)$.
+
- The LPC output is identical to its input&nbsp; $s_{\rm R}(t)$.
  
{Welche Aussagen sind hinsichtlich des Blocks „LTP” zutreffend?
+
{Which statements are true regarding the block "LTP"?
 
|type="[]"}
 
|type="[]"}
+ Es werden periodische Strukturen des Sprachsignals entfernt.
+
+ Periodic structures of the speech signal are removed.
- Die Langzeitprädiktion wird pro Rahmen einmal durchgeführt.
+
- Long-term prediction is performed once per frame.
+ Das Gedächtnis des LTP–Prädiktors beträgt bis zu&nbsp; $15 \ \rm ms$.
+
+ The memory of the LTP predictor is up to&nbsp; $15 \ \rm ms$.
  
{Welche Aussagen treffen für den Block „RPE” zu?
+
{Which statements are true for the block "RPE"?
 
|type="[]"}
 
|type="[]"}
- RPE liefert weniger Informationen als LPC und LTP.
+
- RPE provides less information than LPC and LTP.
+ RPE entfernt für den subjektiven Eindruck unwichtige Anteile.
+
+ RPE removes parts that are unimportant for the subjective impression.
+ RPE unterteilt jeden Subblock nochmals in vier Teilfolgen.
+
+ RPE divides each subblock again into four sub-sequences.
- RPE wählt davon die Teilfolge mit der minimalen Energie aus.
+
- RPE selects the subsequence with the minimum energy.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Um das Abtasttheorem zu erfüllen, darf die Bandbreite nicht größer als $f_{\rm A}/2 \hspace{0.15cm} \underline{= 4 \ \rm kHz}$ sein.
+
'''(1)'''&nbsp; To satisfy the sampling theorem, the bandwidth must not exceed $f_{\rm A}/2 \hspace{0.15cm} \underline{= 4 \ \rm kHz}$.
  
  
'''(2)'''&nbsp; Aus der gegebenen Abtastrate $f_{\rm A} = 8 \ \rm kHz$ ergibt sich ein Abstand zwischen einzelnen Samples von $T_{\rm A} = 0.125 \ \rm ms$.  
+
'''(2)'''&nbsp; From the given sampling rate $f_{\rm A} = 8 \ \rm kHz$ results a distance between individual samples of $T_{\rm A} = 0.125 \ \rm ms$.  
*Somit besteht ein Sprachrahmen $(20 \ \rm ms)$ aus $N_{\rm R} = 20/0.125\hspace{0.15cm} \underline{= 160 \ \rm Abtastwerten}$, jeweils quantisiert mit $13 \ \rm Bit$.  
+
*Thus, a speech frame $(20 \ \rm ms)$ consists of $N_{\rm R} = 20/0.125\hspace{0.15cm} \underline{= 160 \ \rm samples}$, each quantised with $13 \ \rm bits$.  
*Die Datenrate beträgt somit
+
*The data rate is thus
 
:$$R_{\rm In} = \frac{160 \cdot 13}{20 \,{\rm ms}} \hspace{0.15cm} \underline {= 104\,{\rm kbit/s}}\hspace{0.05cm}.$$
 
:$$R_{\rm In} = \frac{160 \cdot 13}{20 \,{\rm ms}} \hspace{0.15cm} \underline {= 104\,{\rm kbit/s}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp;   Aus der Grafik ist ersichtlich, dass pro Sprachrahmen $36$ (LPC) $+ 36$ (LTP) $+ 188$ (RPE) $= 260 \ \rm Bit$ ausgegeben werden.  
+
'''(3)'''&nbsp; From the graph, it can be seen that $36$ (LPC) $+ 36$ (LTP) $+ 188$ (RPE) $= 260 \ \rm bits$ are output per speech frame.  
*Daraus berechnet sich die Ausgangsdatenrate zu
+
*From this, the output data rate is calculated to be
 
:$$R_{\rm Out} = \frac{260}{20 \,{\rm ms}} \hspace{0.15cm} \underline {= 13\,{\rm kbit/s}}\hspace{0.05cm}.$$
 
:$$R_{\rm Out} = \frac{260}{20 \,{\rm ms}} \hspace{0.15cm} \underline {= 13\,{\rm kbit/s}}\hspace{0.05cm}.$$
*Der vom Vollraten–Sprachcodec erzielte Kompressionsfaktor ist somit $104/13 = 8$.
+
*The compression factor achieved by the full rate speech codec is thus $104/13 = 8$.
  
