Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"

From LNTwww
Line 79: Line 79:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''  If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low-pass has no influence and qG(t)=1 results.  
+
'''(1)'''  If all amplitude coefficients  aμ  are equal to  +1, then  qR(t)=1  is a constant.  Thus, the Gaussian low-pass has no influence and  qG(t)=1  results.  
 
*The maximum frequency is thus
 
*The maximum frequency is thus
 
:Max [fA(t)]=fT+ΔfA=900.068MHz_.
 
:Max [fA(t)]=fT+ΔfA=900.068MHz_.
*The minimum instantaneous frequency
+
*The minimum instantaneous frequency is
 
:Min [fA(t)]=fTΔfA=899.932MHz_
 
:Min [fA(t)]=fTΔfA=899.932MHz_
is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=1.
+
:is obtained when all amplitude coefficients are negative.  In this case qR(t)=qG(t)=1.
  
  
'''(2)'''  The frequency at which the logarithmic power transfer function is 3 dB less than f=0 is called the 3dB cut-off frequency.  
+
'''(2)'''  The frequency at which the logarithmic power transfer function is  3 dB  less than for  f=0  is called the "3dB cut-off frequency".  
 
*This can also be expressed as follows:
 
*This can also be expressed as follows:
 
:|H(f=f3dB)||H(f=0)|=12.
 
:|H(f=f3dB)||H(f=0)|=12.
*In particular the Gauss low-pass because of H(f=0)=1:
+
*In particular the Gauss low-pass because of  H(f=0)=1:
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
*The numerical evaluation leads to  fG1.5f3dB.  
+
*The numerical evaluation leads to  fG1.5f3dB.  
*From f3dBT=0.3 follows fGT0.45_.
+
*From  f3dBT=0.3  follows  fGT0.45_.
  
  
  
 
+
'''(3)'''  The frequency pulse  g(t)  results from the convolution of the rectangular function  gR(t)  with the impulse response  hG(t):
 
 
'''(3)'''  The frequency pulse g(t) results from the convolution of the rectangular function gR(t) with the pulse response hG(t):
 
 
:g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
 
:g(t)=gR(t)hG(t)=2fGt+T/2tT/2eπ(2fGτ)2dτ.
*With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this:
+
*With the substitution  u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}  and the function  \phi (x)  you can also write for this:
 
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
 
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
*For the time t = 0 is valid considering \phi (-x) = 1 - \phi (x) and $f_{\rm G} \cdot T = $0.45
+
*Considering  \phi (-x) = 1 - \phi (x)  and  $f_{\rm G} \cdot T = 0.45,  you get for the time  t = 0$:
 
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
 
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
  
  
  
'''(4)'''  With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity, the following therefore applies:
+
'''(4)'''  With  a_{3} = +1  the result would be  q_{\rm G}(t = 3 T) = 1.  Due to the linearity therefore applies:
 
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
 
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
  
  
  
'''(5)'''  With the result of (3) and $f_{\rm G} \cdot T = $0.45 you get
+
'''(5)'''  With the result of  '''(3)'''  and  $f_{\rm G} \cdot T = 0.45$  you get
 
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
 
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx  \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
*The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low-pass.
+
*The pulse value  g(t = -T)  is exactly the same due to the symmetry of the Gaussian low-pass.
  
  
  
'''(6)'''  With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry.  
+
'''(6)'''  With alternating sequence, the absolute values  |q_{\rm G}(\mu \cdot T)|  are all the same for all multiples of the bit duration  T  for reasons of symmetry.  
*All intermediate values at t \approx \mu \cdot T are smaller.  
+
*All intermediate values at  t \approx \mu \cdot T  are smaller.  
* Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and also by the following pulse with g(t = -T).
+
* Taking  g(t ≥ 2T) \approx 0  into account, each individual pulse value  g(0)  is reduced by the preceding pulse with  g(t = T), and by the following pulse with  g(t = -T).
  
*So there will be impulse interference and you get
+
*So there will be "intersymbol interference" and you get
 
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.
 
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.
  

Revision as of 14:56, 23 January 2021

different signals of GMSK-Modulation

The modulation method used for GSM is  "Gaussian Minimum Shift Keying",  short  \rm GMSK.  This is a special type of  \rm FSK  ("Frequency Shift Keying")  with  \rm CP-FSK  ("Continuous Phase Matching"), where:

