Difference between revisions of "Aufgaben:Exercise 4.06Z: Signal Space Constellations"

From LNTwww
Line 91: Line 91:
  
 
<u>Solution 4</u> is correct:  
 
<u>Solution 4</u> is correct:  
*Durch eine Drehung des Koordinatensystems kann man bei einem Binärsystem $(M = 2)$ stets mit einer Basisfunktion $(N = 1)$ auskommen.  
+
*By rotating the coordinate system, one can always get by with a basis function $(N = 1)$ for a binary system $(M = 2)$.
*Da das zweidimensionale Rauschen zirkulär symmetrisch ist &nbsp; &#8658; &nbsp; gleiche Streuung $\sigma_n$ in alle Richtungen, kann auch der Rauschterm wie im Kapitel [[Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung|Fehlerwahrscheinlichkeit bei Basisbandübertragung]] eindimensional beschrieben werden.
+
*Since the two-dimensional noise is circularly symmetric &nbsp; &#8658; &nbsp; equal standard deviation $\sigma_n$ in all directions, the noise term can also be described one-dimensionally as in the chapter [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]].
  
  
  
'''(3)'''&nbsp; Für alle hier betrachteten Varianten gilt, also auch für die Variante &nbsp;$\rm A$:
+
'''(3)'''&nbsp; For all variants considered here, i.e., also for variant &nbsp;$\rm A$, the following holds:
 
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) =  {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )=  {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right )
 
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) =  {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )=  {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right )
 
=  {\rm Q}(2.5)\hspace{0.05cm}.$$
 
=  {\rm Q}(2.5)\hspace{0.05cm}.$$
  
Mit der angegebenen Näherung erhält man
+
With the given approximation we obtain
 
:$$p_{\rm S}  = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$
 
:$$p_{\rm S}  = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Bei der Variante &nbsp;$\rm C$&nbsp; ergibt sich für die mittlere Energie pro Symbol:
+
'''(4)'''&nbsp; For variant &nbsp;$\rm C$,&nbsp; the average energy per symbol is given by:
 
:$$E_{\rm S}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot  (-2.5 \cdot \sqrt{E})^2 +  
 
:$$E_{\rm S}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot  (-2.5 \cdot \sqrt{E})^2 +  
 
  {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot  (+ 2.5 \cdot \sqrt{E})^2 =
 
  {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot  (+ 2.5 \cdot \sqrt{E})^2 =
Line 111: Line 111:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Setzt man dieses Ergebnis in die unter (3) gefundene Gleichung ein, so erhält man mit $\sigma_n^2 = N_0/2$:
+
Substituting this result into the equation found in (3), we obtain with $\sigma_n^2 = N_0/2$:
 
:$$p_{\rm S}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )=  {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right )
 
:$$p_{\rm S}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )=  {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right )
 
=  {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right )  
 
=  {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right )  
Line 117: Line 117:
  
  
'''(5)'''&nbsp; Durch Drehung des Koordinatensystems ändert sich nichts an den Energieverhältnissen. Deshalb erhält man wieder $p_{\rm S} \ \underline {\approx 0.7\%}$.
+
'''(5)'''&nbsp; Rotating the coordinate system does not change the energy ratios. Therefore, $p_{\rm S} \ \underline {\approx 0.7\%}$ is obtained again.
  
  
  
'''(6)'''&nbsp; Bei der Variante &nbsp;$\rm A$&nbsp; ist die mittlere Energie pro Symbol
+
'''(6)'''&nbsp; In variant &nbsp;$\rm A$,&nbsp; the average energy per symbol is
 
:$$E_{\rm S}  = {1}/{2} \cdot    \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E  
 
:$$E_{\rm S}  = {1}/{2} \cdot    \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E  
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
Der Abstand von der Schwelle, die bei gleichwahrscheinlichen Symbolen in der Mitte zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ liegen sollte, ist wie bei den anderen Varianten $d/2 = 2.5 \cdot E^{\rm 1/2}$. Mit $\sigma_n^2 = N_0/2$ erhält man somit die Bestimmungsgleichung:
+
The distance from the threshold, which should be midway between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ for equally probable symbols, is $d/2 = 2.5 \cdot E^{\rm 1/2}$, as in the other variants. Thus, with $\sigma_n^2 = N_0/2$, we obtain the governing equation:
 
:$$p_{\rm S}  = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right )   
 
:$$p_{\rm S}  = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right )   
 
={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm}  
 
={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm}  
Line 132: Line 132:
 
:$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$
  
Das bedeutet: Bei der Variante &nbsp;$\rm A$&nbsp; ist gegenüber den beiden anderen Symbolen eine um den Faktor $3.44$ größere mittlere Symbolenergie $E_{\rm S}$ erforderlich, um die gleiche Fehlerwahrscheinlichkeit $p_{\rm S} = 0.7%$ zu erzielen.  
+
This means: For variant &nbsp;$\rm A$,&nbsp; compared to the other two symbols, a mean symbol energy $E_{\rm S}$ larger by a factor of $3.44$is required to achieve the same error probability $p_{\rm S} = 0.7%$.
*Das heißt: Diese Signalraumkonstellation ist sehr ungünstig. Es ergibt sich ein sehr großes $E_{\rm S}$, ohne dass gleichzeitig der Abstand $d$ vergrößert wird.
+
*That means: This signal space constellation is very unfavorable. It results in a very large $E_{\rm S}$ without increasing the distance $d$ at the same time.
*Mit $E_{\rm S} = 6.25 \cdot 10^{\rm &ndash;6} \ \rm Ws$ würde sich dagegen $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ ergeben.  
+
*With $E_{\rm S} = 6.25 \cdot 10^{\rm &ndash;6} \ \rm Ws$, on the other hand, $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ would result.
*Das heißt: &nbsp; Die Fehlerwahrscheinlichkeit würde um mehr als eine Zehnerpotenz größer.
+
*That means: &nbsp; The error probability would be larger by more than one power of ten.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 14:55, 5 July 2022

