Difference between revisions of "Channel Coding/Bounds for Block Error Probability"

From LNTwww
Line 186: Line 186:
 
::<math>\beta = \left\{ \begin{array}{c} \lambda \\  \sqrt{4 \cdot \varepsilon \cdot (1- \varepsilon)}\\  
 
::<math>\beta = \left\{ \begin{array}{c} \lambda \\  \sqrt{4 \cdot \varepsilon \cdot (1- \varepsilon)}\\  
 
  {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm B}/N_0}  \end{array} \right.\quad
 
  {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm B}/N_0}  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}BEC model},\\  
+
\begin{array}{*{1}c} {\rm for\hspace{0.15cm} das \hspace{0.15cm}BEC model},\\  
 
   {\rm for\hspace{0.15cm} das \hspace{0.15cm}BSC-Modell}, \\  {\rm for\hspace{0.15cm} das \hspace{0.15cm}AWGN model}. \end{array}</math>
 
   {\rm for\hspace{0.15cm} das \hspace{0.15cm}BSC-Modell}, \\  {\rm for\hspace{0.15cm} das \hspace{0.15cm}AWGN model}. \end{array}</math>
  
 
*The Bhattacharyya bound is always (and usually significantly) above the curve for the "Union Bound". With the goal of finding a uniform bound for all channels, much coarser estimates must be made here than for the "Union Bound".<br><br>
 
*The Bhattacharyya bound is always (and usually significantly) above the curve for the "Union Bound". With the goal of finding a uniform bound for all channels, much coarser estimates must be made here than for the "Union Bound".<br><br>
  
Wir beschränken uns hier auf die <b>Bhattacharyya&ndash;Schranke für das BSC&ndash;Modell</b>. Für dessen paarweise Verfälschungswahrscheinlichkeit wurde vorne hergeleitet:
+
We restrict ourselves here to the <b>Bhattacharyya bound for the BSC model</b>. For its pairwise corruption probability was derived in front:
  
 
::<math>{\rm Pr}\big[\underline{x}_{\hspace{0.02cm}0} \mapsto \underline{x}_{\hspace{0.02cm}1}\big]  =    \sum_{i= \left\lfloor (d-1)/2 \right\rfloor}^{d} {d \choose i} \cdot \varepsilon^{i} \cdot (1 - \varepsilon)^{d-i}  =    \sum_{i= \left\lceil d/2 \right\rceil }^{d} {d \choose i} \cdot \varepsilon^{i} \cdot (1 - \varepsilon)^{d-i}\hspace{0.05cm}.</math>
 
::<math>{\rm Pr}\big[\underline{x}_{\hspace{0.02cm}0} \mapsto \underline{x}_{\hspace{0.02cm}1}\big]  =    \sum_{i= \left\lfloor (d-1)/2 \right\rfloor}^{d} {d \choose i} \cdot \varepsilon^{i} \cdot (1 - \varepsilon)^{d-i}  =    \sum_{i= \left\lceil d/2 \right\rceil }^{d} {d \choose i} \cdot \varepsilon^{i} \cdot (1 - \varepsilon)^{d-i}\hspace{0.05cm}.</math>
  
*Hierbei kennzeichnet&nbsp; ε=Pr(y=1|x=0)=Pr(y=0|x=1)<0.5&nbsp; das Kanalmodell.
+
*Here, ε=Pr(y=1|x=0)=Pr(y=0|x=1)<0.5&nbsp; denotes the channel model.
*d=dH(x_0,x_1)&nbsp; gibt die Hamming&ndash;Distanz der betrachteten Codeworte an.<br>
+
*d=dH(x_0,x_1)&nbsp; indicates the Hamming distance of the considered codewords.<br>
  
  
Um zur Bhattacharyya&ndash;Schranke zu kommen, müssen folgende Abschätzungen getroffen werden:
+
To arrive at the Bhattacharyya bound, the following estimates must be made:
*Für alle&nbsp; i<d&nbsp; gilt&nbsp; εi(1ε)di(1ε)d/2:
+
*For all&nbsp; i<d&nbsp; holds&nbsp; εi(1ε)di(1ε)d/2:
  
 
::<math>{\rm Pr}\big[\underline{x}_{\hspace{0.02cm}0} \mapsto \underline{x}_{\hspace{0.02cm}1}\big]  \le  \big[\varepsilon \cdot (1 - \varepsilon)\big]^{d/2} \cdot \sum_{i= \left\lceil d/2 \right\rceil }^{d} {d \choose i}  \hspace{0.05cm}.</math>
 