  
  
'''(4)'''&nbsp; Richtig sind die <u>Aussagen 1 und 2</u>:  
+
'''(4)'''&nbsp; Correct are <u>statements 1 and 2</u>:  
*Die $36$ LPC–Bits beschreiben insgesamt acht Filterkoeffizienten eines nichtrekursiven Filters, wobei aus der Kurzzeitanalyze acht AKF–Werte ermittelt und diese nach der so genannten Schur-Rekursion in Reflexionsfaktoren $r_{k}$ umgerechnet werden.  
+
*The $36$ LPC bits describe a total of eight filter coefficients of a non-recursive filter, where eight AKF values are determined from the short-time analysis and these are converted into reflection coefficients $r_{k}$ according to the so-called Schur recursion.  
*Aus diesen werden die acht LAR–Koeffizienten entsprechend der Funktion ${\rm ln}[(1 r_{k})/(1 + r_{k})]$ berechnet, mit einer unterschiedlichen Anzahl von Bits quantisiert und an den Empfänger weitergereicht.
+
*From these, the eight LAR coefficients are calculated according to the function ${\rm ln}[(1 - r_{k})/(1 + r_{k})]$, quantised with a different number of bits and passed on to the receiver.
*Das LPC–Ausgangssignal besitzt gegenüber seinem Eingang $s_{\rm R}(n)$ eine deutlich kleinere Amplitude, hat einen deutlich reduzierten Dynamikumfang und ein flacheres Spektrum.
+
*The LPC output signal has a significantly smaller amplitude compared to its input $s_{\rm R}(n)$, has a significantly reduced dynamic range and a flatter spectrum.
  
  
  
'''(5)'''&nbsp; Richtig sind die <u>Aussagen 1 und 3</u>, nicht jedoch die zweite:  
+
'''(5)'''&nbsp; Correct are <u>statements 1 and 3</u>, but not the second:  
*Die LTP–Analyse und –Filterung erfolgt blockweise alle $5 \rm ms \ (40 \ \rm Abtastwerte)$, also viermal pro Sprachrahmen.  
+
*The LTP analysis and filtering is done in blocks every $5 \rm ms \ (40 \rm samples)$, i.e. four times per speech frame.  
*Man bildet hierzu die Kreuzkorrelationsfunktion (KKF) zwischen dem aktuellen und den drei vorangegangenen Subblöcken.  
+
*To do this, the cross-correlation function (CCF) is formed between the current and the three preceding sub-blocks.  
*Für jeden Subblock werden dabei eine LTP–Verzögerung und eine LTP–Verstärkung ermittelt, die am besten zum Subblock passen.  
+
*For each sub-block, an LTP delay and an LTP gain are determined that best fit the sub-block.  
*Berücksichtigt wird hierbei auch ein Korrektursignal der anschließenden Komponente „RPE”.  
+
*A correction signal of the subsequent component "RPE" is also taken into account.  
*Bei der Langzeitprädiktion ist wie bei der LPC der Ausgang gegenüber dem Eingang redundanzvermindert.  
+
*In the case of long-term prediction, as with LPC, the output is redundancy-reduced compared to the input.  
  
  
  
'''(6)'''&nbsp; Richtig sind die <u>Aussagen 2 und 3</u>:  
+
'''(6)'''&nbsp; Correct are <u>statements 2 and 3</u>:  
*Dass die Aussage 1 falsch ist, erkennt man schon aus der Grafik auf der Angabenseite, da $188$ der $260$ Ausgabebits von der RPE stammen.  
+
*That statement 1 is false can already be seen from the graph on the statements page, since $188$ of the $260$ output bits come from the RPE.  
*Zur letzten Aussage:&nbsp; Die RPE sucht die Teilfolge mit der maximalen Energie.  
+
*To the last statement:&nbsp; The RPE searches for the subsequence with the maximum energy.  
*Dieser Parameter „RPE–Pulse” belegt allein $156$ der $260$ Ausgabebit.  
+
*This parameter "RPE pulses" alone occupies $156$ of the $260$ output bits.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 20:36, 21 January 2023

LPC, LTP and RPE parameters in the GSM Full-Rate Vocoder

This codec called "GSM Full-Rate Vocoder"  (which was standardized for the GSM system in 1991)  stands for a joint realization of coder and decoder and combines three methods for the compression of speech signals:

  • Linear Predictive Coding  $\rm (LPC)$,
  • Long Term Prediction  $\rm (LTP)$, and
  • Regular Pulse Excitation  $\rm (RPE)$.


The numbers shown in the graphic indicate the number of bits generated by the three units of this Full-Rate speech codec per frame of  $20$  millisecond duration each.

It should be noted that LTP and RPE, unlike LPC, do not work frame by frame, but with sub-blocks of  $5$  milliseconds.  However, this has no influence on solving the task.

