Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"
Line 79: | Line 79: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low-pass has no influence and qG(t)=1 results. | + | '''(1)''' If all amplitude coefficients aμ are equal to +1, then qR(t)=1 is a constant. Thus, the Gaussian low-pass has no influence and qG(t)=1 results. |
*The maximum frequency is thus | *The maximum frequency is thus | ||
:Max [fA(t)]=fT+ΔfA=900.068MHz_. | :Max [fA(t)]=fT+ΔfA=900.068MHz_. | ||
− | *The minimum instantaneous frequency | + | *The minimum instantaneous frequency is |
:Min [fA(t)]=fT−ΔfA=899.932MHz_ | :Min [fA(t)]=fT−ΔfA=899.932MHz_ | ||
− | is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=−1. | + | :is obtained when all amplitude coefficients are negative. In this case qR(t)=qG(t)=−1. |
− | '''(2)''' The frequency at which the logarithmic power transfer function is 3 dB less than f=0 is called the 3dB cut-off frequency. | + | '''(2)''' The frequency at which the logarithmic power transfer function is 3 dB less than for f=0 is called the "3dB cut-off frequency". |
*This can also be expressed as follows: | *This can also be expressed as follows: | ||
:|H(f=f3dB)||H(f=0)|=1√2. | :|H(f=f3dB)||H(f=0)|=1√2. | ||
− | *In particular the Gauss low-pass because of H(f=0)=1: | + | *In particular the Gauss low-pass because of H(f=0)=1: |
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} | :$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$ | \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$ | ||
− | *The numerical evaluation leads to fG≈1.5⋅f3dB. | + | *The numerical evaluation leads to fG≈1.5⋅f3dB. |
− | *From f3dB⋅T=0.3 follows fG⋅T≈0.45_. | + | *From f3dB⋅T=0.3 follows fG⋅T≈0.45_. |
− | + | '''(3)''' The frequency pulse g(t) results from the convolution of the rectangular function gR(t) with the impulse response hG(t): | |
− | |||
− | '''(3)''' The frequency pulse g(t) results from the convolution of the rectangular function gR(t) with the | ||
:g(t)=gR(t)⋆hG(t)=2fG⋅∫t+T/2t−T/2e−π⋅(2fG⋅τ)2dτ. | :g(t)=gR(t)⋆hG(t)=2fG⋅∫t+T/2t−T/2e−π⋅(2fG⋅τ)2dτ. | ||
− | *With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this: | + | *With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this: |
:g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}. | :g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}. | ||
− | * | + | *Considering \phi (-x) = 1 - \phi (x) and $f_{\rm G} \cdot T = 0.45, you get for the time t = 0$: |
:g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}. | :g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}. | ||
− | '''(4)''' With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity | + | '''(4)''' With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity therefore applies: |
:q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}. | :q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}. | ||
− | '''(5)''' With the result of (3) and $f_{\rm G} \cdot T = | + | '''(5)''' With the result of '''(3)''' and $f_{\rm G} \cdot T = 0.45$ you get |
:g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}. | :g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}. | ||
− | *The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low-pass. | + | *The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low-pass. |
− | '''(6)''' With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry. | + | '''(6)''' With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry. |
− | *All intermediate values at t \approx \mu \cdot T are smaller. | + | *All intermediate values at t \approx \mu \cdot T are smaller. |
− | * Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and | + | * Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and by the following pulse with g(t = -T). |
− | *So there will be | + | *So there will be "intersymbol interference" and you get |
:{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}. | :{\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}. | ||
Revision as of 14:56, 23 January 2021
The modulation method used for GSM is "Gaussian Minimum Shift Keying", short \rm GMSK. This is a special type of \rm FSK ("Frequency Shift Keying") with \rm CP-FSK ("Continuous Phase Matching"), where:
- The modulation index has the smallest value that just satisfies the orthogonality condition: h = 0.5 ⇒ "Minimum Shift Keying" \rm (MSK),
- A Gaussian low-pass with the impulse response h_{\rm G}(t) is inserted before the FSK modulator, with the aim of saving even more bandwidth.