::<math>{\rm Pr}\big[\underline{x}_{\hspace{0.02cm}0} \mapsto \underline{x}_{\hspace{0.02cm}1}\big]  \le  \big[\varepsilon \cdot (1 - \varepsilon)\big]^{d/2} \cdot \sum_{i= \left\lceil d/2 \right\rceil }^{d} {d \choose i}  \hspace{0.05cm}.</math>
  
*Änderung bezüglich der unteren Grenze der Laufvariablen&nbsp; i:
+
*Change with respect to the lower limit of the run variable&nbsp; i:
  
 
::<math>\sum_{i= \left\lceil d/2 \right\rceil }^{d} {d \choose i} \hspace{0.15cm} < \hspace{0.15cm} \sum_{i= 0 }^{d} {d \choose i}  = 2^d\hspace{0.05cm},
 
::<math>\sum_{i= \left\lceil d/2 \right\rceil }^{d} {d \choose i} \hspace{0.15cm} < \hspace{0.15cm} \sum_{i= 0 }^{d} {d \choose i}  = 2^d\hspace{0.05cm},
Line 211: Line 211:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*Umsortierung gemäß den Hamming&ndash;Gewichten&nbsp; Wi&nbsp; (Hamming&ndash;Distanz&nbsp; d=i&nbsp; kommt&nbsp; Wi&nbsp; mal vor):
+
*Resort according to Hamming weights&nbsp; Wi&nbsp; (Hamming distance&nbsp; d=i&nbsp; occurs&nbsp; Wi&nbsp; times):
  
::<math>{\rm Pr(Blockfehler)} \hspace{0.1cm} \le \hspace{0.1cm} \sum_{i= 1 }^{n} W_i \cdot \beta^{i} = 1 +  W_1 \cdot \beta + W_2 \cdot \beta^2 + \hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ W_n \cdot \beta^n
+
::<math>{\rm Pr(block\:error)} \hspace{0.1cm} \le \hspace{0.1cm} \sum_{i= 1 }^{n} W_i \cdot \beta^{i} = 1 +  W_1 \cdot \beta + W_2 \cdot \beta^2 + \hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ W_n \cdot \beta^n
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Mit der Gewichtsfunktion&nbsp; W(X)=1+W1X+W2X2+...+WnXn:
+
*With the weight enumerator function&nbsp; W(X)=1+W1X+W2X2+...+WnXn:
  
::<math>{\rm Pr(Blockfehler)} \le W(X = \beta) -1= {\rm Pr(Bhattacharyya)}  
+
::<math>{\rm Pr(block\:error)} \le W(X = \beta) -1= {\rm Pr(Bhattacharyya)}  
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
[[File:P ID2370 KC T 1 6 S4.png|right|frame|Vergleich zwischen "Union Bound" und "Bhattacharyya–Schranke", gültig für das BSC–Modell|class=fit]]
+
[[File:P ID2370 KC T 1 6 S4.png|right|frame|Comparison between "Union Bound" and "Bhattacharyya Barrier" valid for the BSC model|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp;  In der Tabelle sind die Bhattacharyya–Ergebnisse für verschiedene Werte des BSC&ndash;Parameters&nbsp; ε&nbsp; zusammengefasst, gültig für den&nbsp; [[Channel_Coding/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Distanzspektrum_eines_linearen_Codes|beispielhaften (5, 2)&ndash;Code]].
+
$\text{Example 4:}$&nbsp;  The table summarizes the Bhattacharyya results for different values of the BSC parameter&nbsp; ε&nbsp; valid for the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Distance_spectrum_of_a_linear_code|example (5, 2) code]].
 
   
 
   
Für diesen gilt:  
+
For this one applies:  
 
:W0=1,  W1=W2=0,  W3=2,  W4=1
 
:W0=1,  W1=W2=0,  W3=2,  W4=1
 
:W(X)=1+2X3+X4.
 
:W(X)=1+2X3+X4.
  