The input signal in the above graphic is the digitalized speech signal  $s_{\rm R}(n)$.

This results from the analog speech signal  $s(t)$  by

  • a suitable limitation to the bandwidth $B$,
  • sampling at the sampling rate $f_{\rm A} = 8 \ \rm kHz$,
  • quantization with $13 \ \rm bit$,
  • following segmentation into blocks of each $20 \ \rm ms$.


The further tasks of preprocessing will not be discussed in detail here.

You can also take questions and solutions (almost completely?) from " Exercise 3.4Z"


Hint:



Questions

1

To what bandwidth must the speech signal be limited?

$B \ = \ $

$ \ \rm kHz$

2

How many samples  $(N_{\rm R})$  does a speech frame consist of? What is the input data rate  $R_{\rm In}$?

$N_{\rm R} \hspace{0.25cm} = \ $

$R_{\rm In} \hspace{0.22cm} = \ $

$\ \rm kbit/s$

3

What is the output data rate  $R_{\rm Out}$  of the GSM full rate codec?

$R_{\rm Out} \hspace{0.09cm} = \ $

$ \ \rm kbit/s$

4

Which statements are true regarding the block "LPC"?

LPC makes a short-term prediction over one millisecond.
The  $36$  LPC bits are filter coefficients used at the receiver to undo the LPC filtering.
The filter for long-term prediction is recursive.
The LPC output is identical to its input  $s_{\rm R}(t)$.

5

Which statements are true regarding the block "LTP"?

Periodic structures of the speech signal are removed.
Long-term prediction is performed once per frame.
The memory of the LTP predictor is up to  $15 \ \rm ms$.

6

Which statements are true for the block "RPE"?

RPE provides less information than LPC and LTP.
RPE removes parts that are unimportant for the subjective impression.
RPE divides each subblock again into four sub-sequences.
RPE selects the subsequence with the minimum energy.


Solution

(1)  To satisfy the sampling theorem, the bandwidth must not exceed $f_{\rm A}/2 \hspace{0.15cm} \underline{= 4 \ \rm kHz}$.


(2)  From the given sampling rate $f_{\rm A} = 8 \ \rm kHz$ results a distance between individual samples of $T_{\rm A} = 0.125 \ \rm ms$.

  • Thus, a speech frame $(20 \ \rm ms)$ consists of $N_{\rm R} = 20/0.125\hspace{0.15cm} \underline{= 160 \ \rm samples}$, each quantised with $13 \ \rm bits$.
  • The data rate is thus
$$R_{\rm In} = \frac{160 \cdot 13}{20 \,{\rm ms}} \hspace{0.15cm} \underline {= 104\,{\rm kbit/s}}\hspace{0.05cm}.$$


(3)  From the graph, it can be seen that $36$ (LPC) $+ 36$ (LTP) $+ 188$ (RPE) $= 260 \ \rm bits$ are output per speech frame.

  • From this, the output data rate is calculated to be
$$R_{\rm Out} = \frac{260}{20 \,{\rm ms}} \hspace{0.15cm} \underline {= 13\,{\rm kbit/s}}\hspace{0.05cm}.$$
  • The compression factor achieved by the full rate speech codec is thus $104/13 = 8$.


(4)  Correct are statements 1 and 2:

  • The $36$ LPC bits describe a total of eight filter coefficients of a non-recursive filter, where eight AKF values are determined from the short-time analysis and these are converted into reflection coefficients $r_{k}$ according to the so-called Schur recursion.
  • From these, the eight LAR coefficients are calculated according to the function ${\rm ln}[(1 - r_{k})/(1 + r_{k})]$, quantised with a different number of bits and passed on to the receiver.
  • The LPC output signal has a significantly smaller amplitude compared to its input $s_{\rm R}(n)$, has a significantly reduced dynamic range and a flatter spectrum.


(5)  Correct are statements 1 and 3, but not the second:

  • The LTP analysis and filtering is done in blocks every $5 \rm ms \ (40 \rm samples)$, i.e. four times per speech frame.
  • To do this, the cross-correlation function (CCF) is formed between the current and the three preceding sub-blocks.
  • For each sub-block, an LTP delay and an LTP gain are determined that best fit the sub-block.
  • A correction signal of the subsequent component "RPE" is also taken into account.
  • In the case of long-term prediction, as with LPC, the output is redundancy-reduced compared to the input.


(6)  Correct are statements 2 and 3:

  • That statement 1 is false can already be seen from the graph on the statements page, since $188$ of the $260$ output bits come from the RPE.
  • To the last statement:  The RPE searches for the subsequence with the maximum energy.
  • This parameter "RPE pulses" alone occupies $156$ of the $260$ output bits.