The graphic illustrates the situation:
- The digital message is represented by the amplitude coefficients a_{\mu} ∈ \{±1\} which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask (3).
- The symmetrical rectangular pulse with duration T = T_{\rm B} (GSM bit duration) is dimensionless:
- g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}
- This results for the rectangular signal
- q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.
- The Gaussian low-pass is given by its frequency response or impulse response:
- H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[{f}/ ({2 f_{\rm G})} ]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 \cdot f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\hspace{0.05cm}\cdot \hspace{0.05cm}t)^2}\hspace{0.05cm},
- where the system theoretical cut-off frequency f_{\rm G} is used. In the GSM specification, however, the 3dB cut-off frequency is specified with f_{\rm 3dB} = 0.3/T . From this, f_{\rm G} can be calculated directly - see subtask (2).
- The signal after the Gaussian low-pass is thus
- q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.
- Here g(t) is referred to as "frequency pulse":
- g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.
- With the low-pass filtered signal q_{\rm G}(t), the carrier frequency f_{\rm T} and the frequency deviation \Delta f_{\rm A} for the instantaneous frequency at the output of the FSK modulator can thus be written:
- f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.
Notes:
- This exercise belongs to the chapter Characteristics of GSM.
- Reference is also made to the chapter Radio Interface in the book "Examples of Communication Systems".
- For your calculations use the exemplary values f_{\rm T} = 900 \ \ \rm MHz and \Delta f_{\rm A} = 68 \ \rm kHz.
- Use the Gaussian integral to solve the task (some numerical values are given in the table).
- \phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.
Questionnaire
Solution
(1) If all amplitude coefficients a_{\mu} are equal to +1, then q_{\rm R}(t) = 1 is a constant. Thus, the Gaussian low-pass has no influence and q_{\rm G}(t) = 1 results.
- The maximum frequency is thus
- {\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.
- The minimum instantaneous frequency is
- {\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}
- is obtained when all amplitude coefficients are negative. In this case q_{\rm R}(t) = q_{\rm G}(t) = -1.
(2) The frequency at which the logarithmic power transfer function is 3 \ \rm dB less than for f = 0 is called the "3dB cut-off frequency".
- This can also be expressed as follows:
- \frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.
- In particular the Gauss low-pass because of H(f = 0) = 1:
- H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.
- The numerical evaluation leads to f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}.
- From f_{\rm 3dB} \cdot T = 0.3 follows f_{\rm G} \cdot T \underline{\approx 0.45}.
(3) The frequency pulse {\rm g}(t) results from the convolution of the rectangular function g_{\rm R}(t) with the impulse response h_{\rm G}(t):
- g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.
- With the substitution u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2} and the function \phi (x) you can also write for this:
- g(t) = \ \frac {1}{\sqrt{2 \pi}} \cdot \int^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \ \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.
- Considering \phi (-x) = 1 - \phi (x) and f_{\rm G} \cdot T = 0.45, you get for the time t = 0:
- g(t = 0) = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= \ 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.
(4) With a_{3} = +1 the result would be q_{\rm G}(t = 3 T) = 1. Due to the linearity therefore applies:
- q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.
(5) With the result of (3) and f_{\rm G} \cdot T = 0.45 you get
- g(t = T) = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.
- The pulse value g(t = -T) is exactly the same due to the symmetry of the Gaussian low-pass.
(6) With alternating sequence, the absolute values |q_{\rm G}(\mu \cdot T)| are all the same for all multiples of the bit duration T for reasons of symmetry.
- All intermediate values at t \approx \mu \cdot T are smaller.
- Taking g(t ≥ 2T) \approx 0 into account, each individual pulse value g(0) is reduced by the preceding pulse with g(t = T), and by the following pulse with g(t = -T).
- So there will be "intersymbol interference" and you get
- {\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.