Damit kann die Bhattacharyya&ndash;Schranke berechnet werden:
+
Thus, the Bhattacharyya bound can be calculated:
 
::<math>  {\rm Pr(Bhattacharyya)} = W(\beta) -1 = 2 \cdot \beta^3 + \beta^4\hspace{0.05cm}.</math>
 
::<math>  {\rm Pr(Bhattacharyya)} = W(\beta) -1 = 2 \cdot \beta^3 + \beta^4\hspace{0.05cm}.</math>
  
Diese stellt eine (oft grobe) Schranke für die Blockfehlerwahrscheinlichkeit dar:
+
This provides a (often rough) bound on the block error probability:
::<math> {\rm Pr(Blockfehler)}   
+
::<math> {\rm Pr(block\:error)}   
 
  \le {\rm Pr(Bhattacharyya)}
 
  \le {\rm Pr(Bhattacharyya)}
 
\hspace{0.05cm}.</math>}}
 
\hspace{0.05cm}.</math>}}
Line 239: Line 239:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  Basierend auf dem&nbsp; [[Channel_Coding/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Union_Bound_f.C3.BCr_das_BSC.E2.80.93Modell|$\text{Beispiel 3}$]]&nbsp; und dem&nbsp; $\text{Beispiel 4}$&nbsp; (auf dieser Seite) für den einfachen&nbsp; (5, 2)&ndash;Blockcode, der allerdings wenig praxisrelevant ist, sowie im Vorgriff auf das&nbsp; $\text{Beispiel 5}$&nbsp; (auf der nächsten  Seite) für den&nbsp; (7,&nbsp;4,&nbsp;3)&ndash;Hamming&ndash;Code fassen wir zusammen:
+
$\text{Conclusion:}$&nbsp;  Based on the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Union_Bound_for_the_BSC_model|$\text{Example 3}$]]&nbsp; and the&nbsp; $\text{Example 4}$&nbsp; (on this page) for the simple&nbsp; (5, 2) block code, though of little practical relevance, and in anticipation of the&nbsp; $\text{example 5}$&nbsp; (on the next page) for the&nbsp; (7,&nbsp;4,&nbsp;3) Hamming code, we summarize:
*Die Blockfehlerwahrscheinlichkeit eines Codiersystems ist oft analytisch nicht angebbar und muss per Simulation ermittelt werden. Gleiches gilt für die Bitfehlerwahrscheinlichkeit.<br>
+
*The block error probability of a coding system is often not analytically specifiable and must be determined by simulation. The same applies to the bit error probability.<br>
  
*Die&nbsp; '''Union Bound'''&nbsp; liefert eine obere Schranke für die Blockfehlerwahrscheinlichkeit. Bei vielen Anwendungen (insbesondere bei kurzen Codes) liegt die Union Bound nur geringfügig über der tatsächlichen Fehlerwahrscheinlichkeit.<br>
+
*The&nbsp; '''Union Bound'''&nbsp; provides an upper bound for the block error probability. For many applications (especially short codes) the Union Bound is only slightly above the actual error probability.<br>
  
*Die &nbsp;'''Bhattacharyya&ndash;Schranke'''&nbsp; liegt beim BEC&ndash;Kanal etwa um den Faktor&nbsp; 2&nbsp; oberhalb der&nbsp; Union Bound&nbsp; &ndash; siehe&nbsp; [[Aufgaben:Aufgabe_1.14:_Bhattacharyya–Schranke_für_BEC|Aufgabe 1.14]]. Beim BSC&ndash; und beim AWGN&ndash;Kanal ist der Abstand deutlich größer. Der Faktor&nbsp; 10&nbsp; (und mehr) ist keine Seltenheit.<br>
+
*The &nbsp;'''Bhattacharyya bound'''&nbsp; for the BEC channel is about a factor&nbsp; 2&nbsp; above the&nbsp; Union Bound&nbsp; &ndash; see&nbsp; [[Aufgaben:Exercise_1.14:_Bhattacharyya_Bound_for_BEC|Exercise 1.14]]. For the BSC&ndash; and the AWGN channel, the gap is much larger. The factor&nbsp; 10&nbsp; (and more) is not uncommon.<br>
  
*Die Bhattacharyya&ndash;Schranke&nbsp; W(β)1&nbsp; wirkt auf den ersten Blick sehr einfach. Trotzdem benötigt man auch hier Kenntnis über die genaue  Gewichtsfunktion&nbsp; W(ξ)&nbsp; des Codes.<br>
+
*The Bhattacharyya bound&nbsp; W(β)1&nbsp; looks very simple at first sight. Nevertheless, one needs also here knowledge about the exact weight function&nbsp; W(ξ)&nbsp; of the code.<br>
  