  • The modulation index has the smallest value that just satisfies the orthogonality condition:   h = 0.5   ⇒   "Minimum Shift Keying"  \rm (MSK),
  • A Gaussian low-pass with the impulse response  h_{\rm G}(t)  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  a_{\mu} ∈ \{±1\}  which are applied to a Dirac pulse.  It should be noted that the sequence drawn in is assumed for the subtask  (3).
  • The symmetrical rectangular pulse with duration  T = T_{\rm B}  (GSM bit duration)  is dimensionless:
g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}
  • This results for the rectangular signal
q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.
  • The Gaussian low-pass is given by its frequency response or impulse response:
H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[{f}/ ({2 f_{\rm G})} ]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 \cdot f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm}t)^2}\hspace{0.05cm},
where the system theoretical cut-off frequency  f_{\rm G}  is used.  In the GSM specification, however, the 3dB cut-off frequency is specified with  f_{\rm 3dB} = 0.3/T .  From this,  f_{\rm G}  can be calculated directly - see subtask  (2).
  • The signal after the Gaussian low-pass is thus
q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.
  • Here  g(t)  is referred to as "frequency pulse":
g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.
  • With the low-pass filtered signal  q_{\rm G}(t), the carrier frequency  f_{\rm T}  and the frequency deviation  \Delta f_{\rm A}  for the instantaneous frequency at the output of the FSK modulator can thus be written:
f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.


Some Gaussian integral values

Notes:

  • This exercise belongs to the chapter  Characteristics of GSM.
  • Reference is also made to the chapter  Radio Interface  in the book "Examples of Communication Systems".
  • For your calculations use the exemplary values  f_{\rm T} = 900 \ \ \rm MHz  and  \Delta f_{\rm A} = 68 \ \rm kHz.
  • Use the Gaussian integral to solve the task  (some numerical values are given in the table).
\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.


Questionnaire

1

In what range of values the instantaneous frequency  f_{\rm A}(t)  can fluctuate?  Which requirements must be met?

{\rm Max} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm}

\ \rm MHz
{\rm Min} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm}

\ \rm MHz

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low-pass results from the requirement  f_{\rm 3dB} \cdot T = 0.3?

f_{\rm G} \cdot T \ = \

3

Calculate the frequency pulse  g(t)  using the function  \phi (x).  What is the result for  g(t = 0)?

g(t = 0) \ = \

4

Which signal value results for  q_{\rm G}(t = 3T)  with  a_{3} = -1  and  a_{\mu \ne 3} = +1?  What is the instantaneous frequency  f_{\rm A}(t = 3T)?

q_{\rm G}(t = 3T) \ = \

5

Calculate the values  g(t = ±T)  of the frequency pulse.

g(t = ±T) \ = \

6

The amplitude coefficients are alternating.  What is the maximum amount of  q_{\rm G}(t) ?  Consider  g(t ≥ 2 T) \approx 0.

{\rm Max} \ |q_{\rm G}(t)| \ = \


Solution

(1)  If all amplitude coefficients  a_{\mu}  are equal to  +1, then  q_{\rm R}(t) = 1  is a constant.  Thus, the Gaussian low-pass has no influence and  q_{\rm G}(t) = 1  results.

  • The maximum frequency is thus
{\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.
  • The minimum instantaneous frequency is
{\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}
is obtained when all amplitude coefficients are negative.  In this case q_{\rm R}(t) = q_{\rm G}(t) = -1.


(2)  The frequency at which the logarithmic power transfer function is  3 \ \rm dB  less than for  f = 0  is called the "3dB cut-off frequency".

  • This can also be expressed as follows:
\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.
  • In particular the Gauss low-pass because of  H(f = 0) = 1:
H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.
  • The numerical evaluation leads to  f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}.
  • From  f_{\rm 3dB} \cdot T = 0.3  follows  f_{\rm G} \cdot T \underline{\approx 0.45}.


(3)  The frequency pulse  {\rm g}(t)  results from the convolution of the rectangular function  g_{\rm R}(t)  with the impulse response  h_{\rm G}(t):

g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.
  • With the substitution  u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}  and the function  \phi (x)  you can also write for this:
g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
  • Considering  \phi (-x) = 1 - \phi (x)  and  f_{\rm G} \cdot T = 0.45,  you get for the time  t = 0:
g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.


(4)  With  a_{3} = +1  the result would be  q_{\rm G}(t = 3 T) = 1.  Due to the linearity therefore applies:

q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.


(5)  With the result of  (3)  and  f_{\rm G} \cdot T = 0.45  you get

g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
  • The pulse value  g(t = -T)  is exactly the same due to the symmetry of the Gaussian low-pass.


(6)  With alternating sequence, the absolute values  |q_{\rm G}(\mu \cdot T)|  are all the same for all multiples of the bit duration  T  for reasons of symmetry.

  • All intermediate values at  t \approx \mu \cdot T  are smaller.
  • Taking  g(t ≥ 2T) \approx 0  into account, each individual pulse value  g(0)  is reduced by the preceding pulse with  g(t = T), and by the following pulse with  g(t = -T).
  • So there will be "intersymbol interference" and you get
{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.