Three signal space constellations

The (mean) error probability of an optimal binary system is:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$

It should be noted here:

  • ${\rm Q}(x)$  denotes the complementary Gaussian error function (definition and approximation):
$${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$
  • $d$  specifies the distance between the two transmitted signal points  $s_0$  and  $s_1$  in vector space:
$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$
  • $\sigma_n^2$  is the variance of the AWGN noise after the detector, which, for example, can be implemented as a matched filter.
    It is assumed that  $\sigma_n^2 = N_0/2$.


The graphic shows three different signal space constellations, namely

  • Variant $\rm A$:   $s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1)$,
  • Variant $\rm B$:   $s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2)$,
  • Variant $\rm C$:   $s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0)$.


The mean energy per symbol  $(E_{\rm S})$  can be calculated as follows:

$$E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.$$




Notes:

  • The chapter belongs to the chapter  "Approximation of the Error Probability".
  • For numeric calculations, the energy  $E = 1$  can be set for simplification.
  • Unless otherwise specified, equally probable symbols can be assumed:
$${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$$



Questions

1

Which prerequisites must absolutely (in any case) be fulfilled so that the given error probability equation is valid?

Additive white Gaussian noise with variance  $\sigma_n^2$.
Optimal binary receiver.
Decision boundary in the middle between the symbols.
Equally likely symbols  $s_0$  and  $s_1$.

2

Which statement applies to the error probability with  $\sigma_n^2 = E$?

Variant  $\rm A$  has the lowest error probability.
Variant  $\rm B$  has the lowest error probability.
Variant  $\rm C$  has the lowest error probability.
All variants show the same error behavior.

3

Give the error probability for variant  $\rm A$  with  $\sigma_n^2 = E$.  You can calculate  ${\rm Q}(x)$  according to the approximation.

$p_{\rm S} \ = \ $

$\ \%$

4

It is assumed that  $N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}$,  $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$. What is the probability for variant $\rm C$  with equally probable symbols?

$p_{\rm S} \ = \ $

$\ \%$

5

What is the error probability for variant  $\rm B$ under the same conditions?

$p_{\rm S} \ = \ $

$\ \%$

6

How large should the average energy per symbol  $(E_{\rm S})$  be chosen for variant $\rm A$  in order to obtain the same error probability as for system  $\rm C$? 

$E_{\rm S} \ = \ $

$\ \cdot 10^{\rm –6} \ \rm Ws$


Solution

(1)  The first three prerequisites must be met in any case:

  • The equation then applies independently of the occurrence probabilities.
  • In the case of ${\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1)$, a lower error probability can be achieved by shifting the decision threshold.


(2)  The noise rms value $\sigma_n$ and thus also the signal energy $E = \sigma_n^2$ are the same for all three considered variants. The same applies to the distance of the signal space points. For variant  $\rm A$,  for example, the following applies:

$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$

Due to the shifting of the coordinate system, the distance between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ does not change (variant  $\rm B$), and the same distance results in variant  $\rm C$  (after rotation).

Solution 4 is correct:

  • By rotating the coordinate system, one can always get by with a basis function $(N = 1)$ for a binary system $(M = 2)$.
  • Since the two-dimensional noise is circularly symmetric   ⇒   equal standard deviation $\sigma_n$ in all directions, the noise term can also be described one-dimensionally as in the chapter "Error Probability for Baseband Transmission".


(3)  For all variants considered here, i.e., also for variant  $\rm A$, the following holds:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) = {\rm Q}(2.5)\hspace{0.05cm}.$$

With the given approximation we obtain

$$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$


(4)  For variant  $\rm C$,  the average energy per symbol is given by:

$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$
$$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} \hspace{0.05cm}.$$

Substituting this result into the equation found in (3), we obtain with $\sigma_n^2 = N_0/2$:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. $$


(5)  Rotating the coordinate system does not change the energy ratios. Therefore, $p_{\rm S} \ \underline {\approx 0.7\%}$ is obtained again.


(6)  In variant  $\rm A$,  the average energy per symbol is

$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E \hspace{0.05cm}. $$

The distance from the threshold, which should be midway between $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$ for equally probable symbols, is $d/2 = 2.5 \cdot E^{\rm 1/2}$, as in the other variants. Thus, with $\sigma_n^2 = N_0/2$, we obtain the governing equation:

$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$
$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$

This means: For variant  $\rm A$,  compared to the other two symbols, a mean symbol energy $E_{\rm S}$ larger by a factor of $3.44$is required to achieve the same error probability $p_{\rm S} = 0.7%$.

  • That means: This signal space constellation is very unfavorable. It results in a very large $E_{\rm S}$ without increasing the distance $d$ at the same time.
  • With $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$, on the other hand, $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ would result.
  • That means:   The error probability would be larger by more than one power of ten.