*Bei Kenntnis des vorliegenden Übertragungskanals (BEC, BSC, AWGN oder Abwandlungen hiervon) und dessen Parameter spricht somit vom Aufwand her nichts dagegen, gleich die (genauere) "Union Bound" als obere Schranke für die Blockfehlerwahrscheinlichkeit zu verwenden.}}<br>
+
*If the transmission channel (BEC, BSC, AWGN or variations thereof) and its parameters are known, there is nothing to be said against using the (more accurate) "Union Bound" as an upper bound for the block error probability.}}<br>
  
== Schranken für den (7, 4, 3)–Hamming Code beim AWGN–Kanal ==
+
== Barriers for the (7, 4, 3) Hamming code at the AWGN channel ==
 
<br>
 
<br>
Abschließend betrachten wir die Blockfehlerwahrscheinlichkeit und deren Schranken ("Union Bound" und "Bhattacharyya&ndash;Schranke"&nbsp;) für die folgende Konfiguration:
+
Finally, we consider the block error probability and its bounds ("Union Bound" and "Bhattacharyya bound"&nbsp;) for the following configuration:
*AWGN&ndash;Kanal, gekennzeichnet durch den Quotienten&nbsp; EB/N0,<br>
+
*AWGN channel, characterized by the quotient&nbsp; EB/N0,<br>
*Hamming&ndash;Code&nbsp; HC(7, 4, 3) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; R=4/7, &nbsp; W(X)1=7X3+7X4+X7,<br>
+
*Hamming code&nbsp; HC(7, 4, 3) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; R=4/7, &nbsp; W(X)1=7X3+7X4+X7,<br>
*"Soft&ndash;Decision" nach dem Maximum&ndash;Likelihood&ndash;Kriterium.<br><br>
+
*"Soft Decision" according to the maximum&ndash;likelihood criterion.<br><br>
  
[[File:EN_KC_T_1_6_S5.png|right|frame|Blockfehlerwahrscheinlichkeit und Schranken des &nbsp; HC (7, 4, 3)|class=fit]]
+
[[File:EN_KC_T_1_6_S5.png|right|frame|Block error probability and bounds of &nbsp; HC (7, 4, 3)|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp;  Die Ergebnisse sind in der Grafik zusammengefasst.  
+
$\text{Example 5:}$&nbsp;  Die Ergebnisse sind in der Grafik zusammengefasst.  
 
*Im Gegensatz zur Grafik im Abschnitt&nbsp; [[Channel_Coding/Decodierung_linearer_Blockcodes#Codiergewinn_.E2.80.93_Bitfehlerrate_bei_AWGN| Codiergewinn &ndash; Bitfehlerrate bei AWGN]] ist hier die Blockfehlerrate angegeben und nicht die Bitfehlerrate.  
 
*Im Gegensatz zur Grafik im Abschnitt&nbsp; [[Channel_Coding/Decodierung_linearer_Blockcodes#Codiergewinn_.E2.80.93_Bitfehlerrate_bei_AWGN| Codiergewinn &ndash; Bitfehlerrate bei AWGN]] ist hier die Blockfehlerrate angegeben und nicht die Bitfehlerrate.  
 
*Näherungsweise ist Letztere um den Faktor&nbsp; dmin/k&nbsp; kleiner, falls wie hier&nbsp; dmin<k&nbsp;  ist. Im vorliegenden Beispiel gilt&nbsp; dmin/k=0.75.<br>
 
*Näherungsweise ist Letztere um den Faktor&nbsp; dmin/k&nbsp; kleiner, falls wie hier&nbsp; dmin<k&nbsp;  ist. Im vorliegenden Beispiel gilt&nbsp; dmin/k=0.75.<br>

Revision as of 17:27, 28 July 2022

Distance spectrum of a linear code


We further assume a linear and binary  (n,k)–block code  C . A major goal of code design is to keep the  "block error probability"  Pr(u_v_)=Pr(z_x_)  as low as possible. This is achieved by, among other things.

  • the minimum distance  dmin  between two codewords  x_  and  x_  is as large as possible, so that one can correct up to  t=(dmin1)/2  bit errors;
  • at the same time the minimum distance  dmin   ⇒   worst case  occurs as rarely as possible, given all the allowed codewords.

Definition:  We denote the  number  of codewords  x_C  with Hamming distance  i  from the considered codeword  x_  of the same code  C  with  Wi(x_), where holds:

Wi(x_)=|{x_,x_C|dH(x_,x_)=i}|.
  • The straight lines of the absolute value here denote the number of codewords  x_, that satisfy the condition  dH(x_,x_)=i .

This value is also called  multiplicity.

Hamming distances between all code words

Example 1:  We consider the  (5,2) block code  C  with the generator matrix

G=(1011001011).

The table shows the hamming distances

  • between all codewords  x_i.
  • to the reference words  x_0, ... , x_3.


One recognizes:   Independently of the reference word  x_i  holds:

W0=1,W1=W2=0,W3=2,W4=1
dmin=3.


Not only in this example, but in any linear code, the same multiplicities  Wi result for each codeword. Furthermore, since the all-zero word  0_=(0,0, ...,0)  is part of every linear binary code, the above definition can also be formulated as follows:

Definition:  The  distance spectrum  of a linear binary  (n,k) block code is the set  {Wi}  with  i=0,1, ... , n. Here  Wi  gives the number of codewords  x_C  with Hamming weight  wH(x_)=i .

Often one describes the set  {Wi}  also as a polynomial with a pseudovariable  X:

{Wi}W(X)=ni=0WiXii=W0+W1X+W2X2+...+WnXn.

It is also called  W(X)  weight enumerator function.


For example, the weight enumerator function of the  (5,2) code  C={(0,0,0,0,0),(0,1,0,1,1),(1,0,1,1,0),(1,1,1,0,1)}  of  Example 1:

W(X)=1+2X3+X4.

As can be seen from the  "table of its code words" , for the  (7,4,3) Hamming code:

W(X)=1+7X3+7X4+X7.

The transformation of the distance spectrum  {Wi}  into the weight enumerator function  W(X)  also offers great numerical advantages in some exercises. For example, if the Weight Enumerator Function  W(X)  of a  (n,k)–Block Codes  C  is known, then for the corresponding  "dual"  (n,nk) code  Cdual:

WDual(X)=(1+X)n2kW(1X1+X).

Example 2:  The weight enumerator function  W(X)  of  "single parity–check codes"  with  n=6k=5   ⇒   SPC (6, 5).

This is obtained by comparing all  25=32  code words with the all-zero word:

WSPC(6,5)(X)=1+15X2+15X4+X6.

Considering the above equation, you get the same result much faster:

  • The to  SPC (6, 5) dual code is the  "repetition code"  RC (6, 1)  with only two codewords  (0,0,0,0,0,0)  and  (1,1,1,1,1,1):
WRC(6,1)(X)=1+X6.
  • From this it follows for the weight enumerator function of the  SPC (6, 5)  according to the above equation with  k=1:
WSPC(6,5)(X)=(1+X)621W[1+(1X1+X)6]=1/2[(1+X)6+(1X)6]=1+15X2+15X4+X6.


Union Bound of the block error probability


We consider as in  Example 1  to the distance spectrum the  (5,2)–block code  C={x_0,x_1,x_2,x_3}   and assume that the codeword  x_0  has been sent. The graphic illustrates the situation.

Derivation of the Union Bound

In the error-free case, the code word estimator would then return  z_=x_0 . Otherwise, a block error would occur (that is,   z_x_0  and accordingly  v_u_0)  with probability

Pr(blockerror)=Pr([x_0x_1][x_0x_2][x_0x_3]).

The event  "corruption of  x_0  to  x_1"  occurs for a given received word  y_  according to the  "Maximum Likelihood Decision Rule"  "block-wise ML"  exactly when holds for the conditional probability density function:

[x_0x_1]f(x_0|y_)<f(x_1|y_).

Since  [x_0x_1][x_0x_2][x_0x_3]are not necessarily disjoint events  (which would thus be mutually exclusive), the  "probability of the union set"  is less than or equal to the sum of the individual probabilities:

Pr(blockerror)Pr[x_0x_1]+Pr[x_0x_2]+Pr[x_0x_3].

One calls this upper bound for the (block) error probability the  Union Bound. This was already used in the chapter  "approximation of the error probability"  of the book "Digital Signal Transmission".

We generalize and formalize these results under the assumption that both  x_  and  x_  belong to the code  C .

Then the following calculation rules apply: 

  • Blockerrorprobability:
Pr(blockerror)=Pr(x_x_[x_x_]),
  • Upper bound after the  Union Bound:
Pr(UnionBound)x_x_Pr[x_x_],
  • Pairwise error probability  (according to the MAP or ML criterion.):
Pr[x_x_]=Pr[f(x_|y_)f(x_|y_)].


On the next pages, these results are applied to different channels.

Union Bound for the BSC model


We further consider the exemplary  (5,2) code:  C={(0,0,0,0,0),(0,1,0,1,1),(1,0,1,1,0),(1,1,1,0,1)}  and for the digital channel we use the  BSC model  (Binary Symmetric Channel ):

Pr(y=1|x=0)=Pr(y=0|x=1)=Pr(e=1)=ε,
Pr(y=0|x=0)=Pr(y=1|x=1)=Pr(e=0)=1ε.

Then holds (see the following graphic):

  • The codewords  x_0=(0,0,0,0,0)  and  x_1=(0,1,0,1,1)  differ in  d=3  bits, where  d  indicates the Hamming–distance  between  x_0  and  x_1 .
  • An incorrect decoding result  [x_0x_1]  is obtained whenever at least two of the three bits at bit positions 2, 4, and 5 are corrupted.
  • In contrast, the bit positions 1 and 3 do not matter here, since they are the same for  x_0  and  x_1 .


BSC model and ML detection

Since the considered code  t=(d1)/2=1  can correct errors, holds:

Pr[x_0x_1]=di=t+1(di)εi(1ε)di=(32)ε2(1ε)+(33)ε3=3ε2(1ε)+ε3=Pr[x_0x_2].

This takes into account that  x_0=(0,0,0,0)  and  x_2=(1,0,1,1,0)  also differ in three bit positions.

The code words  x_0=(0,0,0,0,0)  and  x_3=(1,1,1,0,1)  on the other hand differ in four bit positions:

  • Wrong decoding of the block therefore certainly occurs if four or three bits are corrupted.
  • A corruption of two bits also results in a block error with  50–percent probability, if one assumes a random decision for this.
Pr[x_0x_3]=ε4+4ε3(1ε)+1/26ε2(1ε)2.

This results in the "Union Bound":

Pr(UnionBound)=Pr[x_0x_1]+Pr[x_0x_2]+Pr[x_0x_3]Pr(Blockfehler).
Numeric Union Bound for the  (5, 2) code

Beispiel 3:  The table summarizes the results for different values of the BSC parameter  ε .


It is worth mentioning that the completely different probabilities to be calculated  Pr[x_0x_1]  und  Pr[x_0x_3]  give exactly the same numerical result.


The upper bound according to Bhattacharyya


Another upper bound on the block error probability was given by  Bhattacharyya :

Pr(blockerror)W(X=β)1=Pr(Bhattacharyya).

It should be noted that:

  • The  Bhattacharyya parameter  β  identifies the digital channel. For example:
β={λ4ε(1ε)eREB/N0fordasBECmodel,fordasBSCModell,fordasAWGNmodel.
  • The Bhattacharyya bound is always (and usually significantly) above the curve for the "Union Bound". With the goal of finding a uniform bound for all channels, much coarser estimates must be made here than for the "Union Bound".

We restrict ourselves here to the Bhattacharyya bound for the BSC model. For its pairwise corruption probability was derived in front:

Pr[x_0x_1]=di=(d1)/2(di)εi(1ε)di=di=d/2(di)εi(1ε)di.
  • Here, ε=Pr(y=1|x=0)=Pr(y=0|x=1)<0.5  denotes the channel model.
  • d=dH(x_0,x_1)  indicates the Hamming distance of the considered codewords.


To arrive at the Bhattacharyya bound, the following estimates must be made:

  • For all  i<d  holds  εi(1ε)di(1ε)d/2:
Pr[x_0x_1][ε(1ε)]d/2di=d/2(di).
  • Change with respect to the lower limit of the run variable  i:
di=d/2(di)<di=0(di)=2d,β=2ε(1ε)Pr[x_0x_1]=βd.
  • Resort according to Hamming weights  Wi  (Hamming distance  d=i  occurs  Wi  times):
Pr(blockerror)ni=1Wiβi=1+W1β+W2β2+ ...+Wnβn.
  • With the weight enumerator function  W(X)=1+W1X+W2X2+...+WnXn:
Pr(blockerror)W(X=β)1=Pr(Bhattacharyya).
Comparison between "Union Bound" and "Bhattacharyya Barrier" valid for the BSC model

Example 4:  The table summarizes the Bhattacharyya results for different values of the BSC parameter  ε  valid for the  example (5, 2) code.

For this one applies:

W0=1,  W1=W2=0,  W3=2,  W4=1
W(X)=1+2X3+X4.

Thus, the Bhattacharyya bound can be calculated:

Pr(Bhattacharyya)=W(β)1=2β3+β4.

This provides a (often rough) bound on the block error probability:

Pr(blockerror)Pr(Bhattacharyya).


Conclusion:  Based on the  Example 3  and the  Example 4  (on this page) for the simple  (5, 2) block code, though of little practical relevance, and in anticipation of the  example 5  (on the next page) for the  (7, 4, 3) Hamming code, we summarize:

  • The block error probability of a coding system is often not analytically specifiable and must be determined by simulation. The same applies to the bit error probability.
  • The  Union Bound  provides an upper bound for the block error probability. For many applications (especially short codes) the Union Bound is only slightly above the actual error probability.
  • The  Bhattacharyya bound  for the BEC channel is about a factor  2  above the  Union Bound  – see  Exercise 1.14. For the BSC– and the AWGN channel, the gap is much larger. The factor  10  (and more) is not uncommon.
  • The Bhattacharyya bound  W(β)1  looks very simple at first sight. Nevertheless, one needs also here knowledge about the exact weight function  W(ξ)  of the code.
  • If the transmission channel (BEC, BSC, AWGN or variations thereof) and its parameters are known, there is nothing to be said against using the (more accurate) "Union Bound" as an upper bound for the block error probability.


Barriers for the (7, 4, 3) Hamming code at the AWGN channel


Finally, we consider the block error probability and its bounds ("Union Bound" and "Bhattacharyya bound" ) for the following configuration:

  • AWGN channel, characterized by the quotient  EB/N0,
  • Hamming code  HC(7, 4, 3)   ⇒   R=4/7,   W(X)1=7X3+7X4+X7,
  • "Soft Decision" according to the maximum–likelihood criterion.

Block error probability and bounds of   HC (7, 4, 3)

Example 5:  Die Ergebnisse sind in der Grafik zusammengefasst.

  • Im Gegensatz zur Grafik im Abschnitt  Codiergewinn – Bitfehlerrate bei AWGN ist hier die Blockfehlerrate angegeben und nicht die Bitfehlerrate.
  • Näherungsweise ist Letztere um den Faktor  dmin/k  kleiner, falls wie hier  dmin<k  ist. Im vorliegenden Beispiel gilt  dmin/k=0.75.
  • Berechnet wurden nur die Punkte für ganzzahlige  dB–Werte. Die gestrichelten Linien wurden interpoliert.
  • Die rechts angegebenen (blauen) Zahlenwerte gelten für  10lgEB/N0=8dB   ⇒   EB/N06.31 (blaue Vertikale).


Die grünen Kreuze markieren die "Union Bound". Nach dieser gilt:

Pr(Blockfehler)ni=dminWiQ(i2REB/N0)
Pr(Blockfehler)7Q(4.65)+7Q(5.37)+Q(7.10)=
71.66106+73.93108+109=1.2105.
  • Die Zahlenwerte machen deutlich, dass die Union Bound im wesentlichen durch den ersten Term bestimmt wird:
Pr(UnionBound)WdminQ(dmin2REB/N0)=1.16105.
  • Allerdings ist diese so genannte  "Truncated Union Bound"  nicht mehr bei allen Anwendungen eine echte Schranke für die Blockfehlerwahrscheinlichkeit, sondern ist als Näherung zu verstehen.
  • Die Bhattacharyya–Schranke ist in der Grafik durch rote Punkte markiert. Diese liegt aufgrund der stark vereinfachten  Chernoff–Rubin Bound  Q(x)ex2/2  deutlich über der Union Bound.
  • Zum Beispiel erhält man für  10lgEB/N0=8dB  mit  β=eREB/N00.027  gegenüber der Union Bound einen mehr als zehnfachen Wert:
Pr(Bhattacharyya)=W(β)1=7β3+7β4+β71.44104.

Aufgaben zum Kapitel


Aufgabe 1.14: Bhattacharyya–Schranke für BEC

Aufgabe 1.15: Distanzspektren von HC (7, 4, 3) und HC (8, 4, 4)

Aufgabe 1.16: Fehlerwahrscheinlichkeitsschranken für AWGN

Aufgabe 1.16Z: Schranken für die Gaußsche Fehlerfunktion